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Abstract

In numerical weather prediction, the problem of estimating initial conditions with a variational
approach is usually based on a Bayesian framework associated with a Gaussianity
assumption of the probability density functions of both observations and background errors.
In practice, Gaussianity of errors is tied to linearity, in the sense that a nonlinear model will5

yield non-Gaussian probability density functions. In this context, standard methods relying
on Gaussian assumption may perform poorly.

This study aims to describe some aspects of non-Gaussianity of forecast and analysis
errors in a convective scale model using a Monte-Carlo approach based on an ensemble
of data assimilations. For this purpose, an ensemble of 90 members of cycled perturbed10

assimilations has been run over a highly precipitating case of interest. Non-Gaussianity is
measured using the K2-statistics from the D’Agostino test, which is related to the sum of
the squares of univariate skewness and kurtosis.

Results confirm that specific humidity is the least Gaussian variable according to that
measure, and also that non-Gaussianity is generally more pronounced in the boundary15

layer and in cloudy areas. The dynamical control variables used in our data assimilation,
namely vorticity and divergence, also show distinct non-Gaussian behaviour. It is shown
that while non-Gaussianity increases with forecast lead time, it is efficiently reduced by the
data assimilation step especially in areas well covered by observations. Our findings may
have implication for the choice of the control variables.20
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1 Introduction

In data assimilation, the analysis step may be seen as finding a maximum likelihood of
the probability density functions (PDF) of the state x given the available observations y
and a background state (usually a short range forecast). Usual Bayesian formulation yields
(Kalnay, 2003)5

Pa(x|y)∝ Po(y|x)Pb(x), (1)

where Pa,Pb and Po respectively are the PDFs of analysis, background errors (a priori
PDF), and observations errors. For high dimensional systems, to specify those PDFs as
multivariate Gaussian is a natural choice for variables that may approximately verify the
central limit theorem (Bocquet et al., 2010). Thus, up to now most of operational Numerical10

Weather Prediction (NWP) centres have relied on variational assimilation schemes that are
Gaussian or corrections to a Gaussian analysis-based strategy.

The time integration of the model nonlinear dynamics leads inevitably to non-Gaussian
forecast errors (Bocquet et al., 2010). For instance, the highly nonlinear processes involved
in clouds and precipitation are known to give non-Gaussian background errors (Auligné15

et al., 2011). Some authors have reported on displacement errors of meteorological features
that turn into non-Gaussian background errors (Lawson and Hansen, 2005). Keeping the
Gaussian formalism in this case may yield unrealistic analyses that are distorted (Ravela
et al., 2007).

In NWP, the analysis of humidity may be the most problematic with respect to non-20

Gaussianity (NG). This is due to the condensation effects near saturation and the intrinsic
positivity of humidity. The choice of the control variable for humidity is a long-standing
debate (Dee and da Silva, 2003). Specific humidity exhibits NG but is rather weakly
correlated (in average) to other variables. Relative humidity has been found to be more
Gaussian but has stronger cross-covariances with temperature that are state-dependent25

and difficult to model. It still has skewed distribution near condensation or in dry conditions.
The solution adopted in several operational centres is to use a normalized relative humidity
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variable. The normalization factor is the standard deviation of the relative humidity error,
stratified according to the analysed relative humidity itself. The asymmetries in PDFs are
also accounted for through a nonlinear transformation. This scheme has been implemented
through several variants both in global (Holm et al., 2002; Ingleby et al., 2013) and in limited
area models (Gustafsson et al., 2011).5

The 4D-Var algorithm commonly used in NWP (e.g. Rabier et al., 2000) has some ability
to handle nonlinearities. It solves for what would be the most probable state in Eq. (1)
in the Gaussian case, by minimizing a non-quadratic cost function with nonlinearities in
the model and in the observation operator mapping the model state to the observation
space. The approach, known in the community as incremental 4D-Var (Courtier et al.,10

1994), is based on a form of truncated Gauss–Newton iterations. The problem is solved
by minimizing a succession of inner-loop quadratic optimization problems with increasing
horizontal resolutions, in which the model is simplified and linearised around the state
adjusted by the previous outer-loop iteration (Laroche and Gauthier, 1998).

