
Dear Pr. Talagrand,

Thank you for those recommendations. Please find below, our answers to your comments
and the associated changes added to the manuscript. Most of those responses refer to the ones
we made for the three referees. Also, the three answers to each referee, and a latexdiff version
of the manuscript have been joined below.

Best regards,

Raphaël Legrand, Yann Michel and Thibaut Montmerle

(Editor comments are written in black, and authors answers are in blue)

Comments from Editor→[...] I first mention that you have not in my opinion responded pro-
perly to the request I made before your paper was published in NPGD. That request was that
you mention explicitly the ‘Gaussian’ values for the three criteria (f3(G3), f4(G4), and K2) you
use for estimating the Gaussianity of the ensembles. I understand the Gaussian value for f3(G3)
is 0, which is in agreement with your discussion of the results you obtain for that quantity.
Concerning f4(G4), you imply (l. 127) that it must have expectation 0 (otherwise the quantity
K2 would not follow a χ2-distribution). But f4(G4) takes in Fig. 3 values that are close to 1, and
that you seem to consider as proof of Gaussianity. As for K2 , if it follows a χ2-distribution with
two degrees of freedom (l. 127 again), it must have expectation 2. However, it almost always (if
not always) takes larger values in your results, and you seem in particular to consider that the
value 4 indicates Gaussianity. The inconsistency (which may result from nothing more than a
change of origin or rescaling) must be explained.
Author’s response→ The ’Gaussian’ values for the three criteria (f3(G3), f4(G4), and K2) are
respectively f3(G3) = 0, f4(G4) = 0, and K2 = 2. You are right to say that f4(G4) takes in
Fig.3 values that are between 0 and 1, and we state that this corresponds to nearly Gaussian
behaviour. Indeed, using finite sampling with ensemble size Ns > 20 (Thode, 2002), f3(G3) and
f4(G4) could be both assumed to follow a Gaussian law with a zero mean and a unity variance.
In this case, K2 follows approximately a χ2 distribution with two degrees of freedom. Confi-
dence intervals at 95% are then given by f3(G3) ∈ [−1.96; 1.96], f4(G4) ∈ [−1.96; 1.96], and
K2 ∈ [0; 5.991]. Thus, because G3 and G4 are uncorrelated but not independent, K2 does not
follow an exact χ2 distribution, and confidence interval is slightly different. Using a right-tailed
unilateral testing at 95% for Ns = 100, the critical value of K2 is 6.271 instead of 5.991.(for the
exact χ2 distribution).

Now, many figures (including Fig. 3) present vertical profiles of horizontally averaged f3(G3),
f4(G4), and K2. Because quantities are horizontally averaged, they cannot be compared directly
to the bounds above. Nevertheless, we shall consider that values below (above) those bounds in
horizontal average indicate dominance of Gaussianity (non-Gaussianity), or simply state that
some variable exhibit more (less) Gaussian behaviour when its averaged K2 is lower (higher)
than for another one.
Author’s changes in manuscript→Additional comments have been added in section 2.1 as :
"When testing a Gaussian distribution, asymptotic values for the three criteria (f3(G3), f4(G4),
and K2) are respectively f3(G3) = 0, f4(G4) = 0, and K2 = 2. Using finite sampling with
ensemble size Ns > 20 (Thode, 2002), f3(G3) and f4(G4) could be both assumed to follow
a Gaussian law with a zero mean and a unity variance. In this case, K2 follows approximately
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a χ2 distribution with two degrees of freedom. Confidence intervals at 95% are then given by
f3(G3) ∈ [−1.96; 1.96], f4(G4) ∈ [−1.96; 1.96], and K2 ∈ [0; 5.991]. Because G3 and G4 are
uncorrelated but not independent, K2 does not follow an exact χ2 distribution, and confidence
interval is slightly different. Using a right-tailed unilateral testing at 95% for Ns = 100, the
critical value of K2 is 6.271 instead of 5.991."

Comments from Editor→[...] [Referee 3] asks you in particular to include additional results
in your paper, in the form of diagnostics of the Gaussianity of the control variables (subsection
4.2.1, his comment 3). He also questions the usefulness of the D’Agostino test, and of checking
the Gaussianity of the quantities f3(G3) and f4(G4), rather than of the raw diagnostics G3 and
G4 (his comment 2). It seems to me that you have actually already answered that point, by
saying that the quantities f3(G3) and f4(G4), and the resulting K2, are more appropriate for
small ensembles (ll. 106-108). But it may be useful to be more specific, by saying for which
values of the ensemble size N the D’Agostino test can be useful (referee 3’s comment 2).
Author’s response→Those questions are answered in our responses to Referee 3.
Author’s changes in manuscript→In section 2.1, interpretations of f3(G3) and f4(G4) values are
added, and it is now explicitly mentioned that D’Agostino is useful for samples larger than 20
members. Fig.1 has been changed to be in accordance with this threshold. Moreover, as regards
NG of control variables, comment has been added in section 4.2.1.

Comments from Editor→Both referees 2 and 3 observe that vorticity and divergence, al-
though they are linear functions of the wind components, are much less Gaussian than the latter
(their comments 8, and 4-5 respectively). Referee 2 mentions heteroscedasticity (spatial varia-
tion of the variance of wind components) as a possible explanation. Please discuss this point.[...]
Author’s response→This point is answered in our response to Referee 1.
Author’s changes in manuscript→cf response to Referee 1, a comment on section 4.2.1 is added
on this subject.

