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Abstract

The ensemble Kalman filter (EnKF) is a powerful data assimilation method meant for high-
dimensional nonlinear systems. But its implementation requires fixes such as localization
and inflation. The recently developed finite-size ensemble Kalman filter (EnKF-N) does not
require multiplicative inflation meant to counteract sampling errors. Aside from the practical
interest of avoiding the tuning of inflation in perfect model data assimilation experiments,
it also offers theoretical insights and a unique perspective on the EnKF. Here, we revisit,
clarify and correct several key points of the EnKF-N derivation. This simplifies the use of
the method, and expands its validity. The EnKF is shown to not only rely on the observations
and the forecast ensemble but also on an implicit prior assumption, termed hyperprior, that
fills in the gap of missing information. In the EnKF-N framework, this assumption is made
explicit through a Bayesian hierarchy. This hyperprior has been so far chosen to be the
uninformative Jeffreys’ prior. Here, this choice is revisited to improve the performance of
the EnKF-N in the regime where the analysis is strongly dominated by the prior. Moreover,
it is shown that the EnKF-N can be extended with a normal-inverse-Wishart informative
hyperprior that introduces additional information on error statistics. This can be identified
as a hybrid EnKF-3D-Var counterpart to the EnKF-N.

1 Introduction

The ensemble Kalman filter (EnKF) has become a popular data assimilation method for
high-dimensional geophysical systems (?, and references therein). The flow-dependence
of the forecast error used in the analysis is its main strength, compared to schemes using
static background statistics such as 3D-Var and 4D-Var.

However, to perform satisfyingly, the EnKF may require the use or inflation and/or local-
ization, depending on the data assimilation system setup. Localization is required in the
rank-deficient regime, in which the limited size of the ensemble leads to an empirical er-
ror covariance matrix of too small rank, as is often the case in realistic high-dimensional
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systems (???). It can also be useful in a rank-sufficient context in the presence of non-
Gaussian/non-linear effects.

Inflation is a complementary technique meant to increase the variances diagnosed by
the EnKF (??). It is usually intended to compensate for an underestimation of uncertainty.
This underestimation can be caused either by sampling error, an intrinsic deficiency of the
EnKF system, or model error, an extrinsic deficiency.

A variant of the EnKF, called the finite-size ensemble Kalman filter (EnKF-N) has been
introduced in ??. It has subsequently been successfully applied in ?? in an ensemble varia-
tional context. It has been shown to avoid the need for multiplicative inflation usually needed
to counteract sampling errors. In particular, it avoids the costly chore of tuning this inflation.

The EnKF-N is derived by assuming that the ensemble members are drawn from the
same distribution as the truth, but makes no further assumptions on the ensemble’s accu-
racy. In particular, the EnKF-N, unlike the traditional EnKFs, does not make the approxima-
tion that the sample first- and second-order moments coincide with the actual moments of
the prior (which would be accessible if the ensemble size N was infinite).

Through its mathematical derivation, the scheme underlines the missing information be-
sides the observations and the ensemble forecast, an issue which is ignored by traditional
EnKFs. This missing information is explicitly compensated for in the EnKF-N using a so-
called hyperprior. In ?, a simple choice was made for this hyperprior, namely the Jeffreys’
prior, which is meant to be as much non-informative as possible. While the EnKF-N built
on Jeffreys’ prior often performs very well with low-order models, it may fail in specific dy-
namical regimes because a finer hyperprior is needed (?). Other choices were made in the
derivation of the EnKF-N which remain only partly justified or insufficiently clear.

The objective of this paper is to clarify several of those choices, to answer several ques-
tions raised in the above references, and to advocate the use of improved or new hyperpri-
ors. This should add to the theoretical understanding of the EnKF, but also provide a useful
algorithm. Specifically, the EnKF-N allows the development of data assimilation systems
under perfect model conditions without worrying about tuning the inflation. In the whole
paper, we will restrict ourselves to perfect model conditions.
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In Section |2 the key ideas and algorithms of the EnKF-N are recalled and several as-
pects of the approach are clarified. It is shown that the redundancy in the EnKF centered
perturbations leads to a subtle but important correction to the EnKF-N when the analysis is
performed in the affine space defined by the mean state and the ensemble perturbations.
In Section |3, the ensemble update step of the EnKF-N is revisited and clarified. In Sec-
tion {4} the nonlinearity of the ensemble forecast step and its handling by the EnKF-N, and
more generally multiplicative inflation, are discussed. The corrections to the EnKF-N are
illustrated with numerical experiments in Section 5 Sections [6|and [7] discuss of modifying
or even changing the hyperprior. In Section [6] we discuss caveats of the method in regimes
where the posterior ensemble is drawn to the prior ensemble. Simple alternatives to the
Jeffreys’ hyperprior are proposed. Finally, a class of more informative priors based on the
normal-inverse-Wishart distribution and permitting to incorporate additional information on
error statistics is introduced and theoretically discussed in Section |/} Conclusions are given
in Section

2 The finite-size ensemble Kalman filter (EnKF-N)

The key ideas of the EnKF-N are presented and clarified in this section. Additional insights
into the scheme and why it is successful are also given.

2.1 Marginalizing over potential priors

? (later ?) recognized that the ensemble mean X and ensemble error covariance matrix P
used in the EnKF may be different from the unknown first- and second-order moments of
the true error distribution, x; and B, where B is a positive definite matrix. The mismatch is
due to the finite-size of the ensemble which leads to sampling errors, partially induced by
the nonlinear ensemble propagation in the forecast step (see Section[d). Figure[f]illustrates
the effect of sampling error when the prior is assumed Gaussian and reliable, whereas the
prior actually stems from an uncertain sampling using the ensembile.
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The EnKF-N prior accounts for the uncertainty in x, and B. Denote E = [x1,X2,...,Xx]
the ensemble of size N formatted as an M x N matrix where M is the state space dimen-
sion, x = E1/N the ensemble mean where 1 = (1,---,1)7, and X = E — x17 the perturba-
tion matrix. Hence, P = XXT/(IN — 1) is the empirical covariance matrix of the ensemble.
Marginalizing over all potential x; and B, the prior of x reads

p(x|E) = / dx,dB p(x|E. x5, B)p(x;, BIE). (1)

The symbol dB corresponds to the Lebesgue measure on all independent entries H1<J d[B];;,
but the integration is restricted to the cone of positive definite matrices. Since p(x|E,x;, B)
is conditioned on the knowledge of the true prior statistics and assumed to be Gaussian, it
does not depend on E, so that:

p(x|E) = /dxdep(x]xb, B)p(xy, B|E). 2)
Bayes’ rule can be applied to p(x;, B|E), yielding

1
p(XE) = s [ BB (xlx Bo(Elx,,B)o(x,.B). @)

Assuming independence of the samples, the likelihood of the ensemble E can be written

p(E|x;, B) Hp Xn|Xp, B). (4)
n=1

The last factor, p(xp, B), is the hyperprior. This distribution represents our beliefs about the
forecasted filter statistics, x;, and B, prior to actually running any filter. This distribution is
termed hyperprior because it represents a prior for the background information in the first
stage of a Bayesian hierarchy.
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Assuming one subscribes to this EnKF-N view on the EnKF, it shows that additional
information is actually required in the EnKF, in additional to the observations and the prior
ensemble which are potentially insufficient to make an inference.

A simple choice was made in ? for the hyperprior: the Jeffreys’ prior is an analytically
tractable and uninformative hyperprior of the form

M+1

py(xp,B) o |B|” 2, (5)

where |B| is the determinant of the background error covariance matrix B of dimension
M x M.