The PDF of observation errors is also non-Gaussian in general. In NWP, quality-control15

are performed to exclude observations that are outliers compared to the model and using
statistical knowledge (Lorenc, 1986). Unfortunately, this can be erroneous and a more
flexible framework has been introduced for instance by Anderson and Järvinen (1999). It
explicitly computes the probability of gross error for each observation, given the preliminary
analysis from the outer loops. The weight of each observation is smoothly decreased with20

increased likelihood for gross error. More recently, this scheme has been replaced by the
use of a Huber norm (Tavolato and Isaksen, 2014). The NG of observation errors is out of
the scope of this paper.

The main goal of this paper is to rely on a Monte-Carlo approach to document the
spatial variations of non-Gaussianities of background and of analysis errors for a particular25

meteorological case, in the context of convective scale NWP. For this purpose, a large
ensemble of perturbed cycled assimilations has been set up with the AROME-France1

model. The perturbations simulate the evolution of the true background and analysis errors
1Application de la Recherche à l’Opérationnel à Méso-Echelle (Seity et al., 2011).
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(Houtekamer et al., 1996; Fisher, 2003; Berre et al., 2006). Local and spatially averaged
diagnostics of NG may help to find out for which variables and/or in which areas efforts
could be made to improve Gaussian assumptions in the assimilation algorithm, or to help
designing advanced data assimilation schemes taking into account displacement errors for
instance (Ravela et al., 2007).5

The paper is organized as follows: Sect. 2 presents the univariate D’Agostino test
for NG (D’Agostino et al., 1990) and evaluates its efficiency on some specified PDFs.
Section 3 describes the ensemble from which the NG is diagnosed. This ensemble
is composed of assimilations and forecasts performed by the AROME-France model
for a highly precipitating event over the Mediterranean sea, of interest for the HyMeX10

campaign (Ducrocq et al., 2013). Results of the NG diagnostics are then documented.
After an overview for model prognostic variables, time evolution of NG is discussed. The
dependence of NG to physical nonlinear processes is then described by making use of
geographical masks based on cloud contents. In Sect. 4, the impact of the data assimilation
process on NG is studied by comparing diagnostics performed on both background and15

analysis errors, and by computing diagnostics in the control space of the minimization.
Conclusions are given in Sect. 5.

2 An index of non-Gaussianity

In NWP, dimensions of the state and observation vectors, including satellite and radar,
are huge (respectively around 108 and 105 in AROME-France). As mentioned in Bocquet20

et al. (2010) only the simpler statistical tests of Gaussianity are tractable for such high
dimensional problems. Therefore, while it is the Gaussianity of the global joint PDF that
matters in Eq. (1), only univariate marginal PDF testing for NG are diagnosed in this paper.
Spatial variations and average of local values may however give an insight of non Gaussian
behaviours for the meteorological case treated here.25
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2.1 D’Agostino test

The D’Agostino test (hereafterK2 test, D’Agostino et al., 1990) is a univariate statistical test
where the deviation from Gaussianity is detected from the PDF’s skewness and kurtosis.
The skewness is a measure of the asymmetry of the PDF about its mean. Positive (negative)
values are associated with a median of the PDF smaller (larger) than its mean and with
a large right (left)-tail. For instance, a negative skewness for specific humidity at some point5

indicates that more than the half of the ensemble is more humid than the mean value of the
ensemble. The kurtosis measures the peakedness of the distribution (Thode, 2002). A PDF
with larger tails and a narrow modal peak has a large kurtosis.

The theoretical skewness and kurtosis are respectively estimated over an ensemble
by the sample third (G3) and fourth (G4) standardized moments. They are defined given10

a sample xi=1..Ns of size Ns and its sample mean x as

G3 =
m3

m
3
2
2

=
1
Ns

∑Ns
i=1(xi−x)3[

1
Ns

∑Ns
i=1(xi−x)2

] 3
2

(2)