Références

Thode, H. C. : Testing for Normality, in : Vol. 164 of Statistics : Textbooks and Monographs,
Marcel Dekker, New York, 2002.
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REFEREE 1 :
(Reviewer comments are written in black, and authors answers are in blue)

Specific comments :

Comments from Referee→(1) p.1072, L.5-9 : what is the implication of small K2 in the
regions of large ensemble forecast variance ? Could you elaborate in more detail ?
Author’s response→ Having small K2 values implies that according to our diagnostics, back-
ground errors are sampled from a Gaussian distribution, which is consistent with the hypothesis
of Gaussianity made in our data assimilation system. Additionally, in presence of large back-
ground error variances, the background is assumed to be less reliable and more weight should
be put on observations in that area during the analysis.
Author’s changes in manuscript→ None.

Comments from Referee→(2) p.1075 (section 4.2.1) : Could you further elaborate on vorti-
city and divergence control variables and the possible reasons for their non-Gaussian behaviour.
Is it possible that this is related to their definition as second derivatives of stream function
and velocity potential, both commonly used as Gaussian ? Would this suggest it may be better
to use stream function and velocity potential as control variables in order to stay within the
Gaussian framework ?
Author’s response→The first or second order derivation use linear operators. So theoretically
the derivative of an initially Gaussian distribution, is also Gaussian. We suspect however that
derivation of a nearly-Gaussian process may indeed increase its NG. Furthermore another pos-
sible source of NG has been highlighted by the second reviewer : the heteroscedasticity (spatial
variability of the variance) of the wind fields.
To go further on this topic, NG diagnostics have been computed for the temperature T , which
is a nearly Gaussian field (cf Fig. 3a), for the temperature normalized by its standard deviation

T
σT

, and for their respective first-order spatial derivatives (∂T∂x and
∂ T
σT
∂x ). Results are gathered in

the attached new figure (Fig.1 of the comment) giving vertical profiles of K2 for T (solid black

line), T
σT

(dashed red line), ∂T
∂x (dotted blue line), and

∂ T
σT
∂x (dot-and-dash green line). Profiles

have been computed from a 90-members ensemble of 3h-forecasts valid the 4th of November
2011 at 03 :00. Three conclusions arise from this experiment :

— the profiles of T and T
σT

are almost equal (differences smaller than 0.01). This supports
the fact that NG diagnostics for a particular parameter do not depend on its variance.

— the large increase of K2 between fields (normalized or not) and their derivative seems to
support the fact that derivation of a nearly Gaussian variable increases its NG. Moreover,
despite the use of T instead of one of the wind components, the order of magnitude of the
NG is close to the one found in Fig.9(a) and Fig.10 for the vorticity and the divergence,
which support the attribution to derivation for at least a part of their NG.

— differences of NG between ∂T
∂x and

∂ T
σT
∂x enable to know more about the impact of hete-

roscedasticity. It seems that the homogenization (all variances set to 1 with the normali-
zation) yields a systematic decrease of NG for every model levels yet very small compare
to the increase implied by the spatial derivation.

Those conclusions are in accordance with the large NG of ζ and η which are defined as spatial
first order derivatives of the largely Gaussian wind fields.
Considering those results, the couple stream function/velocity potential should display more
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Gaussian behaviour than ζ/η, which would make them good candidates for being the dyna-
mical control variable. (as in the Met Office assimilation system for instance). Future work is
however still needed to confirm this point.
Author’s changes in manuscript→ Added in section 4.2.1 : ”To go further on this topic, NG
diagnostics have been computed for the spatial first-order derivative of T . While T is a nearly
Gaussian variable (see Fig.3a), its spatial derivation largely increases the NG (not shown),
up to the order of magnitude found in Fig.9a and Fig.10 for ζ and η. This supports the attri-
bution to derivation for at least a part of the NG displayed for the dynamical control variables.”.

Technical corrections :

Comments from Referee→(3) p.1063, L.13 : Delete “Of course”, start sentence with “In
general ...”. Substitute “will lead” by “could lead”, unless there is a reference stating that. In
that case include the reference.
Author’s response→We agree with this correction
Author’s changes in manuscript→ Changed in the introduction : ”The time integration of the
model nonlinear dynamics leads inevitably to non-Gaussian forecast errors (Bocquet et al.,
2010).”.

Comments from Referee→(4) Figs.3, 6, 8, 9, and 10 : It is difficult to distinguish between the
dotted and dashed lines. Would it be possible to recreate this figure with more distinct lines ?
Also, please include in the figure caption the description of lines (e.g., dashed, dotted, full,. . . ).
Author’s response→We agree with this correction
Author’s changes in manuscript→Figs.3, 6, 8, 9, and 10 have been recreated with clearer line
settings and colors. Moreover Fig6(c) has been simplified. Lines descriptions are retrieved in
legends on top of each figure, in order to keep the captions as synthetic as possible.

Références

Bocquet, M., Pires, C. A., and Wu, L. : Beyond Gaussian statistical modeling in geophysical
data assimilation, Mon. Weather Rev., 138, 2997–3023, 2010.
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Figure 1 – Vertical profiles of K2 for T (solid black line), T
σT

(dashed red line), ∂T∂x (dotted blue

line), and
∂ T
σT
∂x (dot-and-dash green line) (see text). For each level, values are averaged over the

horizontal domain. Profiles have been computed from a 90-members ensemble of 3h-forecasts
valid the 4th of November 2011 at 03 :00.
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REFEREE 2 :
(Reviewer comments are written in black, and authors answers are in blue)

Comments from Referee→(1) The transformed estimator f4(G4) for kurtosis was originally
presented by Anscombe and Glynn(1983), after that of d’Agostino (1970) test for skewness. The
omnibus test (4) in pg. 1068 was presented by D’Agostino et al. (1990). See refer- ences bellow
and add to manuscript. Anscombe, F.J. ; Glynn, William J. (1983). "Distribution of the kurtosis
statistic b2 for normal statistics". Biometrika 70 (1) : 227–234. doi :10.1093/biomet/70.1.227.
JSTOR 2335960 D’Agostino, Ralph B. ; Albert Belanger ; Ralph B. D’Agostino, Jr (1990). "A
suggestion for using powerful and informative tests of normality" (PDF). The American Statis-
tician 44 (4) : 316–321.doi :10.2307/2684359. JSTOR 2684359.
Author’s response→We agree with this point.
Author’s changes in manuscript→ The two references (Anscombe and Glynn, 1983; D’agostino
et al., 1990) have been added, and the K2 is now rightly attributed to D’agostino et al. (1990)
instead of D’Agostino (1970).