2.2 Predictive prior

With a given hyperprior, the marginalization over x; and B, Eq. (3), can in principle be car-
ried out to obtain p(x|E). We choose to call it a predictive prior to comply with the traditional
view that sees it as prior before assimilating the observations. Note, however, that statisti-
cians would rather call it a predictive posterior distribution as the outcome of a first-stage
inference of a Bayesian hierarchy, where E is the data.

Using Jeffreys’ hyperprior, ? showed that the integral can be obtained analytically and
that the predictive prior is a multivariate T-distribution:

P
N_1 +en ;

I\)‘Z

x—%)(x—%)"

p(x[E) o | ©)

where |.| denotes the determinant and ey = 1+ 1/N. The determinant is computed in the
space generated by the perturbations of the ensemble so that it is not singular. This distri-
bution has fat tails thus accounting for the uncertainty in B. The factor e, is a result of the
uncertainty in x;; if x, were known to coincide with the ensemble mean X, then ¢ would be
1 instead. For a Gaussian process, ¢ vy P is an unbiased estimator of the squared error of the
ensemble mean x (?), where ¢y stems from the uncertain x; which does not coincide with
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X. In the derivation of ?, the e ;yP correction comes from integrating out on x;. Therefore, e
can be seen as an inflation factor on the prior covariance matrix that should actually apply
to any type of EnKF.

This non-Gaussian prior distribution can be seen as an average over Gaussian distribu-
tions weighted according to the hyperprior. It can be shown that Eq. (6) can be re-arranged:

Nz

; (7)

p(<[E) o {1+ (%) (exP) (x—5) }

N-1

where P is the Moore-Penrose inverse of P.

In comparison, the traditional EnKF implicitly assumes that the hyperprior is 6(B—P)o(x,—
X) where ¢ is a Dirac multidimensional distribution. In other words the background statistics
generated from the ensemble coincide with the true background statistics. As a result, one
obtains in this case the Gaussian prior:

p(x|E)o<exp{—;(x—x)TPT(x—x)}. (®)
2.3 Analysis

Consider a given analysis step of the data assimilation cycle. The observation vector is
denoted y of dimension d. In a Bayesian analysis, p(x|y) = p(y|x)p(x)/p(y), the likelihood
p(y|x) is decoupled from the prior pdf p(x). In the EnKF-N framework we are interested in
p(x|y, E). Bayes’ formula then reads

_ p(y|x, E)p(x|E)

p(x|y,E) = T GlE) 9)

But y does not depend on E when conditioned on x: p(y|x, E) = p(y|x). As a consequence,
Bayes’ formula now simply reads within the EnKF-N framework:
p(y[x)p(x[E)
p(x|y,E) = ——————=. (10)
B =)
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This is at odds with the ill-founded claim by ? that the likelihood still depends on E. This
expression clarifies one of the issue raised in ?.

Let us recall and further discuss the analysis step of the EnKF-N for state estimation.
For the sake of simplicity, the observational error distribution is assumed Gaussian, unbi-
ased, with covariance matrix R. The observation operator will be denoted H. Because the
predictive prior Eq. (6) is non-Gaussian, the analysis is performed through a variational op-
timization similarly to the maximum likelihood filter (?), rather than by matrix algebra as in
traditional EnKFs. Working in ensemble space, states are parameterized by vectors w of
size N such that

X =X+ Xw. (11)

There is at least one “gauge” degree of freedom in w due to the fact that x is invariant under
w — w -+ A1, where X is an arbitrary scalar. This is the result of the linear dependence of
the centered perturbation vectors.

For reference, with these notations, the cost function of the ensemble transform Kalman
filter (ETKF, ?2?) based on Eq. (8) reads:

1 _ N-1
T(w) = lly = HGx+ Xw) 3+ = wlff, (12

where |z||2 =z"R~!z and N,, is the orthogonal projector onto the row space of X. Al-
gebraically, M,, = XX where X' is the Moore-Penrose inverse of X. Equation (12) is the
direct result of the substitution into Eq. (8) of x by w using Eq. (11). As explained by ?, one
can add the term ||w||,2N_,-lw to the cost function without altering the minimum. Denoting

||| = 2"z, this leads to:

1 _ N-1
T(w) =3 ly = H(x+Xw)|[g + —— [lw]*. (13)

The added term has been labelled gauge fixing term by ? using standard physics terminol-
ogy. The EnKF-N cost function in ? is

1 N
Tw) =5 ly = HE+Xw) [z + 5 In (ex + |w]) - (14)
8
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It is the result of the substitution of x by w using Eq. into Eq. (7), and of the addition of
the gauge fixing term albeit inside the logarithm, which was justified by extending the idea
of ? and the monotonicity of the logarithm. The restriction of x to the ensemble subspace
is an approximation inherent in the traditional EnKFs. By virtue of the hyperprior, it is not
necessarily part of the EnKF-N. However, it is quite justified assuming the ensemble tracks
the unstable subspace of the dynamics.

There is another caveat in the use of the ensemble transform Eq. (7). First of all, the
logarithm of the determinant of the Jacobian matrix should be added to the cost function
since

Inpw(w) = Inpg(x(w)) + In (15)

Ox(w) ‘ _
ow

Had the transformation w — x(w) been nonlinear, the cost function would have been im-
pacted (see for instance ?). However, the standard ensemble transform is linear which
should result in an irrelevant constant. Unfortunately, because of the gauge degree(s) of
freedom of the perturbations, the transformation is not injective and therefore singular, and
the determinant of the transformation is zero yielding an undefined constant. Hence, the
issue should be addressed more carefully. It will turn out in the following section that the
cost function should be amended in the non-quadratic case.

2.4 Accounting for the gauge degrees of freedom of the ensemble transform

Let us denote N < min(N — 1, M) the rank of X. The number of gauge degrees of freedom
istheng=N — N. The most common case encountered when applying the EnKF to high-
dimensional systems is that the rank of X is N —1 < M, that is to say g = 1 because X1 =
0. A non singular ensemble transform is obtained by restricting w to A/ the orthogonal
complement of the null space, NV, of X. Hence, the ensemble transform:

T: Nt —TW?h)
W — T(W)=Xw (16)
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is nonsingular. This amounts to fixing the gauge at zero. With this restriction to A/t the
prior of the ETKF defined over N is

o) oo (519 (1)

whereas the prior pdf of the EnKF-N is

p(W) o< (ex +[[#]%) 7. (18)

In principle, the analysis can be performed in N+ using reduced variables w,. € R, looking
for an estimate of the form x = x+ X, w,., where X,. would stand for a reduced perturbation
matrix. To do so, let us introduce the singular value decomposition of the initial perturbation
matrix: X = UZVT, with U € RM*¥ such that UTU = I ¢, X is a diagonal positive matrix in

RV?, and V € RV*V is such that VTV = I 5. The reduced perturbation matrix X, is then
simply given by X, = UX. However, the change of variable w — w, would prevent us from
using the elegant symmetric formalism of the ensemble transform Kalman filter because
the perturbation matrix X, is not centered. Moreover, the new perturbations, X,., are non-
trivial linear combinations of the initial perturbations, X. It is likely to generate imbalances
with nonlinear dynamics. Indeed, it is unlikely that the displacement of the ensemble in
the analysis would be minimized, as opposed to what happens with the ETKF when the
transform matrix is chosen symmetric (?). We applied this change of variable to a standard
ETKF and tested it numerically with the Lorenz-95 low-order model (?). We obtained much
larger displacements and intermittent instabilities that require more inflation.