G4 =
m4

m2
2

=
1
Ns

∑Ns
i=1(xi−x)4[

1
Ns

∑Ns
i=1(xi−x)2

]2 (3)

with m2, m3, and m4 the sample second, third, and fourth order moments. These quantities
estimate the theoretical skewness and kurtosis of the distribution. For a Gaussian PDF,15

skewness is zero and kurtosis equals 3. Thus, the sample skewness and kurtosis defined
above could be used to detect deviation from Gaussianity, yet their convergence to normality
with ensemble size is slow. As reported in Tables 3.1 and 3.2 of Thode (2002), the normality
is reached with sufficient accuracy typically for ensemble sizes of the order of ∼ 5000. For
smaller ensemble sizes (more suitable to NWP), it has been suggested to transform these20

quantities into f3(G3) and f4(G4) respectively, in order to remedy this situation (D’Agostino,
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1970; Anscombe and Glynn, 1983). f3 is defined as

A = G3×

√
(Ns+1)(Ns+3)

6(Ns− 2)

B = 3

(
N2

s +27Ns− 70
)
(Ns+1)(Ns+3)

(Ns− 2)(Ns+5)(Ns+7)(Ns+9)

C =
√
2(B− 1)− 15

D =
√
C

E =
1√
ln(D)

F =
A√
2

C−1

f3(G3) = E× ln(F +
√
F 2+1)
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and f4 is defined as10

O = G4×
Ns(Ns+1)

(Ns− 1)(Ns− 2)(Ns− 3)
− 3

(Ns− 1)

(Ns+1)

P =
24Ns(Ns− 2)(Ns− 3)

(Ns+1)2(Ns+3)(Ns+5)

Q =
(Ns− 2)(Ns− 3)

(Ns+1)(Ns− 1)
√
P
×O

R =
6
(
N2

s − 5Ns+2
)

(Ns+7)(Ns+9)

√
6(Ns+3)(Ns+5)

Ns(Ns− 2)(Ns− 3)

S = 6+
8

R

[
2

R
+

√
1+

4

R2

]
15

T =
1− 2

S

1+Q
√

2
S−4

f4(G4) =
1− 2

9S −T
1
3√

2
9S

.

While positive (negative) values of f3(G3) point out distributions with a median smaller
(higher) than the mean and with a longer right (left) tail, positive (negative) values of f4(G4)5

mean that distribution tails are heavier (lighter) than Gaussian distribution’s, with also a
bigger

::::::
larger (smaller) modal peak.

f3(G3) and f4(G4) statistics are then combined to produce an omnibus test K2, able to
detect deviations from normality due to either skewness or kurtosis:

K2 = f23 (G3)+ f24 (G4). (4)10
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When testing a Gaussian distribution, asymptotic values for the three criteria (f3(G3),
f4(G4), and K2) are respectively f3(G3) = 0, f4(G4) = 0, and K2 = 2. Using finite
sampling with ensemble size Ns > 20 (Thode, 2002), f3(G3) and f4(G4) could be both
assumed to follow a Gaussian law with a zero mean and a unity variance. In this case, K2

follows approximately a χ2 distribution with two degrees of freedom. Confidence intervals at15

95% are then given by f3(G3) ∈ [−1.96;1.96], f4(G4) ∈ [−1.96;1.96], and K2 ∈ [0;5.991].
Because G3 and G4 are uncorrelated but not independent, K2 does not follow an exact χ2

distribution, and confidence interval is slightly different. Using a right-tailed unilateral testing
at 95% for Ns = 100, the critical value of K2 is 6.271 instead of 5.991.

2.2 Evaluation20

The efficiency of the K2 test can be evaluated by measuring its probability of detection
(POD) for the Gaussian hypothesis H0. For a sample known to be from a non-Gaussian
PDF, the POD gives the probability that the test accurately rejects H0. The best result is
POD=1.

POD of K2 test is estimated from Nxp independent experiments. For each experiment,25

K2 is computed from Ns elements sampled from a known distribution. Depending on the
K2 value, H0 is accepted or rejected. When the known distribution is non-Gaussian, POD
is given by the frequency of H0 rejections over the Nxp experiments.

The POD is estimated for three non-Gaussian distributions: uniform, log-normal, and
a Gaussian mixture. The Gaussian mixture is defined through its PDF as P (x) = w1P1(x)+
w2P2(x)+w3P3(x) with P1, P2, and P3, three Gaussian distributions with zero mean and
respectively 0.1, 0.05, 0.02 as chosen standard deviation. The chosen weights are given by5

(w1,w2,w3) = (0.2,0.5,0.3). The representation of the shapes of these three distributions
is given in Fig. 1a, alongside the Gaussian distribution.