Comments from Referee→(2) Beyond K2 (Eq. 4), other diagnostics of NG have been used
on assimilation error and innovation diagnostics, like those relying cumulant-based expansions
of the negentropy or the Kullback-Leibler divergence with respect to the fitting Gaussian pdf
(Pires et al. 2010). Add the reference : Pires, C.A., O. Talagrand, M. Bocquet, 2010. Diagnosis
and Impacts of non- Gaussianity of Innovations in Data Assimilation. Physica D. Nonlinear
Phenomena, Vol. 239, (17), 1701-1717. doi :10.1016/j.physd.2010.05.006
Author’s response→We agree with this point.
Author’s changes in manuscript→References to kullback (1959), and Pires et al. (2010) have
been added.

Comments from Referee→(3)- Fig 3b and 3c present profiles of the horizontal averages of
f3 and f4 for humidity. However local values of f3 and f4 may exhibit quite larger and extreme
values (see Figs 4b and 4c) than their horizontal averages. Figs 3b and 3c do not give an idea of
the NG range over the area. A figure with profiles showing the range interval (e.g. 5-95%) of f3
and f4 would be useful. It would be more consistent with Fig 3a presenting spatial averages of
the local K2 values.
Author’s response→Thank you for this remark. The description of the spatial variability of the
NG diagnostics was indeed insufficient, and discussion of ranges for K2, f3(G3) and f4(G4) has
been added in the section 3.3 of the manuscript. This description is based on results displayed in
Fig.1 below, which is not included in the text since many similarities have been found between
parameters and materials that are already present in the article.
Author’s changes in manuscript→ Added in section 3.3 : "The range, defined as the difference
between the 95th and the 5th percentiles, could be used to describe roughly the horizontal spa-
tial variability for each vertical level. Vertical profiles of ranges of K2, f3(G3), and f4(G4) (not
shown) have, all three, large similarities between each other, and with the shapes of K2 profiles
displayed in Fig3(a). It includes in particular two maxima in the boundary layer and in high
troposphere for q and larger values towards the surface for T. Ranges are much larger for the
four variables (approximately four times as large) than the respective mean values given in Fig.3,
implying a large spatial variability for the three NG diagnostics. An example of the horizontal
structures of NG is given for q in the boundary layer by Fig.4. They have large similarities with
the meteorological coherent structures, as the Southerly convergent flow over South of France
and the active cold front aloft North-West of France are associated with high values of K2."
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Comments from Referee→(4) - Pg 1071, line 15. Please be more rigorous not using the ‘in-
versely proportional’ attribute. For instance : larger values of K2 generally occur for small values
of q.
Author’s response→We agree with this point.
Author’s changes in manuscript→It has been corrected as : "...K2 is increasing while the q mean
content, displayed in Fig.3(d), is largely decreasing.

Comments from Referee→(5)- Pg 1072, line 1. Negative skewness - left-tailed distributions.
Please correct
Author’s response→We agree with this point.
Author’s changes in manuscript→It has been corrected

Comments from Referee→(6)- Pg. 1073. Relationships between NG and physical processes
must be analysed with care. Which makes you to link diabatic processes to NG? NG can come
from non-linear processes acting on Gaussian pdfs ; linear processes acting on NG pdfs or both.
Add a short justification.
Author’s response→We agree that this study does not demonstrate that NG is caused by diaba-
tic processes. It is true that NG may come from non-linear processes acting on Gaussian pdfs ;
linear processes acting on non-Gaussian pdfs or both. Yet we have shown that analysis errors
have a more Gaussian behaviour in our system (e.g Fig.7 and Fig.8), such that NG in the back-
ground may rather come from non-linear processes acting on a nearly-Gaussian pdf. Also, we
point out diabatic processes as a reasonable explanation based on Fig.6 that shows increased
NG in cloudy conditions compared to clear sky ones.

A more extensive study of relations between physical processes and NG would require running
ensembles with simplified physics, where some processes are turned off. This may be attempted
in the future.
Author’s changes in manuscript→Changes have been made in section 3.4 : "During the 6 first
hours of forecasts, NG quickly increases [...] Those results support that NG in the background
may rather come from non-linear processes acting on nearly Gaussian pdfs instead of linear pro-
cesses acting non-Gaussian pdfs." and then "For T and q, diabatic processes are good candidates
to produce NG because of intrinsic thresholds in cloud physics (e.g. moisture saturation) and
non-linear processes like turbulence on cloud-top."

Comments from Referee→(7) - Sec. 4.1 highlights the drastic reduction of NG of the analysis
compared to that of background (Fig8a,b), specially over regions of dense radar observations.
This can only be due to the hypothesis of Gaussianity of observation errors (e.g. radar) which
is for the moment the better hypothesis to use. Comment that.
Author’s response→The analysis increment is equal to a gain matrix times an innovation vector
(observations minus background), i.e it is a linear function of the innovation in model space.
Thus the Gaussianity of the analysis increment mainly depends on the Gaussianity of the in-
novations. Practically, innovations are close to Gaussianity thanks to a rough selection applied
beforehand to the observations, allowing to remove outliers.