Hence, we wish to fix the gauge while keeping the initial perturbations as much as possi-
ble. To do so, the definition of the prior pdfs defined on A/ are extended to the full ensemble
space RY = At @ N, while maintaining their correct marginal over A'-. For the EnKF, we
can fix the gauge by choosing

plo) o (5 ). (19)
10
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as in Eq. which has indeed the correct marginal since p(w) factorizes into indepen-
dent components for A" and N'*. For the EnKF-N, we can fix the gauge while keeping the
symmetry by choosing

_N+g

pw) o< (en+[wl?) * (20)

It can be seen that this pdf has the correct marginal by integrating out on A/, using the

change of variable w — w — /e + [|[W||*(w — w).

The use of these extended pdfs in the analysis are justified by the fact that the Bayesian
analysis pdf p(w|y) in ensemble space has the correct marginal over N'-. Indeed, if p(y|w) =
p(y|x =X+ Xw) is the likelihood in ensemble space which does not depend on w, then
the marginal of the Bayesian analysis pdf p(wl|y) o« p(y|w)p(w) is consistently given by
p(wly) x p(y|w)p(w). We conclude that it is possible to perform an analysis in terms of the
redundant w in place of w.

As opposed to the Gaussian case, the form of pdf Eq. brings in a change in the
EnKF-N when the analysis is performed in ensemble space. The appearance of g in the
exponent is due to a non trivial Jacobian determinant when passing from the ungauged to
the gauged variables, a minimalist example of the so-called Faddeev-Popov determinant
(?). This consideration generates a modification of the EnKF-N cost function when using
Eq. as the predictive prior. Henceforth, we shall assume g = 1, which will always be
encountered in the rest of the paper. Consequently, the modified EnKF-N has the following
cost function:

N+1

1
Tw) =5 ly = HE+Xw) g+ == In (e +[lw?) 1)

which replaces Eq. (14). This modification, g = 0 — 1, as compared with ?, will be enforced

in the rest of the paper. Such a change will be shown to significantly impact the numerical
experiments in Section

11
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3 Update of the ensemble

The form of the predictive prior also has important consequences on the EnKF-N theory.
First of all, the pdfs Eq. or Eq. are multivariate T-distributions, and more specifically
multivariate Cauchy distributions. They are proper, i.e. normalizable to 1, but have neither
first-order nor second-order moments.

3.1 Laplace approximation

Conditioned on B, both the prior and the posterior are Gaussian provided the observation
error distribution is Gaussian which is assumed for the sake of simplicity. Without this condi-
tioning, however, they are both a (continuous) mixture of candidate Gaussians in the EnKF-
N derivation. Therefore, the posterior p(w|y) o p(y|w)p(w) should be interpreted with cau-
tion. As was done in ?, its mode can in principle be safely estimated. However, its moments
do not generally exist. They exist only if the likelihood p(y|w) enables it. Even when they do
exist, they do not carry the same significance as for Gaussians.

Hence, the analysis w,, is safely defined using the EnKF-N Cauchy prior as the most likely
w of the posterior pdf. But, using the mean and the error covariance matrix of the posterior
is either impossible or questionable because as explained above they may not exist.

One candidate Gaussian that does not involve integrating over the hyperprior, is the
Laplace approximation of the posterior (see ?, for instance), which is the Gaussian ap-
proximation fitted to the pdf in the neighborhood of w,. This way, the covariance matrix of
the Laplace distribution is obtained as the Hessian of the cost function at the minimum w,,.
Refining the covariance matrix from the inverse Hessian is not an option since the exact
covariance matrix of the posterior pdf may not exist. This is a counterintuitive argument
against looking for a better approximation of the posterior covariance matrix rather than the
inverse Hessian.

Once a candidate Gaussian for the posterior has been obtained, the updated ensemble
of the EnKF-N is obtained from the Hessian, just as in the ETKF. The updated ensembile is

E°=x1T+X,, x*=%X+Xw,. (22)
12

TodeJ UOISSNOSI(]

TodeJ UOISSNOSI(]

TodeJ uOISSNOSI(]

TodeJ UOISSNOSI(]



20

where x* is the analysis in state space; w,, is the argument of the minimum of Eq. (21). The
updated ensemble of perturbations X, is given by

X, = VN — 1X[H,] Y2 U, (23)

where U is an arbitrary orthogonal matrix satisfying U1 = 1 (?) and where H,, is the Hessian

of Eq. (21),

(en +wiwg) Iy —2wow]

Ho =Y RIY (N +1) (24)

(en + wgwa)2

with Y = HX and H the tangent linear of H. The algorithm of this so-called primal EnKF-N is
recalled by Algorithm|[i] Note that the algorithm can handle nonlinear observation operator
since it is based on a variational analysis similarly to the maximum likelihood ensemble filter
of ?. We will choose U to be the identity matrix in all numerical illustrations of this paper,
and in particular Section [5} in order to minimize the displacement in the analysis (?).

3.2 Theoretical equivalence between the primal and the dual approaches

? showed that the functional Eq. is generally non-convex but has a global minimum.
Yet, the cost function is only truly non-quadratic in the direction of the radial degree of
freedom ||w|| of w, because the predictive prior is elliptical. This remark led ? (later ? ) to
show, assuming H is linear or linearized, that the minimization of Eq. can be performed
simply by minimizing the following dual cost function over ]0, (N +1)/en]:

en( N+l N+1 N+l
n J—

> > C > (25)

D(¢) = %5T (R+YCIYT) 5+

where § =y — H(X). lts global minimum can easily be found since ¢ — D(() is a scalar
cost function. The variable ¢ is conjugate to the square radius |w||. It can be seen as
the number of effective degrees of freedom in the ensemble. Once the argument of the

13
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minimum of D((¢), ¢,, is computed, the analysis for w can be obtained from the ETKF-like
cost function:

1 a
Tw) =3 lly ~ Hx+ Xw)l2 + 5w, @6)

with the solution:

-1

wo = (YIRIY +¢ly) YRS = YT (GR+YYT) 5. (27)

Based on this effective cost function, an updated set of perturbations can be obtained:
Xo= VN _IX[H]2U with Ho=YTRIY +Cly. (28)

As a consequence, the EnKF-N with an analysis performed in ensemble space can be seen
as an ETKF with an adaptive optimal inflation factor A* applied on the prior distribution, and
related to ¢, by A\* = /(N —1)/{,. Provided one subscribes to the EnKF-N formalism,
this tells us that sampling errors can be cured by multiplicative inflation. This is supported
by ? who experimentally showed that multiplicative inflation is well suited to account for
sampling errors whereas additive inflation is better suited to account for model errors in
a meteorological context. Other efficient adaptive inflation methods have been proposed
by, e.g. ??2??2??2? for broader uses including extrinsic model error. Nevertheless, for the
experiments described in Section |5 they are not as performant with the specific goal of
accounting for sampling errors as the EnKF-N.

Equation (28), on which the results of ? are based, is only an approximation because it
does not use the Hessian of the complete cost function Eq. (21). Only the diagonal term of
the Hessian of the background term is kept:

N+1

— N, (29)
en + [|lwal

p =

—N+1 _ shown in ? to be one of the
en+|lwall T

optimum conditions. The off-diagonal rank-one correction, —2(N + 1) 712w w/
14

which can be simply written H, ~ (,Ix using (, =
, has been
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neglected. This approximation is similar to that of the Gauss-Newton method which is an ap-
proximation of the Newton method where the Hessian of the cost function to be minimized is
approximated by the product of first-order derivative terms and by neglecting second-order
derivative terms. The approximation actually consists in neglecting the co-dependence of
the errors in the radial (||w/||) and angular (w/ ||w/||) degrees of freedom of w.