POD are estimated over Nxp = 105 experiments. For both tests, different ensemble sizes
Ns are tested (Ns= 20, 30, 40, 50, 60, 70, 80, 90, 100, 200). Results of this ideal case
are shown in Fig. 1b. The log-normal distribution is the easiest one to discriminate from10

the Gaussian distribution, yielding the highest POD that reach almost one as soon as
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the ensemble size is above forty. For the two others, non-Gaussian distributions (uniform
and Gaussian-mixture) K2 test is only correctly discriminating from Gaussianity (with
POD> 0.8) when Ns > 70. For Ns = 90, which corresponds to the ensemble size for the
real dataset composed of AROME-France forecasts (see Sect. 3), POD values are over15

0.9 for all three non-Gaussian distributions. In conclusion, the K2 test is able to correctly
discriminate NG for the ensemble size considered in this paper.

A review of other well-established tests for Gaussianity are presented in Bocquet et al.
(2010), such as the measure of entropy (kullback (1959), used in geophysics by Pires et al.
(2010)), or the univariate Anderson–Darling goodness-of-fit test (Anderson and Darling,20

1954). The latter has been also tested in the same framework and the performances proved
to be very similar to the ones of the K2 test. When comparing the results, obtained over
the ensemble (Sect. 3), these two tests also give very similar results. e.g. they indicate the
same areas of NG over ≈ 90% of the domain. But, measuring skewness and kurtosis may
be more informative and may be of interest for some assimilation schemes that account for25

skewness (Hodyss, 2012). Also, describing the values of K2 has the advantage to prevent

::
of

::::::::::
preventing the results from depending on the chosen confidence level.

3 Diagnosis of the non-Gaussianity of AROME forecast errors

3.1 An AROME-France ensemble for a high-precipitating case

AROME-France is an operational non-hydrostatic model covering France with a 2.5 km5

horizontal resolution at the time of the experiments. Its lateral boundary conditions are given
by the global model ARPEGE2. Assimilation steps are done every three hours with a 3D-
Var scheme and make use of a comprehensive set of observations such as conventional,
satellite or Doppler radar data (see Seity et al. (2011) for more details).

The simulation of background and analysis errors is achieved by using a Monte-Carlo10

sampling, called an Ensemble Data Assimilation (EDA) in the context of NWP. A 90-

2Action de Recherche Petite Échelle Grande Échelle (Pailleux et al., 2000).
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members EDA is first run for the global model (AEARP, Berre and Desroziers, 2010). Each
EDA member is based on a 4D-Var cycled assimilation which uses perturbed observations
and a perturbed background, in order to simulate the error evolution (Berre et al., 2006).
Observation perturbations are constructed as random draws of the specified observation15

error covariance matrix, and background perturbations result from the forecast evolution of
previous analysis perturbations and from their inflation at the end of each forecast (Raynaud
et al., 2012). This global ensemble provides perturbed boundary conditions to an ensemble
of perturbed 3D-Vars for AROME-France, as described in Ménétrier et al. (2014). True
background errors are then approximated by the deviations of the perturbed backgrounds20

from the ensemble mean. A few cycles (typically four) are necessary to reach a regime
where the spread of the ensemble is representative of the true error spread; these cycles
are discarded from the diagnostics presented below.

The case of interest is the 4 November 2011 between 00:00 and 06:00 UTC. A strong
Southerly convergent flow occurs at low levels over Southern France (Fig. 2). Warm and25

moist air from the Mediterranean sea is advected over land, which triggers deep convection.
Those high intensity events, named Cevenol events, are studied by the HyMeX research
program (Ducrocq et al., 2014). Associated precipitations are visible all along the Rhone
valley, with local maxima exceeding 25mmh−1. Also, associated with a low pressure area
over the North-East Atlantic (not shown), a cold active front extending from the bay of
Biscay to the eastern Britannic coast, is sweeping North-West of France with locally strong
precipitations.