As regards radar data, a 1D+3D Var approach is used operationally for AROME (Caumont
et al., 2010). It consists in retrieving profiles of relative humidity (RH) from observed reflectivi-
ties at first, and to consider such profiles as pseudo-observations in the 3D-Var (Wattrelot et al.,
2014). Only small innovations of RH are kept in the process, insuring the Gaussianity of the
corresponding innovations.
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Author’s changes in manuscript→Additional comment added in section 4.1 : "The analysis in-
crement being a linear function of the innovation vector in model space (observation minus
background), its Gaussianity is insured by a rough selection applied beforehand to the observa-
tions, allowing to remove outliers (e.g. for radar data, Caumont et al., 2010; Wattrelot et al.,
2014)."

Comments from Referee→(8) - Pg 1075. Despite the fact that vorticity and divergence are
linear operators of the quasi Gaussian zonal and meridional wind fields, mostly of the NG comes
from heteroscedasticidy (spatial variability of the wind variance). Refer this aspect
Author’s response→This remark is similar to that made by reviewer 1 (and 2) in his second
point. In order to study relative impact on NG of heteroscedasticity and spatial derivatives,
NG diagnostics have been computed for the temperature T , which is a nearly Gaussian field (cf
Fig. 3a), for the temperature normalized by its standard deviation T

σT
, and for their respective

first-order spatial derivatives (∂T∂x and
∂ T
σT
∂x ). Results are shown and explained in the answer to

reviewer 1.
Author’s changes in manuscript→Same as for reviewer 1.

Références

Anscombe, Francis J. and Glynn, William J. : Distribution of the kurtosis statistic b2 for normal
samples, Biometrika, 70 (1), 227–234, 1983.

Bocquet, M., Pires, C. A., and Wu, L. : Beyond Gaussian statistical modeling in geophysical
data assimilation, Mon. Weather Rev., 138, 2997–3023, 2010.

D’Agostino, R. B. : Transformation to normality of the null distribution of G1, Biometrika, 57,
679–681, 1970.

D’agostino, Ralph B. and Belanger, Albert and D’Agostino Jr, Ralph B. : A suggestion for using
powerful and informative tests of normality, The American Statistician, 44 (4), 316–321, 1990.

Kullback, S. : Information theory and statistics, Wiley, 395pp, 1959.

Pires, Carlos A and Talagrand, Olivier and Bocquet, Marc : Diagnosis and impacts of non-
Gaussianity of innovations in data assimilation, Physica D : Nonlinear Phenomena, 239
(17),1701–1717, 2010.

Caumont O., Ducrocq V., Wattrelot E., Jaubert G., and PRADIER-VABRE S. : 1D+ 3DVar
assimilation of radar reflectivity data : A proof of concept, Tellus A, 62 (2), 173—187, 2010
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Figure 1 – Vertical profiles of ranges (see text) of (a) K2, (b) transformed skewness f3(G3), (c)
transformed kurtosis f4(G4). Profiles are computed from the 90-members ensemble of AROME-
France 3h-forecasts valid at 03 :00 UTC the 4 November 2011. Profiles are given for four model
variables : U , V , T , and q.
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REFEREE 3 :
(Reviewer comments are written in black, and authors answers are in blue)

Comments from Referee→(1) There is some confusion in the paper about the roles of linea-
rity and Gaussianity in assimilation. The abstract reads Two common derivations respectively
lead to the Kalman filter and to variational approaches. They rely on either assumptions of linea-
rity or assumptions of Gaussianity of the probability density functions of both observation and
background errors . Maybe I am mistaken on the authors’ intentions, but these sentences mean
in effect that the hypotheses of linearity (leading to Kalman filter) and Gaussianity (leading to
variational assimilation) are mutually exclusive. They are not. Both Kalman filter and variatio-
nal assimilation are based on the same linear assumptions (and both are empirically extended
to weakly non-linear situations). Under these linear assumptions, they are only two different
algorithms that solve the same problem. In addition, they both achieve Bayesian estimation in
the case when the errors affecting the data are Gaussian.

More precisely P. 1063, ll. 10-11. ..., up to now operational Numerical Weather Prediction
(NWP) has relied on assimilation schemes that are Gaussian .... The authors do not say which as-
similation schemes they have in mind, but I presume they mean schemes of the general ‘Kalman’
form

xa = xb + K(y−Hxb) (1)

where xb and xa are respectively the background and the analysis, y is the observation, H the
corresponding (linear) observation operator, the difference d ≡ y −Hxb being the innovation
vector. K is the gain matrix which, in the context of least variance estimation, is defined as
K ≡ CzdC−1

dd , where Czd is the cross-covariance matrix of the background error z ≡ x − xb
with the innovation, and is Cdd is the covariance matrix of the innovation itself. I stress there
is nothing necessarily ‘Gaussian’ in Eq. (1) above. That equation can be obtained as defining
the Best Linear Unbiased Estimator (BLUE) of x from xb and y, independently of any Gaus-
sian hypothesis. It can also be obtained, also independently of any Gaussian hypothesis, on a
principle of maximum entropy. Linearity, on the other hand, is always necessary. Gaussianity is
only a ‘plus’ which, if it comes in addition to linearity, ensures Bayesianity of the estimation.

The authors write (p. 1065, ll. 2-3, efforts [to] be made to improve linear assumptions ...
Well, if Gaussianity is obtained at the expense of linearity, this may result in a degradation of
the accuracy of the final estimate.