Since the dual EnKF-N is meant to be equivalent to the primal EnKF-N when the obser-
vation operator is linear, the updated ensemble should actually be based on Eq. which
can also be written

2
]\?if 1 wawl , (30)
and compared to the approximation Eq. used in ?. The algorithm of this so-called
dual EnKF-N is recalled in Algorithm [2]and includes the correction. With Eq. (30), the dual
scheme is strictly equivalent to the primal scheme provided that H is linear, whereas it is
only approximately so with Eq. (28).

The co-dependence of the radial and angular degrees of freedom exposed by the dual
cost function is further explored in Appendix [Al

Xo = VN _IX[H]2U with Ho=YTRIY +Cily —

4 Cycling of the EnKF-N and impact of model nonlinearity

We have discussed and amended the analysis step of the EnKF-N. To complete the data
assimilation cycle, the ensemble must be forecasted between analyses. The cycling of the
EnKF-N can be summarized by the following diagram:

Yk Yk+1

L] L]
tr tr tk+1 predictive tk+1 tk+1
O ————————————————— @ > 0 [ ] [ ]
E£ analysis  Ej;  forecast E£+1 prior analysis  E7

15
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In accounting for sampling error, the EnKF-N framework differs quite significantly from that
of ?2??. Focusing on the bias of the EnKF gain and precision matrix, these studies are
geared towards single-cycle corrections. By contrast, the EnKF-N enables the likelihood
to influence the estimation of the posterior covariance matrix. This can be seen by writing
and recognizing the posterior as a non-uniform mixture of Gaussians, as for the prior. The
inclusion of the likelihood is what makes the EnKF-N equipped to handle the effects of
model nonlinearity and the sequentiality of data assimilation.

Assuming linear evolution and observation models that are taken as perfect, and provided
the ensemble is big enough to span the unstable and neutral subspace, and even though it
remains degenerate, inflation or localization are unnecessary in the ensemble square root
Kalman filter (??). Sampling errors, if present, can be ignored in this case. Therefore, it
is inferred from this result that inflation is actually compensating for the misestimation of
errors generated by model nonlinearity. Following this line of thought, ? hypothesized that
the finite-size scheme actually accounts for the error generated in the nonlinear deformation
of the ensembile in the forecast step of the EnKF.

A recent study by ? confirms and clarifies this suggestion. The authors show that the
nonlinear evolution of the error in the extended Kalman filter generates additional errors
unaccounted for by the extended Kalman filter linear propagation of the error. In a spe-
cific example, they are able to avoid the need for inflation with the 40-variable Lorenz-95
model using a total of 24 perturbations (14 for the unstable and neutral subspace and 10
for the main nonlinear corrections). We checked that the same root mean square errors as
shown in table Il of ? can be achieved by the EnKF-N and the optimally tuned EnKF with an
ensemble of size N = 24. This reinforces the idea that the EnKF-N accounts, albeit within
ensemble space, for the error generated by nonlinear corrections inside and outside the en-
semble subspace. Additionally, note that the EnKF-N does not show any sign of divergence
in the regime studied by ? even for much stronger model nonlinearity.

To picture the impact of inflation on the fully cycled EnKF, let us consider the simplest
possible, one-variable, perfect, linear model 1 = axy, with k the time index. If a2 > 1, the
model is unstable, and stable if o < 1. In terms of uncertainty quantification, multiplicative
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inflation is meant to increase the errors covariances so as to account for misestimated
errors. Here, we apply the inflation on the prior at each analysis step since the EnKF-N
implicitly does it. Let us denote by, the forecast/prior error variance, r the static observation
error variance and ay, the error analysis variance. ¢ plays the same role as in the EnKF-N
scheme, so that a uniform inflation is C*%. Sequential data assimilation implies the following
recursions for the variances:

apt=Cht 7t and by =alay, (31)
whose asymptotic solution (a = as) is
ifa?<¢:a=0 and fa?>(:a=(1-¢/a?)r. (32)

Now, consider a multivariate model which is the collection of several independent one-
variable models with as many growth factors «a. In the absence of inflation, ( = 1, the stable
modes, o < 1, converge to a perfect analysis (a = 0) whereas the unstable modes, o® > 1,
converge to a finite error (a > 0) that grows with the instability of the modes, as expected.
When inflation is used, { < 1, the picture changes but mostly affect the modes close to
neutral (see Fig.[2). The threshold is displaced and the modes with finite asymptotic errors
now include a fraction of the stable modes. The strongly unstable modes are much less
impacted.

In spite of its simplicity and its linearity, this model makes the link between the EnKF-
N, multiplicative inflation and the dynamics. ?? have argued that, in the absence of model
error, systematic error of the EnKF comes from the error transported from the unstable
subspace to the stable subspace by the effect of nonlinearity. Unaccounted error would
accumulate on the stable modes close to neutrality. As seen above, the use of the EnKF-
N, or multiplicative inflation on the prior, precisely acts on these modes by increasing their
error statistics without affecting the most unstable modes that mainly drive the performance
of the EnKF.
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5 Numerical experiments

Twin experiments using a perfect model and the EnKF-N have been carried out on sev-
eral low-order models in previous studies. In many cases the EnKF-N, or its variant with
localization (using domain localization), were reported to perform on the Lorenz-63 and
Lorenz-95 models as well as the ETKF but with optimally tuned uniform inflation. With a two-
dimensional forced turbulence model, driven by the barotropic vorticity advection equation,
it was found to perform almost as well as the ETKF with optimally tuned uniform inflation
(?), although the local EnKF-N has not yet been thoroughly tested with this model.

The choice of ey has remained a puzzle in these experiments. It has been reported that
the Lorenz-63 model required ey = 1+ 1/N, whereas the Lorenz-95 model required ey =
1, seemingly owning to the larger ensembile size. It was also previously reported that domain
localization of the EnKF-N with both models required ey = 1+ 1/N. In the present study,
we have revisited those experiments using the correction g = 0 — 1 of Section sticking
with the theoretical value ey =1+ 1/N, and the same ensemble sizes. This essentially
reproduced the results of the best choice for € in each case. For these low-order models,
this solved a puzzle: there is no need to adjust ey =1+ 1/N. Hence, the EnKF-N in the
subsequent experiments uses the correctiong=0—1landey =1+1/N.

Figure [3| summarizes the corrections of Sections |2/ and |3} It also illustrates the equiv-
alence between the primal and the dual EnKF-N. It additionally shows the performance
of the dual EnKF-N with the approximate Hessian used in ?, and the performance of the
ensemble square root Kalman filter with optimally tuned uniform inflation. The Lorenz-95
low-order model is chosen for this illustration (?). Details about the model can be found in
their article. A twin experiment is performed, with a fully observed system (H = I, where
d = M = 40), an observation error variance matrix R = I; which is also used to generate
synthetic observations from the truth. The ensemble size is N = 20. The time interval be-
tween observation updates At is varied which changes the nonlinearity strength. Varying
model nonlinear is highly relevant because, as explained in Section [4, model nonlinearity
is the profound cause of the need for inflation, in this rank-sufficient context (N = 20). We
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plot the mean analysis root mean square error (RMSE) between the analysis state and the
truth state. To obtain a satisfying convergence of the statistics, the RMSEs are averaged
over 10° cycles, after a spin-up of 5 x 103 cycles.

The performances of the primal and the dual EnKF-N are indistinguishable for the full
At range. The dual EnKF-N with approximate Hessian hardly differs from the EnKF-N, i.e.
using Eq. in place of Eq. (30). However, it is slightly suboptimal for At = 0.05 by about
5%.

Similar experiments have been conducted with the Lorenz-63 model (?), the Lorenz-05lI
model (?) model, the Kuramato-Shivashinski model (??). These experiments have yielded
the same conclusions.