3.2 Vertical profiles of NG5

The vertical profiles of quantities related to NG are shown in Fig. 3 for 3 h-forecasts of
different variables, namely zonal (U) and meridian (V ) winds, temperature (T ) and specific
humidity (q). On average, except near the surface, q is the variable that shows the largest
deviation from Gaussianity, confirming results obtained at the global scale (Holm et al.,
2002). From 850 to 350 hPa, q is indeed characterized with an increase of the deviation10

from Gaussianity. As shown in Fig. 3b, this NG is partly explained by negative values of
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the skewness, highlighting a left-tailed PDF of the background errors, meaning that many
values are more humid than the ensemble mean.

In the troposphere, K2 is increasing while the q mean content, displayed in Fig. 3d, is
largely decreasing. Values at higher levels, where q is almost nonexistent, may however15

be taken with caution. Below 850 hPa, K2 is peaking around 960 hPa. Above 850 hPa, the
wind components and T remain close to Gaussianity. Below however, all variables have
significant deviation from Gaussianity, especially T for which high values of K2 are found
at ground level, making of it the less Gaussian variable in the boundary layer.

3.3 Horizontal structures of NG20

The range, defined as the difference between the 95th and the 5th percentiles, could be
used to describe roughly the horizontal spatial variability for each vertical level. Vertical
profiles of ranges of K2, f3(G3), and f4(G4) (not shown) have, all three, large similarities
between each other, and with the shapes of K2 profiles displayed in Fig. 3a. It includes in
particular two maxima in the boundary layer and in high troposphere for q and larger values25

towards the surface for T. Ranges are much larger for the four variables (approximately
four times as large) than the respective mean values given in Fig. 3, implying a large
spatial variability for the three NG diagnostics. An example of the horizontal structures of
NG is given for q in the boundary layer by Fig. 4. They have large similarities with the
meteorological coherent structures, as the Southerly convergent flow over South of France
and the active cold front aloft North-West of France are associated with high values of K2.

Supporting the conclusion drawn from Fig. 3, transformed skewness f3(G3) is mainly
negative (corresponding to left-tailed distributions) over the domain and has a larger5

contribution than transformed kurtosis f4(G4) in large K2 values. Over Mediterranean sea,
the skewness represents on average 70% of K2.

It may be interesting to compare NG with the variance of the ensemble, as K2 is
defined from standard third and fourth standardized moment avoiding any scale effects.
As displayed in Fig. 5, the variance does not coincide with overall NG, even if it happens10

that Gaussian areas may coincide with regions of low variance.
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NG of the surface pressure is not shown in this study since, according to our diagnostics,
it is a mainly Gaussian variable (averaged K2 around 2.7). High values of K2 appears
around the cold front and the convergence area but they are very localized and of smaller
amplitude compared to the other model variables.15

3.4 Time evolution of non-Gaussianity

For each member of the ensemble, 18 h-forecasts have been run from the analyses
performed at 00:00 UTC, the 04 November 2011. This allows to diagnose NG every 6 h
during the first 18 h of integration. The corresponding vertical profiles are shown in Fig. 6
for the two most non-Gaussian variables according to Sect. 3.2: q and T .20

In order to get insights into the processes that may be involved in NG development, the
diagnostics have been separately computed for cloudy and for clear sky areas, following
a similar approach to that of Montmerle and Berre (2010) and Michel et al. (2011), in which
precipitating masks have been used. Grid points over the domain are separated in two bins:
“cloudy” or “clear sky” points. “Cloudy” bin defines grid points whose vertically integrated25

simulated cloud water exceeds 0.1g kg−1 for a majority of ensemble members (i.e. more
than 45 members for the 90-members ensemble). The other points are classified as “clear
sky”. The percentage of “clear sky” points being three to five times larger (not shown) than
the detected “cloudy points”, similarities between “clear sky” profiles, and profiles averaged
over the whole domain (as plotted in Fig. 3) are apparent.

During the 6 first hours of forecasts, NG quickly increases. For q, all tropospheric model
levels are affected. For T , starting from a fairly Gaussian profile, increase of NG is mainly5

affecting the boundary layer and higher levels remain close to Gaussianity. During the
following 12 h (from 6 to 18 h-forecast), changes of NG are smaller for both variables. Those
results support that NG in the background may rather come from non-linear processes
acting on nearly Gaussian pdfs instead of linear processes acting non-Gaussian pdfs.