P. 1064, ll. 7-8. It [the 4D-Var algorithm] solves for the most probable state [...] by mi-
nimizing a non-quadratic cost-function .... If there are non-linearities and the cost-function is
non-quadratic, it is very unlikely that minimizing it will lead to the most probable state. Ac-
tually, that is guaranteed only in the linear and Gaussian case.

Please revise all parts of the paper relative to the basic principles of assimilation and to the
questions of linearity, Gaussianity and Bayesianity. It must be clear in particular that, among
the hypotheses to be made for Kalman filtering and variational assimilation, linearity must come
before Gaussianity.
Author’s response→ There are two common derivations of the assimilation problem in the lite-
rature. The first one actually matches your derivation. It derives the Kalman gain as the best
linear unbiased estimate, in the sense of a minimum variance estimate. Then it is possible to
derive variational data assimilation as a minimization problem solving for this Kalman gain.
The Gaussian assumption then is not necessary but ensure Bayesianity of the assimilation.
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The second derivation takes maybe an other step : it starts from the derivation of a maximum
likelihood problem using Bayes rules. This is the approach presented in (e.g.) Lorenc (1986),
Bannister (2008), Bocquet et al. (2010), and Fisher et al. (2011). The Gaussian hypothesis is
done next, leading to a minimization problem of a non-linear cost function J that is given for
instance for a 3D-Var as :

2J = (x− xb)
T B−1 (x− xb) + (y−H(x))T R−1 (y−H(x)) (2)

with B and R the covariance matrix of background and observations errors. Non-linearities arise
from the observation operators H (in addition to the direct model operator for the 4D-Var). As
mentioned by Bocquet et al. (2010) about the minimization of J , instead of using stochastic
optimization methods which are intractable for NWP applications, a remedy is to use a suc-
cession of quadratic optimization problem with simplified and linearised operators. Fisher et al.
(2011) explain the several linearisation as a way to resolve the minimisation problem with "a
range of efficient methods". So, with this second derivation, the Gaussianity (or correction of
Gaussianity) is seen as the only tractable choice and appears very soon in the J designing.
Then, linearisation is seen as an additional technical assumption leading to better efficiency in
the minimization process.

The equivalence between those two possible derivations may be obtain using some kind of
EnKF approaches.
Author’s changes in manuscript→In the abstract : "In numerical weather prediction, the pro-
blem of estimating initial conditions with a variational approach is usually based on a Bayesian
framework associated with a Gaussianity assumption of the probability density functions of
both observations and background errors. In practice, Gaussianity of errors is tied to linearity,
in the sense that a nonlinear model will yield non-Gaussian probability density functions. In
this context, standard methods relying on Gaussian assumption may perform poorly.", and at
the beginning of the introduction : "In data assimilation, the analysis step may be seen as fin-
ding a maximum likelihood of the probability density functions (PDF) of the state x given the
available observations y and a background state (usually a short range forecast). Usual Bayesian
formulation yields (Kalnay, 2003)".

Comments from Referee→(2) The significance of the D’Agostino test, and the interpretation
to be given to the results it produces, must be clarified.

I mention first that formulæ (2) and (3) for the skewnessG3 and the kurtosisG4 are not exact.
The denominator in the expression for the variance should be Ns -1, and similar corrections are
to be made in the expressions for the third- and fourth-order moments.
Author’s response→ We don’t think that there is a mistake here. According to (e.g.) Thode
(2002) p45-46, G3 and G4 are using sample moments given as

mk =
1

Ns

Ns∑
i=1

(xi − x̄)k (3)

Such definition of the second sample moment is used to compute G3 and G4, not the sample
(unbiased) variance.
Author’s changes in manuscript→We agree with this point.

Comments from Referee→More importantly, the fundamental purpose of the test is the
following. For a given ensemble size Ns and exact Gaussianity, by how much can one expect G3
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and G4 to deviate from their Gaussian values 0 and 3 ?
Author’s response→ According to Kendall and Stuart (1977) in case of exact normality G3 is a
zero mean random variable with a variance of

σ2(G3) =
6(Ns − 2)

(Ns + 1)(Ns + 3)
(4)

Asymptotically (Ns large enough), G3 tends to be normally distributed with a zero mean and
a variance of 6/Ns. In our case for Ns = 90, G3 is not exactly normally distributed and, with a
bilateral testing at level 95%, the normality hypothesis is accepted when −0.494 < G3 < 0.494
(Table B5, Thode, 2002).

As regards G4, in case of normality G4 is asymptotically (Ns large enough) normally distri-
buted with a mean of 3 and a variance of 24/Ns. For finite ensemble size, mean and variance
are given as

E[G4] =
3(Ns − 1)

(Ns + 1)
(5)

σ2(G4) =
24Ns(Ns − 2)(Ns − 3)

(Ns + 1)2(Ns + 3)(Ns + 5)
(6)

In our case for Ns = 90, G4 is not exactly normally distributed and, with a bilateral testing at
level 95%, the normality hypothesis is accepted when 2.24 < G4 < 4.09 (Table B6, Thode, 2002).