The additional numerical cost of using the finite-size formalism based on Jeffreys’ hyper-
prior is now compared to the analysis step of an ensemble Kalman filter or of an ensemble
Kalman smoother based on the ensemble-transform formulation. The computational cost
depends on the type of methods. Let us first discuss non-iterative methods, such as the
ETKF or a smoother based on the ETKF. If the singular value decomposition (SVD) of
R™2Y has already been obtained, the dual approach can be used and the additional cost
of the EnKF-N, or EnKS-N, is due to the minimization of the dual cost function Eq. (25),
which is negligible. This is indeed the case in all our experiments where the SVD has been
obtained in order to compute the inverse in the state update Eq. or the inverse square
root in the perturbations update Eq. or Eq. (24). If the data assimilation is iterative (for
significantly nonlinear models) such as the maximum likelihood ensembile filter (?) or the
iterative ensemble Kalman smoother (?), then the primal approach of the finite-size scheme
can be made to coincide with the iterative scheme. Examples of such integrated schemes
are given in ??. The additional cost is often negligible except if the number of expected
iterations is small which is the case if the models are weakly nonlinear. However, in this
case, the finite-size correction is also expected to be small with an effective inflation value
close to 1.

Moreover, it is important to notice that the perturbations update as given by Eq. can
induce a significant extra numerical cost as compared to the update of an ETKF. Indeed the
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SVD used to compute Eq. cannot be directly used to compute Eq. which might
require another SVD. However, using the approximate scheme which consists in neglecting
the off-diagonal term does not make that requirement. Even if the off-diagonal term is in-
cluded in the Hessian, the inverse square root of the Hessian could be computed from the
original SDV through a Sherman-Morisson update because the off-diagonal term is of rank
one.

Let us finally mention that no significant additional storage cost is required by the scheme.

6 Performance in the prior-driven regime

The EnKF-N based on the Jeffreys’ hyperprior was found to fail in the limit where the sys-
tem is almost linear but remains nonlinear (?). This regime is rarely explored with low-order
models but it is likely to be encountered in less homogeneous, more realistic applications.
Figure [ illustrates this failure. It extrapolates the results of Fig.[3|to very small time inter-
vals between updates where the dynamics are quasi-linear. As At decreases the RMSE of
the optimal inflation EnKF decreases as one would expect, while the RMSE of the EnKF-N
based on the Jeffreys’ prior increases.

In this regime, the EnKF-N has great confidence in the prior as any filter would do.
Therefore, the innovation-driven term becomes less imrtant than the prior term Dy(() =

=y6 4 N in HL — NoEL in the dual cost function Eq. (25), so that its mode ¢, tends to the
mode of Dy(¢) which is {, = (N +1)/enx = N. Note that an inflation of 1 corresponds to
¢ = N — 1. Hence, in this regime, even for moderately-sized innovations, there is deflation.
The failure of the EnKF-N was empirically fixed in ? by capping ¢, to prevent deflation.

More generally, we believe the problem is to be encountered whenever the prior largely
dominates the analysis (prior-driven regime). This is bound to happen when the observa-
tions are too few, too sparsely distributed, which could occur when using domain localiza-
tion, and whenever they are unreliable compared to the prior. Quasi-linear dynamics also fit
this description, the ratio of the observation precision to the prior precision becoming small
after a few iterations.
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This failure may not be due to the EnKF-N framework. It may be due to an inappropri-
ate choice of candidate Gaussian posterior as described in Sec. (3| Or it may be due to an
inappropriate choice of hyperprior in this regime. Although it seems difficult to devise a hy-
perprior that performs optimally in all regimes, we can suggest two adjustments to Jeffreys’
hyperprior in this prior-driven regime.

6.1 Capping of the inflation

Here, deflation is avoided by capping (. Firstly, we build the desired dual cost function.
Instead of minimizing D(¢) over ]0,(N +1)/ey], it is minimized over ]0,¢], with 0 < { <
(N +1)/en, which defines the dual cost function. ¢ is a tunable bound which is meant to be
fixed over a wide range of regimes. Following a similar derivation to Appendix A of ?, one
can show that the background term of the primal cost function corresponding to this dual
cost function is

N+1 (N+1) N+1
2 C 2

In (5N+ ||w||2) . (33)

3 )
<ML o ) =S (e Iwl?) +

N+1 N+1
i ||w||2>j—szv: To(w) =~

The dual and primal cost functions can both be shown to be convex. There is no duality
gap, which means, with our definitions of these functions, that the minimum of the dual
cost function is equal to the minimum of the primal cost function. By construction, in the
small innovation range, i.e. |w||?> < (N +1)/C — ey, the EnKF-N, endowed with this new
hyperprior, corresponds to the ETKF (?) with an inflation of the prior by (N —1)/¢ > 1. Since
the hyperprior assumed in the regime of small ||w|| is p(xy, B) = §(B — (P), this could be
called the Dirac-Jeffreys hyperprior.

Even with the Dirac-Jeffreys hyperprior, it is still necessary to introduce a tiny amount
of inflation through ¢ in the quasi-linear regime. This might prove barely relevant in a high-
dimensional realistic system as it was for the sensitive low-order models that we tested the
scheme with. Even with Lorenz-95, an instability develops over very long experimental runs
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in the absence of this residual inflation. Still this remains a theoretical concern. Moreover,
we could not find a rigorous argument to support avoiding deflation in all regimes, and
hence the capping. That is why we propose an alternative solution in the following.

6.2 Smoother schemes in the prior-driven regime

In the limit of R getting very large, the observations cannot carry information, and the en-
semble should not be updated at all, i.e. it should be close to the prior ensemble, with an
inflation of 1 (( = N — 1). Outside of this regime, we do not see any fundamental reason to
constrain ¢ to be smaller than N — 1. A criterion to characterize this regime would be

1

1" (YTRTYY), (34)

ES

which computes the ratio of the prior variances to the observation error variances. When
tends to zero, the analysis should be dominated by the prior and ¢ should tend to N — 1.
When ¢ drifts away from zero, we do not want to alter the hyperprior and the EnKF-N
scheme, even if it implies deflation. We found several schemes that satisfy these con-
straints. Two of them, denoted R1 and R2, consist in modifying ¢ into ¢’y and yield a
well-behaved mode of the background part of the dual cost function ¢, = argmin [Dy(¢)]:

¢

- N
o o _N+L( N oy Lo on (Nt b (35)
S SNT TN O\N—1 b= N

The point of these formulae is to make (;, tend to N —1 (no inflation) when the criterion
1 tends to zero. On the other hand, when v gets bigger (3 tends to IV, i.e. to the original
dual cost function’s behavior dictated by Jeffreys’ hyperprior. The implementation of these
schemes is straightforward for any of the Algorithms 1] or [2} since only 5 needs to be
modified either in the dual or the primal cost functions.
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6.3 Numerical illustrations

The performance of the Dirac-Jeffreys EnKF-N where we choose /(N —1)/¢ = 1.005,
and of the EnKF-N with the hyperprior corrections (R1) and (R2), are illustrated with a
twin experiment on the Lorenz-95 model in the quasi-linear regime. Also included are the
EnKF-N with Jeffreys’ prior and the ensemble square root Kalman filter with optimally tuned
inflation. The RMSEs are plotted as a function of A¢ in [0.01,0.5] in Fig. 4.