It is interesting to notice that different behaviours can be found for diagnostics computed10

over “cloudy” and “clear sky” areas. For q, NG is mainly found in “cloudy” areas, where K2

quickly reaches values above 8, with two peaks around 900 and 700 hPa. The altitude of

13
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the lower peak rises with forecast ranges, while the amplitude of the higher one increases.
According to Fig. 6c that displays the time average of the mean cloud contents, this evolution
of NG in cloudy areas is likely due to nonlinear processes such as the vertical displacement15

error of cloud base and top within the ensemble and possibly the diabatic processes. In
surface layers, K2 for T quickly increases especially for clear air areas where turbulent and
radiative processes occur. After 12 h, NG is more spread vertically within clouds, probably
because of diabatic processes. For T and q, diabatic processes are good candidates to
produce NG because of intrinsic thresholds in cloud physics (e.g. moisture saturation) and20

non-linear processes like turbulence on cloud-top.
For the wind components, behaviours close to T have been found, but with smaller

amplitude (not shown): NG increases mainly in the boundary layer in “clear sky” areas
and may be due to nonlinear turbulent processes.

4 Non-Gaussianity in the data assimilation process25

Based on comparisons of NG diagnostics between successive background and analysis
errors, this section focuses on the evolution of NG through cycled 3D-Var assimilations.
Analysis errors will be treated for both model and control variables. The link between
assimilated observations and NG reduction will be shown.

4.1 Overview

An overview of the NG evolution during the analysis process is given in Fig. 7 that5

shows averaged K2 profiles for the analysis and the background errors computed for
two consecutive assimilation/3 h-forecast steps. Comparable results are found for the two
cycles, confirming the increase of NG during the model integration, and highlighting the
substantial reduction of NG during the assimilation process, especially for levels where NG
grows quickly. Values of K2 are indeed brought back to much more Gaussian values, even10

in the lower levels for both q and T , and in higher troposphere for q.
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Geographical variations of NG are illustrated in Fig. 8. As in Fig. 7, the NG of the
background and of the following 3 h-forecast are similar. The largest decreases of NG
between background and analysis error match areas with a large analysis increment, in
particular where radar data are assimilated (Fig. 8d). The analysis increment being a15

linear function of the innovation vector in model space (observation minus background), its
Gaussianity is insured by a rough selection applied beforehand to the observations, allowing
to remove outliers (e.g. for radar data, Caumont et al., 2010; Wattrelot et al., 2014). Some
NG areas remain though, especially in areas where the background is less constrained by
observations (e.g. above Spain and above the sea). However, most areas where NG has20

been reduced thanks to the data assimilation process recover their NG nature after 3 h of
model integration.

4.2 Non-Gaussianity in control space

Previous results are documenting the NG of four model prognostic variables: U , V , T and
q. As it is detailed in Brousseau et al. (2011), the assimilation scheme in AROME-France is25

based on a 3D-Var whose control variables are the vorticity ζ, the unbalanced divergence
ηu, the unbalanced temperature and surface pressure (T,Ps)u, and the unbalanced
specific humidity qu. These control variables are linked to the model variables following
the multivariate formalism of Berre (2000), which is based on the decomposition of the
background error covariance matrix in spatial operators and balance transforms. Since the5

minimization is performed in the control space, NG diagnostics have also been computed
for these control variables.

4.2.1 Overview

Vertical profiles of NG for control variables are presented in Fig. 9. Unlike the zonal and
meridian winds, ζ and ηu are strongly non-Gaussian over the whole troposphere, whereas10

Tu and qu display much more Gaussian profiles.