Those bounds are not mentioned in the text since, G3 and G4 are not used in this study. As
justified below, only f3(G3) and f4(G4) are shown and analysed.
Author’s changes in manuscript→None

Comments from Referee→The authors define transformed skewness and kurtosis f3(G3) and
f4(G4) through formulæ whose significance is obscure (and which would be in my opinion more
appropriately put in an appendix than in the main text of the paper). The transformed f3(G3)
and f4(G4) are said to be standard Gaussian (i.e. with expectation 0 and variance 1) if the
original variable is Gaussian. For which values of Ns is that statement true (it cannot be for
any Ns, in view for instance of a term Ns in several of the formulæ leading to the definition of
f4(G4)) ?
Author’s response→ If the original variable is Gaussian, the normality of the transformed skew-
ness and kurtosis is valid respectively for any values of Ns > 8 and Ns > 20 (resp. p48 and p52,
Thode, 2002). Thus, the Ns−3 coefficient that we found in P definition is actually coming from
the variance of G4, which is used in Q as a normalization coefficient.
Author’s changes in manuscript→In section 2.1 : "For a Gaussian PDF and Ns higher than 20
(Thode, 2002), f3(G3) and f4(G4) could be both assumed to follow a Gaussian law with a zero
mean and a unity variance.". Fig.1 has been changed to be in accordance with this threshold.

Comments from Referee→The next step is to test the Gaussianity of the transformed f3(G3)
and f4(G4). But what is then the interest of making the test on f3(G3) and f4(G4) rather than
on the raw G3 and G4 ? Is it that a possible non-Gaussianity will show up more clearly on the
former ? Is so, say it clearly. In any case, explain.
Author’s response→We see three main reasons of using f3(G3) and f4(G4) instead of G3 and G4.
The first reason is that for Ns = o(103), the asymptotic behaviour of G3 and G4 is not reached
(D’Agostino, 1970; Anscombe and Glynn, 1983). So in order to simplify hypothesis testing, a
transformation is needed to transform them as normal random variables. The second reason is
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that their values weakly depend on Ns. This make possible to compare several studies using dif-
ferent ensemble sizes. The third reason is that f3(G3) and f4(G4) are both normally distributed.
So the role of each of them in a possible deviation from Gaussianity could be compared, and
they could be used to build an omnibus test of normality as K2.
Author’s changes in manuscript→None

Comments from Referee→The authors then introduce the parameter K2 of which they write
(p. 1068, ll. 9-10) that it follows an approximate χ2 distribution with two degrees of freedom.
Well, if f3(G3) and f4(G4) are independent standard Gaussians, K2 will follow an exact χ2

distribution with two degrees of freedom (with expectation 2 and variance 4). Is it because G3

and G4 are not independent in the first place that the distribution cannot be expected to be an
exact χ2 ?
Author’s response→You are right, K2 is not distributed with an exact χ2 since G3 and G4 are
uncorrelated but not independent (p54, Thode, 2002). An other reason is that normality be-
haviour of G3 and G4 is only asymptotic. For those two reasons it is possible to correct critical
values of the K2 test (chapter Moment (

√
b1, b2) techniques, D’Agostino and Stephens, 1986).

For instance, with Ns = 100 the critical value is K2 = 6.271 and not 5.991 as for an exact χ2

distribution.
Author’s changes in manuscript→None since it is already mentioned that K2 is only "approxi-
mately" following a χ2 distribution.

Comments from Referee→It is not clear how the values obtained for f3(G3), f4(G4) and
K2 must be interpreted. The authors write (p. 1069, last sentence) describing the values of K2

has the advantage to prevent the results from depending on the chosen confidence level. Which
confidence level are you referring to ? A level similar to the one given (p. 1068, l. 11) for Ns =
100 ?
Author’s response→ When using hypothesis testing, conclusion of the test is always associated
with a confidence level α (usually 1 − α = 95%). Critical values Xc of the test are defined
according to this level as (for a right-unilateral testing)

P (X > Xc) = α (7)

Instead of K2, we could have shown binary result giving "this point is Gaussian or not". But
since the critical value is depending on the confidence level of the test, results would have been
different when using different confidence level. Moreover we want to see where the NG is the
largest, and see structures. That’s why we choose to show raw values of K2.
Author’s changes in manuscript→None

Comments from Referee→But that does not say how to interpret the values obtained for K2

. One could expect that a χ2 mean value of 2 for K2 , with a variance of 4, could be interpreted
as proof of Gaussianity. And you mention a value of 2.7 (p. 1072, l. 11) as indicating Gaussia-
nity. But Fig. 3a shows values, at all levels and for all variables except q, which are about 4,
which seems to indicate significant deviation from Gaussianity. Nevertheless, you write in the
conclusion (p. 1076, l. 14) Deviation from Gaussianity for U, V , and T only appears in the
boundary layer . All that is confusing.
Author’s response→ As it is stated in the text, with unilateral testing at level 95%, the Gaus-
sian hypothesis is rejected for K2 > 6.271, so K2 value around 4 are small enough to accept
the Gaussian hypothesis of the sample tested. Moreover, discussion on K2 values allow us to
compare quantitatively Gaussian behaviour between variables.
Author’s changes in manuscript→None
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Comments from Referee→A similar remark applies to the parameters f3(G3) and f4(G4), of
which it is not clearly said (except for the large values of f3(G3)) how they must be interpreted.
For instance, how the fact that the values of f4(G4) are positive in Fig. 3c must be interpreted
(f4(G4) clearly does not have the standard Gaussian distribution to be expected if the basic
variables are Gaussian) ?
Author’s response→ Positive values of f4(G4) means that distribution tails are heavier than
Gaussian distribution, and also a bigger modal peak. Negative values of f4(G4) show lighter
tails and smaller modal peak.

Despite negative values appear in Fig.5, you are right noticing that f4(G4) are in a large
part positive. But it doesn’t mean that f4(G4) does not follow a standard Gaussian distribution.
Indeed this conclusion needs the spatial ergodicity assumption which is not straightforward to
us (since f3(G3) and f4(G4) distribution may depend on meteorological situation i.e spatial in-
homogeneity). In this study we would simply test the normality of f4(G4) with an hypothesis
testing (see if f4(G4) is larger than a critical value). An other way to test the normality of
f4(G4), would be to look at the distribution of an ensemble of f4(G4) for each grid point. But
this is costly since it needs an ensemble of ensembles.
Author’s changes in manuscript→Added in section 2.1 : "While positive (negative) values of
f3(G3) point out distributions with a median smaller (higher) than the mean and with a longer
right (left) tail, positive (negative) values of f4(G4) mean that distribution tails are heavier
(lighter) than Gaussian distribution’s, with also a bigger (smaller) modal peak."