Another way to make a data assimilation system based on the Lorenz-95 more linear,
rather than decreasing At, is to decrease the forcing parameter to render the model more
linear. Figure |4p illustrates this when F' is varied from 4 (linear) to 12 (strongly nonlinear),
with At = 0.05, and the same set-up as in Section [5| As anticipated, the EnKF-N based
on Jeffreys’ hyperprior fails for F* < 7.5. However, the EnKF-N based on the Dirac-Jeffreys’
hyperprior and the EnKF-N with the schemes R1 and R2 show performances equivalent to
the EnKF with optimally tuned inflation. We remark a slight underperformance of the EnKF-
N in the very strongly chaotic regimes compared to the optimally tuned EnKF. We have also
check that these good performances also apply to the Lorenz-63 model.

The spread of the ensemble for the Dirac-Jeffreys EnKF-N has also been plotted in
Fig. [4a and Fig. db. The value of the spread is consistent with the RMSE except in sig-
nificantly nonlinear regimes such as when At > 0.15 and F' = 8, or to a lesser extent when
At =0.05 and F' > 8. In those nonlinear regimes and with such non-iterative EnKFs, the
Gaussian error statistics approximation is invalidated so that the RMSE could differ signifi-
cantly from the ensemble spread.

7 Informative hyperprior, covariance localization and hybridization

So far, the EnKF-N has relied on a noninformative hyperprior. In this section we exam-
ine, mostly at a formal level, the possibility to account for additional, possibly independent,
information on the error statistics, like an hybrid EnKF-3D-Var is meant to (??). A single
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numerical illustration is intended since extended results would involve much more develop-
ments and would be very model-dependent.

In a perfect model context, we observed that uncertainty on the variances usually ad-
dressed by inflation could be taken care of by the EnKF-N based on Jeffreys’ hyperprior.
However, it does not take care of the correlation (as opposed to variance) and rank-deficiency
issues, which are usually addressed by localization. Localization has to be superimposed
to the finite-size scheme to build a local EnKF-N without the intrinsic need for inflation (?).
Nonetheless, by marginalizing over limited-range covariance matrices (Section 5 of ?), we
also argued that the use of an informative hyperprior would produce covariance localization
within the EnKF-N framework. A minimal example where the hyperprior is defined over B
matrices that are positive diagonal, hence very short-ranged, was given and supported by
a numerical experiment. Hence, it is likely that the inclusion of informative prior is a way to
elegantly impose localization within the EnKF-N framework.

An informative hyperprior is the normal-inverse-Wishart (NIW) pdf:

M+2+v

_ K 1 _
paw(X,B) o< [B|77 2 exp —§\|xb—xc\\§—§Tr(B 10)|. (36)

It is convenient because, with this hyperprior, Eq. remains analytically integrable. The
location state x., the scale matrix C, which is assumed to be full-rank, x and v are hyper-
parameters of the distribution from which the true error moments x;, and B are drawn. The
pdf puw is proper only if v > M — 1, but this is not an imperative requirement provided that
the integral in Eq. is proper.

The resulting predictive prior can be deduced from ? Section 3.6:

L(N+1+v)
p(X’E) X {1 + N+H+1 HX XH “N (xc—x)(xc—x) +XXT+C} (37)

where x = (kx. + NX) /(N + k). From these expressions, x. could be interpreted as some

climatological state and C would be proportional to some error covariance matrix, which

could be estimated from a prior, long and well-tuned EnKF run. They could also be pa-
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rameterized by tunable scalars that could be estimated by a maximum likelihood principle
(?).

A subclass of hyperpriors is obtained when the degree of freedom x. is taken out, leading
to the inverse Wishart (IW) distribution:

M+14+v

pw(xp,B) o |B|7 2 exp[—%Tr(BAC)], (38)

and to the predictive prior

—L(N4v
pE) o {1 2y lx - Rlxrc ) o (39)
Jeffreys’ hyperprior is recovered from the IW hyperprior in the limit where v — 0 and C — 0,
well within the region v < M — 1 where the IW pdf is improper. Note that the use of an IW
distribution was advocated owing to its natural conjugacy in a remarkable paper by ? where
a hierarchical stochastic EnKF was first proposed and developed.
Because the scale matrix C is assumed full-rank, updating in state space is preferred to
an analysis in ensemble space. Based on the marginals Eq. and Eq. (39), the J;, term
of the analysis cost function is of the form:

jb(x):%In[EN—i—Hx—f(H,Z- with =XXT+C. (40)
In the case of the NIW hyperprior, one has:
~ N
y=N+1+v, en=1+1/(N+k), C=CH— (x,—%)(xc—%)". (41)
N+k
In the case of the IW hyperprior, one has:
y=N+v, ey=141/N, %&=x, C=C. (42)

We observe that the 7, term is formally similar to that of the EnKF-N with Jeffreys’ hy-
perprior which is directly obtained in state space from Eq. (7). Hence the sequential data
assimilation schemes built from the NIW and IW hyperpriors formally follow that of the
EnKF-N. But, to do so, the analysis must be written in state space, whereas it has been
expressed in ensemble space so far.
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7.1 Primal analysis and dual analysis

The primal analysis in state space is obtained from x, = argmin, 7 (x), where

T() = Tol) + o) = 5 Iy~ HOIR + 2 n [en + Ix— %3] (49)

For the dual analysis, we further assume that the observation operator H is linear (for the
primal/dual correspondence to be exact). The derivation of the dual cost function follows
that of ?. The following Lagrangian is introduced to separate the radial and angular degrees
of freedom of x:

£0.0.0) = o) + 5 [ =21 o] + Tin(en +). (44)

where ( is a Lagrange multiplier. The saddle-point equations of this Lagrangian are:

pro= lxa—%F, (45)

o= T —en, (46)
Ca

x, = %+THT(GR+HIHT) "5 with §=y— Hg. (47)

Xq, p%, and (, are the saddle-point values of the variables. Using these saddle-point equa-
tions, it can be shown that the minimization of Eq. is equivalent to the minimization of
the following scalar dual cost function over |0, /e n]

In

D(C) = £ (Xasp%,¢) = %ST (R+ ¢ IHIHT) 154 €

-t

N2
N2

; (48)

12

a mild generalization of Eq. (25). Asin ?, ( is interpreted as an effective size of the ensemble
as seen by the analysis. Note that, in this context, it could easily be larger than NV — 1 if the
added information content of the informative hyperprior is significant.
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7.2 State space update of the ensemble perturbations

Recall that the square root ensemble update corresponding to Eq. and Jeffreys’ hyper-
prior is

NI

263 o7
N1 WoW, uU. (49)

X, = VN —1X [YTR_IY + Caly —

Note that covariance localization cannot be implemented in ensemble space using Eq. (49).
To make the covariance matrix explicit, we wish to write this in state space. Firstly, from
Eq. , w, can be written w, = Y7z, where z = ((,R+ YY) ~15. Then, by the matrix shift
lemma which asserts that Af(BA) = f(AB)A for any two matrices A and B of compatible
sizes and f an analytic functio we can turn this right-transform into a Ieft-transfor:

N[

) _
X,=VN-1 [qalM + XYT <R—1 — ]\fialzzT> H} XU. (50)

When (, = N — 1 and z = 0, one recovers the ensemble square root Kalman update for-

1
mula written in state space: X, = [Is + PHTR™'H] "2 X (?). Note that we could absorb

2
—ffglzzT into R using the Sherman-Morrison formula, leading to an effective observation

error covariance matrix R, which is bigger than R (using the order of the positive symmetric
matrices). To superimpose localization on this Jeffreys’ hyperprior EnKF-N, a Schur product
can easily be applied to XYT in Eq. , while the transformation still applies to the initial
perturbations X without any explicit truncation.

'Assuming  f(z) =Y ;o arz®, one has Af(BA)=3}",arA(BA)" =377 ai(AB)*B =
f(AB)A.