15



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Negative values of f3(G3) below 800 hPa for ηu (Fig. 9b) denote a larger spread of the
distribution below the mean, probably due to the occurrence of low level convergence. At
mid-troposphere, error distributions of all four variables are near symmetric. Except for qu,
distributions in tropospheric levels remain symmetric and the K2 index is mainly explained15

by the kurtosis (Fig. 9c).
Those results agree with one of the conclusion of Ménétrier et al. (2015). These authors

describe and
::
an

:
algorithm to find the optimal truncation dedicated to sample covariances

filtering. This algorithm has two variants. The first one assumes Gaussian PDF for the
background perturbations while the second one does not. Their study indicate that, at20

convective scale, the Gaussian variant is accurate for Tu and qu, but the more general
non-Gaussian variant has to be used for ζ and ηu, which are significantly non-Gaussian
variables in agreement with our study. To go further on this topic, NG diagnostics have
been computed for the spatial first-order derivative of T . While T is in average a locally
nearly Gaussian variable (see Fig.3a), its spatial differentiation largely increases the NG25

(not shown), up to the order of magnitude found in Fig.9a and Fig.10 for ζ and η. This
supports the attribution to differentiation for at least a part of the NG displayed for the
dynamical control variables.

While very similar, the horizontal structures of K2 for ζ and ηu are noisier compared to
the other variables, with very small scale and intense signals (not shown). Maps mostly
follow the land–sea mask, with high values of K2 over sea, and low values over land. Aloft,5

NG follows meteorological active structures (cold front and Cevenol event).
As for Fig.7, diagnostics of NG for vorticity ζ and total divergence η have been computed

before and after the assimilation step (not shown). While NG of levels higher than 900hPa
are almost unchanged, the averaged K2 of ζ and η is systematically lower for the analysis
than the background state in the boundary layer. However the order of magnitude of the10

decrease is much smaller than for T and q, and the dynamical variables ζ and η remain by
far much more non-Gaussian.
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4.2.2 Non-Gaussianity in the multivariate transform

To go further in the discussion on Gaussianity of the control variables, this section is
comparing the K2 values for total and unbalanced variables.15

According to Fig. 10, the debalancing process is not really affecting the NG for the
divergence, except at lower levels where K2 is slightly decreasing while keeping large
values. K2 values remain two to three times larger for the divergence (total or unbalanced)
than for T and q from the surface to the mid-troposphere. On the contrary, NG decreases
significantly for T and q during the debalancing process. Changes mainly appear in20

boundary layer for T . For q, changes appear for every model levels especially in the
boundary layer and below the tropopause. From surface to 750 hPa, NG of qu is equal to or
smaller than the NG of Tu.

5 Conclusions

It is suggested to use the K2 value from the D’Agostino test for diagnosing local NG of a25

NWP system at convective scale. This diagnostic is computed from the univariate sample
skewness and kurtosis from a 90-members ensemble. Even if checking local NG is not
sufficient to describe deviations from the global Gaussian hypothesis for AROME-France
background and analysis errors, spatial variations and average of local diagnostics give an
insight of non-Gaussian behaviours for a case study characterized by a Cevenol event and
an active cold front.5

According to our diagnostic, among model variables, q has the largest deviation from
Gaussianity, with a maximum of amplitude near the tropopause and in the boundary layer.
Deviation from Gaussianity for U , V , and T only appears in the boundary layer. With an
heterogeneous diagnostic, NG has been separately diagnosed for “cloudy” points and “clear
sky” points. For q, cloud covering leads to higher NG, especially at the bottom and at the top10

of the cloud layer. In “clear sky” situations, surface processes are expected to enlarge K2

for T , in a larger manner than for “cloudy” points. Studying time evolution through forecast
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ranges, NG is mainly increasing during the 6 first hours. The 3D-Var assimilation appears to
efficiently reduce the growing NG of the forecast, especially in well-observed areas. Finally,
among control variables of the assimilation, ζ and ηu deviate from Gaussianity in a larger15

manner than Tu and qu, which are much more Gaussian than their balanced counterparts.
Despite