Comments from Referee→All those aspects must be clarified. In particular, explain in what
it is better to use the parameters f3(G3) and f4(G4) (and K2 ) rather than the raw diagnostics
G3 and G4 . And explain better how the values found for f3(G3), f4(G4) and K2 must be inter-
preted (see also comment 4 below).
Author’s response→ We hope that previous answers are clarifying the use and interpretation of
f3(G3), f4(G4), and K2.
Author’s changes in manuscript→None

Comments from Referee→(3) Subsection 4.2.1 and associated Fig. 9. You present diagnostics
for control variables, and particularly vorticity and divergence and for a 3-hour forecast. You
have shown previously that, for other variables, the analysis ensembles are more Gaussian than
the forecast ensembles. I suggest you also present diagnostics for the analysed control variables.
Author’s response→ To be consistent with the Fig.7, diagnostics of NG for vorticity ζ and total
divergence η have been computed before and after the assimilation step of the 4th November
2011 at 03 :00. Results are shown below in Fig.1 of this comment. While NG for levels higher
than 900hPa are almost unchanged, the averaged K2 of ζ and η is systematically lower for the
analysis than the background state in the boundary layer. However the order of magnitude of
the decrease is much smaller than for T and q, thus the dynamical variables ζ and η remain by
far much more non-Gaussian than T and q.(Those conclusions have been added in the text).
Author’s changes in manuscript→added in section 4.2.1 : "As for Fig.7, diagnostics of NG for
vorticity ζ and total divergence η have been computed before and after the assimilation step
(not shown). While NG of levels higher than 900hPa are almost unchanged, the averaged K2

of ζ and η is systematically lower for the analysis than the background state in the boundary
layer. However the order of magnitude of the decrease is much smaller than for T and q, and
the dynamical variables ζ and η remain by far much more non-Gaussian.
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Figure 1 – Vertical profiles of Vorticity ζ and total Divergence η before ("background")and after
("analysis") the assimilation process. Results are computed from the ensemble of 90 background
and analysis states valid the 4th November 2011 at 03 :00.
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Comments from Referee→(4) Subsection 4.2.1. You write on the basis if Fig.9 that the vor-
ticity, unlike the wind components, is strongly non-Gaussian. This is what comparison of Figs
3 and 9 may suggest, but the vorticity is a linear function of the wind components, and cannot
be as such be less Gaussian than those components. This requires clarification.
Author’s response→This remark is similar to that made by reviewer 1 (and 2) in his second
point. In order to study relative impact on NG of heteroscedasticity and spatial derivatives,
NG diagnostics have been computed for the temperature T , which is a nearly Gaussian field (cf
Fig. 3a), for the temperature normalized by its standard deviation T

σT
, and for their respective

first-order spatial derivatives (∂T∂x and
∂ T
σT
∂x ). Results are shown and explained in the answer to

reviewer 1. A comment has also been added in the manuscript.
Author’s changes in manuscript→Same as for reviewer 1.

Comments from Referee→(5) Concerning also Fig. 9, you write that the unbalanced diver-
gence ηu , like vorticity, is strongly non-Gaussian, while the variables Tu and qu display much
more Gaussian profiles. Well, according to the caption of Fig. 9, it is Tu which, in addition
to vorticity, shows large values of K2 , while ηu shows smaller values. Is there an error in the
caption, or what ?
Author’s response→There was indeed an error in the caption. T was inverted with ηu. This has
been corrected.
Author’s changes in manuscript→Caption of Fig.9 corrected.

Comments from Referee→And, speaking of vorticity, you use the Greek letter ξ (pronounced
xi) to denote it. The usual notation is ζ (pronounced zeta). I suggest you follow the established
practice.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.

Comments from Referee→(6). P. 1073, ll. 9-11. For q, NG is mainly found in “cloudy” areas,
[...] with two peaks around 900 and 700 hPa. According to Fig. 6a, there is a much more marked
peak in the layer 100-300 hPa.
Author’s response→ As noted in section 3.2, largest NG for q in high troposphere appear where
q is almost non-existent. As it is stated in the text, those large values of NG have then to be
taken with caution.
Author’s changes in manuscript→None

Comments from Referee→(7) Abstract, ll. 18-19, The mass control variables used in our
data assimilation, namely vorticity and divergence. Well, vorticity and divergence are not mass
variables (check for other possible similar mistakes elsewhere in the paper)
Author’s response→We agree with this point.
Author’s changes in manuscript→This has been corrected in the manuscript as "dynamical
control variables".

Comments from Referee→(8) P. 1066, ll. 3-4, Positive (negative) values are associated with a
mode of the PDF smaller (larger) than its mean. This statement may not be true of the mode of
the distribution (which can be arbitrarily modified with infinitesimal change to the distribution),
but is true of its median.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.
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Comments from Referee→(9) And there are erroneous statements concerning the relation-
ship between skewness and tails pp. 1071, l. 13, and 1072, l. 1.
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been corrected in the manuscript.

Comments from Referee→(10) P. 1068, l. 11, what is unilateral testing ?
Author’s response→ When testing an hypothesis (e.g.) H0 : "Xobserved is sampled from a Gaus-
sian random variable", with a confidence level α the test is right-tailed unilateral if H0 is rejected
when P (X > Xobserved) < α.
Author’s changes in manuscript→ The "right-tailed" adjective has been added in the manuscript.