2Let A be a diagonalizable, non necessarily symmetric, matrix A = QAQ ! with A diagonal. If
A > 0, then the square root matrix A is defined by QA Q1
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Here, however, we wish to obtain a similar left-transform but for the NIW EnKF-N. The
Hessian of the primal cost function Eq. is:

r-t o Tix—g)(x—x)'rt

H=H'RH+7 — >
en +lIx x| [€N+\|X—>A<Ilﬂ

; (51)

yielding at the minimum:

2
Ha = HTRTH 4GP~ 2521 (x, — %) (x, — R) T T = HIRIH 4 I, (52)
Y

where the correction term has been absorbed into an effective symmetric positive definite
matrix T. Hencefortﬁ, I will stand for I, and any correction term is assumed to have
been absorbed into C in I'. Decomposing ¢, T, which is the effective background error
covariance matrix, into as many modes as required ¢, I = ZZ" and applying Eq. (50), it is
not difficult to obtain a square root matrix of the analysis error covariance matrix P,:

1 _1
P2 = [Calyr+THTR™IH] 72T 2. (53)

However, this does not constitute a limited-size ensemble of perturbations since Pé is full-
rank as C was assumed full-rank. To obtain an ensemble update of N perturbations, the
scale matrix Cin I = XXT+CAcan be projected onto the ensemble space generated by the
initial perturbations. Then, MNMx Clx replaces C, where Iy is the orthogonal projector on the
columns of X, My = XXT. Following ?, we can form an effective set of perturbations X, that
satisfy

X XT = XXT+ M€y = X [1y + XTE (XT) '] X7 (54)
by using

1
Xo =X Iy + Xt (x7)]? (55)
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or alternatively a left-transform equivalent formula which is obtained from the matrix shift
lemma

1 R 1
Xe= [+ XXT€ (XXT)"]* X = [l + Mx€rix (xx7)]* x. (56)

Substituting this X, to rsin Eq. , we finally obtain an update of the perturbations X as
a new set of perturbations of the same size V:

_1 ~ 1
Xo = VN =1 [Glyr + THTRMH] 2 [y + XX (xXT) ] * xu. (57)
7.3 Covariance localization and EnKF-3D-Var hybridization

The state space formulation of the analysis enables covariance localization which was not
possible in ensemble space. To regularize P = XX /(N —1) by covariance localization, one
can apply a Schur product with a short-range correlation matrix @. In that case, Eq. “43)
is unchanged but with T = C + @ o (XXT), with o the Schur product symbol. Note that this
type of covariance localization is not induced by the hyperprior, but superimposed to the
EnKF-N whatever its hyperprior. The state update is obtained from Eq. (47) and Eq. (48) by
letting HTHT — @0 (YYT) + HCH™,or THT — @0 (XYT) + CH™.

An alternative is to use the « control variables (??). A mathematically equivalent cost
function to Eq. but with I = C+® o (XXT) is

N N
T (6%, {a,}) = <x+(5x+ D o {xn - x}> Zln <5N EESY ||an||@> (58)

n=1 n=1

The {a,},—; .y are IV ancillary control vectors of size M related to the dynamical errors,
whereas dx is a control vector of size M related to the background errors. The control vector
x is related to {«,, } and dx by identifying x with the argument of .7, in the cost function. This
expression of the cost function is obtained by first passing from Eq. to Eq. (44), then
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along the lines of ?. It can be seen from the cost function that the EnKF-N based on the
NIW hyperprior yields a generalization of the EnKF-3D-Var hybrid data assimilation method
to the EnKF-N framework.

Moreover, the above derivation suggests the following perturbation update needed to
complete the NIW EnKF-N scheme:

N =

X, =vVN—1 [galMJr {EHT+eo (va)} R—lH} B [lM +COo (xxT)*} XU, (59)

7.4 Numerical illustration

Here we wish to illustrate the use of the EnKF-N based on the IW hyperprior. We consider
again the same numerical setup as in Section [5|with the Lorenz-95 model. The v hyperpa-
rameter and the C scale matrix are chosen to be:

o g

11—’ C= mI M (60)
with o and 3 two real parameters in the interval [0, 1[. Synthetic experiments are performed
for a wide range of («a,3) couples for two sizes of the ensemble: N = 20, which is big-
ger than the dimension of the unstable and neutral subspace (14) which, for traditional
EnKFs, would not require localization but inflation, and N = 10 which, for traditional EnKFs,
would require both localization and inflation. We do not use inflation since it is meant to
be accounted for by the finite-size scheme. We do not superimpose domain or covariance
localization. Analysis RMSEs are computed for each run and reported in Fig.

This is a preliminary experiment. In particular we do not perform any optimization of «
and 3 based for instance on empirical Bayesian estimation. For N = 20, we barely remark
any improvement in term of RMSEs due to the use of the NIW hyperprior as compared to
the EnKF-N based on Jeffreys’ hyperprior, i.e. («, ) = (0,0). However, we observe that for
N =10 localization is naturally enforced via the hyperprior due to a mechanism known in
statistics as shrinkage. Although there is no dynamical tuning of « and /3, and even though
the choice for C is gross, good RMSEs can be obtained. A RMSE of 0.33 is achieved for
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(o, 8) = (0.50,057) as compared to a typical analysis RMSE of 0.20 for the EnKF-N with
optimally tuned, superimposed localization. Interestingly, the average optimal effective size
in this case is (, = 15, above the unstable subspace dimension, validating its potential use
as a diagnostic.

8 Conclusions

In this article, we have revisited the finite-size ensemble Kalman filter, or EnKF-N. The
scheme offers a Bayesian hierarchical framework to account for the uncertainty in the fore-
cast error covariance matrix of the EnKF which is inferred from a limited-size ensemble. We
have discussed, introduced additional arguments for, and sometimes improved several of
the key steps of the EnKF-N derivation. Our main findings are:

1. A proper account of the gauge degrees of freedom in the redundant ensemble of
perturbations and the resulting analysis led to a small but important modification of
the ensemble transform-based EnKF-N analysis cost function (g =0 — 1, as seen in

Eq. (1))

2. Consequently, the marginal posterior distribution of the system state is a Cauchy dis-
tribution, which is proper but does not have first and second-order moments. Hence,
only the maximum a posteriori estimator is unambiguously defined. Moreover, this
suggests that the Laplace approximation should be used to estimate the full posterior.

3. The modification g =0 — 1 frees us from the inconvenient tweaking of e to 1 or to
1+ &:now, only ey = 1+ + is required.

4. The connection to dynamics has been clarified. It had already been assumed that the
EnKF-N compensates for the nonlinear deformation of the ensemble in the forecast
step. This conjecture was here substantiated by arguing that the effect of the nonlin-
earities is similar to sampling error, thus explaining why multiplicative inflation, and the
EnKF-N in particular, can compensate for it.
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5. The ensemble update of the dual EnKF-N was amended to offer a perfect equivalence

with the primal EnKF-N. It was shown that the additional term in the posterior error
covariance matrix accounts for the error co-dependence between the angular and
the radial degrees of freedom. However, this correction barely affected the numerical
experiments we tested it with.

. The EnKF-N based on Jeffreys’ hyperprior led to unsatisfying performance in the limit

where the analysis is largely driven by the prior, especially in the regime where the
model is almost (but not) linear. We proposed two new types of schemes which rec-
tify the hyperprior. These schemes have been successfully tested on low-order mod-
els, meaning that the performance of the EnKF-N becomes as good as the ensem-
ble square root Kalman filter with optimally tuned inflation in all the tested dynamical
regimes.