::
of

:::
the

::::
fact

:::::
that this work is attributing non-Gaussian behaviours to well-known

nonlinear processes, such as the microphysical or boundary layer processes, it is not
precisely addressing the cause of NG. However two important questions on variational
data assimilation are highlighted. First, regarding control variables of the assimilation,20

according to our diagnostic, the most non-Gaussian variables are the vorticity and the
divergence. Yet, main efforts have been put on “Gaussianisation” of specific humidity (e.g.
Holm et al., 2002) but the discussion may also be focused on vorticity and divergence,
either with a “Gaussianisation” of those variables or with a discussion on the possibility to
use other dynamical variables. Second, with the cloud mask approach, cloud layers have25

been associated with high values of NG.
This study uses an ensemble at convective scale that does not include model error either

in the analysis or in the forecast steps. It is possible that conclusions would be different
if stochastic noise drawn explicitly from a Gaussian is added to the model states during
the forecasts, as stated by Lawson and Hansen (2004). Also, this study is actually a part
of a work focused on the correction of displacement errors. Since displacement errors are5

identified to cause NG (Lawson and Hansen, 2005), diagnostics of NG may be used to
evaluate improvements in the current amplitude error correction step (3D-Var) brought by
a displacement error correction (Ravela et al., 2007). This will be examined in a future work.
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Figure 1. (a) Three non-Gaussian distributions on which POD have been estimated: uniform
distribution, log-normal distribution, and Gaussian mixture (see text for description). (b) Probability
of detection (POD) for K2 test. POD are computed over Nxp = 105 one-dimensional experiments for
different sample sizes Ns.
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(a) (b)

Figure 2. (a) Specific humidity (q, kg kg−1) and (b) surface cumulative precipitation (mm h−1)
overlaid with winds vector, at model level 52 (≈ 920 hPa). Maps are given for one member of
AROME-France 3 h-forecasts ensemble, valid at 03:00 UTC the 4 November 2011.
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Figure 3. Vertical profiles of (a) K2, (b) transformed skewness f3(G3), (c) transformed kurtosis
f4(G4), and (d) q (kg kg−1) for one member of the ensemble. For each level, values are averaged
over the horizontal domain. Profiles are computed from the 90-members ensemble of AROME-
France 3 h-forecasts valid at 03:00 UTC the 4 November 2011. Profiles in (a), (b), and (c) are given
for four model variables: U , V , T , and q.
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Figure 4. (a) K2, (b) transformed skewness f3(G3), and (c) transformed kurtosis f4(G4), for q
at model level 52 (≈ 920 hPa), computed from the 90-members ensemble of AROME-France 3 h-
forecasts valid at 03:00 UTC the 4 November 2011.
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Figure 5. Background-error standard deviations of q (g kg−1) for the model AROME-France, at
model level 52 (≈ 920 hPa). Standard deviations are estimated from the 90-members ensemble of
3 h-forecasts, valid at 03:00 UTC the 4 November 2011.
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Figure 6. Time evolution of the vertical profiles of K2 for (a) q and (b) T computed for (thick and hot
colours) “cloudy” and (thin and cold colours) “clear sky” points (see text). (c) Vertical profiles of liquid
cloud ql (solid line) and ice cloud qi (dashed line) contents (g kg−1). The cloud contents are averaged
over the domain and over times from 06:00 to 18:00 UTC, every 6 h. Initial cloud water profile is null
because the hydrometeors are not cycled. Consequently the initial time profiles of K2 are common
for the two bins. Profiles have been computed from 00:00 to 18:00 UTC, every 6 h, using forecasts
initialized with analysis states valid the 4 November 2011 00:00 UTC.
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Figure 7. Vertical profiles of K2 on background and analysis errors for (a) q and (b) T , for two
successive cycled assimilation/3 h-forecast steps starting at 00:00 UTC the 4 November 2011.
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Figure 8. K2 for q at level 52 (≈ 920 hPa) for (a) the background, (b) the analysis, and (c) the
following 3 h-forecast starting at 03:00 UTC the 4 November 2011. (d) Corresponding analysis
increment (kg kg−1) with positions of radar precipitation observations assimilated.
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Figure 9. Vertical profiles of (a) K2, (b) transformed skewness f3(G3), and (c) transformed
kurtosis f4(G4). For each level, values are averaged over the horizontal domain. Profiles are
computed from the 90-members ensemble of AROME-France 3 h-forecasts valid at 03:00 UTC the
4 November 2011. Profiles in (a), (b), and (c) are given for four control variables: ζ, ηu, Tu, and qu.
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Figure 10. Comparison of K2 vertical profiles of model variables (thick lines) and control variables
(thin lines). Profiles are computed from 3 h-forecasts valid at 03:00 UTC the 4 November 2011.
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