. As originally mentioned in ?, the EnKF-N offers a broad framework to craft variants

of the EnKF with alternative hyperpriors. Inflation was shown to be addressed by a
noninformative hyperprior whereas a localization seems to require an informative hy-
perprior. Here, we showed that choosing the informative normal-inverse-Wishart dis-
tribution as a hyperprior for x;, B leads to a formally similar EnKF-N, albeit expressed
in state space rather than ensemble space. The EnKF-N based on this informative hy-
perprior is a finite-size variant of the hybrid EnKF-3D-Var. It has a potential for tuning
the balance between static and dynamical errors. Moreover, we showed on a pre-
liminary numerical experiment that localization can be naturally carried out through
shrinkage induced by the scale matrix of the normal-inverse-Wishart hyperprior.
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With the corrections and new interpretations on the EnKF-N based on Jeffreys’ hyper-
prior, we have obtained a practical and robust tool that can be used in perfect model EnKF
experiments in a wide range of conditions without the burden of tuning the multiplicative
inflation. This has saved us a lot of computational time in recent published methodological
studies.
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An EnKF-N based on an informative hyperprior, the normal-inverse-Wishart distribution,
has been described and its equations derived. We plan to evaluate it thoroughly on exten-
sive numerical experiments. Several optional uses of the method are contemplated. Hyper-
parameters x., C, v and  could be diagnosed from the statistics of a prior well-tuned data
assimilation run. Empirical Bayesian approaches could then be used to objectively balance
the static errors and the dynamical errors. Alternatively, the hyperparameters could be es-
timated online in the course of the EnKF, rather than being obtained from prior statistics,
using a more systematic empirical Bayesian approach.

Acknowledgements. This study is a contribution to the INSU/LEFE project DAVE.

Appendix A: Coupling of the radial and angular degrees of freedom

Section[3.2 separately identified angular and radial degrees of freedom in the EnKF-N cost
function. This led to the dual cost function, and an alternative interpretation of the EnKF-N
as an adaptive inflation scheme that accounts for sampling errors.

Here we wish to interpret the contributions in the Hessian Eq. that come from the
angular and from the radial degrees of freedom. To do so, we study the evidence p(y), i.e.
the likelihood of the observation vector, as estimated from the EnKF-N. This evidence is
usually computed by marginalizing over all possible model states, which reads in our case:

ply) = / dw p(y|w)p(w) = Ay / dw ¢ 2y H e XW) =55 (e +wl). (A1)
RN RN
r(242) . o . :
where Ay = —x———>— is a normalization constant. This integral is also called the
57277rN+?\/|R|

partition function of the system in statistical physics since it sums up the contributions of all
possible states to the evidence. To untangle the angular and radial degrees of freedom, we
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apply the following identity for any « > 0 and 5 > 0 to the prior:
oo L / dt e At (A2)
r(s) .

Additionally assuming here that the observation operator is linear, we obtain:
o) =B [ cuare 3Vl Sl e 50

RN+1

(A3)

N+1
where By = %AN. The main contribution to the evidence can be estimated by using
2
the Laplace method to estimate this integral. Let us denote £(w,t) minus the argument of
the exponential in the integrant. If the saddle-point of £(w,t) is (wy,%,), and if its Hessian
at the saddle-point is Hw (W, %), then an estimate of the evidence is (?):

CmNTL it
V)T (k) A4
|Hw,t(w*7t*)’e ( )

The normalization by the Hessian represents a correction due to Gaussian fluctuations of
the variables (w,t) around the saddle-point. The saddle-point conditions are

p(y) ~ By

_ N+1
w=(YRIY +¢lly) YRS, of = ;2 (A5)
N + [lw]]
which are equivalent to the dual EnKF-N saddle-point equations (?). The Hessian is
YTRle + et*| et*w*
Huut(Wa, 1) = Mo |- (AB)

[
e *W >

Hence, the integral is dominated by the saddle-point solution found in the dual EnKF-N

derivation. It corresponds to a standard ETKF analysis with a prior correction by the e!* fac-

tor. Moreover, the fluctuations are due to the standard ETKF fluctuations YTR™1Y + e+l ,
34
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with additional corrections due to the radial degree of freedom. When computing a precision
matrix H,, for the variables w from the Hessian Eq. using the Schur complement, i.e.
the precision on the w variables conditioned on the knowledge of ¢,, we find

2
Huw(W,,t,) = YTRTIY 4 el 1y — N 1e2t RIS (A7)

which coincides with Eq. (24). This tells that the correction —2(N +1)~1¢?w,w] in Eq.
is due to the fluctuation of {(= e') and its coupling to the angular degrees of freedom.

Algorithm 1 Algorithm of the primal EnKF-N

Require: The forecast ensemble {xx},_; . the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.
1: Compute the mean x and the perturbations X from {x;},_; , Y =HX
2: Find the argument of the minimum:

w, = argmin ||y — H(X+ Xw)|[3 + (N + 1)In (EN + ||WHZ)}

en+Iwa*) Iy —2wow]
(en+lwal?)’

4: Compute x® =X + Xw,, W = /N —1[H,] 2 U

5: Compute x¢ = x® + X [W],

3: Compute: H, = YTRTYY + (N + 1)(
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Algorithm 2 Algorithm of the dual EnKF-N

Require: The forecast ensemble {x},_; . the observations y, the observation error
covariance matrix R, and U an orthogonal matrix satisfying U1 = 1.
1: Compute the mean x and the perturbations X from {xx},_; ., Y=HX,d=y—Hx

2:

Find the argument of the minimum:

(.= argmin [(ST (R+Y§—1YT)_16+5N(+ (N+1)In & — (N +1)

C€lo,(N+1)/en]

Compute w, = (YTR™Y + CaIN)leTR—lé

Compute Ho = YTRLY 4+ (,ly —

Compute x® = X + Xw,, W* = /N —1[H,] 2 U

Compute xj = x* + X[W*],

2¢2 T
N+1WaWq
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from a first sample p(x|X, P) from a second sample p(x|X, P)

Analysis with the predictive Cauchy prior p(x|E)

Figure 1. Schematic of the traditional standpoint on the analysis of the EnKF (top row), what it
actually does using a Gaussian prior sampled from 3 particles (middle row), and using a predictive
prior accounting for the uncertainty due to sampling (bottom row). The full green line represent
the Gaussian observation error prior pdfs, the dashed blue lines represent the Gaussian/predictive
priors if known, or estimated from an ensemble, or obtained from a marginalization over multiple
potential errors statistics. The dotted red curves are the resulting analysis pdfs.
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Figure 2. Analysis error variance when applying sequential data assimilation to xy4+1 = ax) with
(¢ =0.75, dashed line) or without (¢ = 1, full line) multiplicative inflation on the prior, as a function of

the model growth a.. We chose r = 1.
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Figure 3. Average analysis RMSE for the primal EnKF-N, the dual EnKF-N, the approximate EnKF-

N, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-95 model, as a function
of the time step between updates. The finite-size EnKFs are based on Jeffreys’ hyperprior.
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Figure 4. Average analysis RMSE for the EnKF-N with Jeffreys’ hyperprior, with the EnKF-N based
on the Dirac-Jeffreys’ hyperprior, with the EnKF-N based on the Jeffreys’ hyperprior but enforcing
the schemes R1 or R2, and the EnKF with uniform optimally tuned inflation, applied to the Lorenz-
95 model, as a function of the time step between update (top), and as a function of the forcing
F of the Lorenz-95 model (bottom). The analysis ensemble spread of the EnKF-N based on the
Dirac-Jeffreys’ hyperprior is also shown.
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Figure 5. Average analysis RMSE as a function of («, 3) for the EnKF-N based on the IW hyperprior,
without inflation nor enforced localization, for ensemble sizes of N = 20 (left) and of N = 10 (right).
The RMSEs above 1, i.e. worse than an analysis based only on observations, are in white.
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