Comments from Referee→(11) P. 1073 and 1076, ll. 11 and 19, forecast terms ranges
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(12) P. 1064, l. 15, Laroche and Pierre, 1998. Do you mean Laroche
and Gauthier ?
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(13) P. 1064, l. 20 (and elsewhere). The proper spelling is Järvinen
(with a diaeresis)
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(14) P. 1077, ll. 7-8, ... does not include model error, neither in
the analysis nor in the forecast steps (what you write is analogous to writing in French Je n’ai
pas vu personne)
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed

Comments from Referee→(15) P. 1076, l. 3, below the tropopause
Author’s response→We agree with this point.
Author’s changes in manuscript→ This has been changed
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Abstract

In numerical weather prediction, the problem of estimating initial conditions
::::
with

:
a
::::::::::
variational

:::::::::
approach is usually based on a Bayesian framework . Two common derivations respectively
lead to the Kalman filter and to variational approaches. They rely on either assumptions of
linearity or assumptions of Gaussianity

:::::::::
Bayesian

::::::::::
framework

:::::::::::
associated

::::
with

::
a

:::::::::::
Gaussianity

:::::::::::
assumption

:
of the probability density functions of both observation

:::::::::::
observations

::
and

background errors. In practice, linearity and Gaussianity of errors are tied to one another
:
is

:::
tied

:::
to

::::::::
linearity, in the sense that a nonlinear model will yield non-Gaussian probability

density functions, and that standard methods .
:::
In

::::
this

:::::::
context,

:::::::::
standard

:::::::::
methods

::::::
relying

:::
on

:::::::::
Gaussian

:::::::::::
assumption may perform poorlyin the context of non-Gaussian probability density

functions.
This study aims to describe some aspects of non-Gaussianity of forecast and analysis

errors in a convective scale model using a Monte-Carlo approach based on an ensemble
of data assimilations. For this purpose, an ensemble of 90 members of cycled perturbed
assimilations has been run over a highly precipitating case of interest. Non-Gaussianity is
measured using the K2-statistics from the D’Agostino test, which is related to the sum of
the squares of univariate skewness and kurtosis.

Results confirm that specific humidity is the least Gaussian variable according to that
measure, and also that non-Gaussianity is generally more pronounced in the boundary layer
and in cloudy areas. The mass

:::::::::
dynamical

:
control variables used in our data assimilation,

namely vorticity and divergence, also show distinct non-Gaussian behavior
:::::::::
behaviour. It is

shown that while non-Gaussianity increases with forecast lead time, it is efficiently reduced
by the data assimilation step especially in areas well covered by observations. Our findings
may have implication for the choice of the control variables.
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1 Introduction

In data assimilation, the analysis step aims to find
::::
may

:::
be

:::::
seen

:::
as

:::::::
finding

::
a
::::::::::
maximum

:::::::::
likelihood

::
of

:
the probability density functions (PDF) of the state x from

:::::
given the available

observations y and a priori knowledge given by the PDF of the background (Kalnay, 2003) .
The usual

:::::::::::
background

:::::
state

::::::::
(usually

::
a

:::::
short

::::::
range

::::::::::
forecast).

::::::
Usual

:
Bayesian formulation

yields
::::::::::::::
(Kalnay, 2003)

Pa(x|y)∝ Po(y|x)Pb(x), (1)

where Pa,Pb and Po respectively are the PDFs of the analysis, of the background
(usually a short range forecast)and of the observations , which must be specified

::::::::
analysis,

:::::::::::
background

::::::
errors

:
(
:
a
::::::
priori

::::::
PDF),

::::
and

::::::::::::
observations

:::::::
errors. For high dimensional systems,

the
:
to

::::::::
specify

::::::
those

::::::
PDFs

:::
as multivariate Gaussian is a natural choice for variables that

may approximately verify the central limit theorem (Bocquet et al., 2010). Thus, up to now

:::::
most

::
of

:
operational Numerical Weather Prediction (NWP) has relied on data

:::::::
centres

:::::
have

:::::
relied

:::
on

::::::::::
variational

:
assimilation schemes that are Gaussian or corrections to a Gaussian

analysis-based strategy.
Of course in general the

::::
The

:
time integration of the model nonlinear dynamics will

lead
:::::
leads

:::::::::
inevitably to non-Gaussian forecast errors

:::::::::::::::::::::
(Bocquet et al., 2010) . For instance,

the highly nonlinear processes involved in clouds and precipitation are known to give
non-Gaussian background errors (Auligné et al., 2011). Some authors have reported on
displacement errors of meteorological features that turn into non-Gaussian background
errors (Lawson and Hansen, 2005). Keeping the Gaussian formalism in this case may yield
unrealistic analyses that are distorted (Ravela et al., 2007).

In NWP, the analysis of humidity may be the most problematic with respect to non-
Gaussianity (NG). This is due to the condensation effects near saturation and the intrinsic
positivity of humidity. The choice of the control variable for humidity is a long-standing
debate (Dee and da Silva, 2003). Specific humidity exhibits NG but is rather weakly
correlated (in average) to other variables. Relative humidity has been found to be more
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Gaussian but has stronger cross-covariances with temperature that are state-dependent
and difficult to model. It still has skewed distribution near condensation or in dry conditions.
The solution adopted in several operational centers

:::::::
centres is to use a normalized relative

humidity variable. The normalization factor is the standard deviation of the relative humidity
error, stratified according to the analyzed

::::::::
analysed relative humidity itself. The asymmetries

in PDFs are also accounted for through a nonlinear transformation. This scheme has been
implemented through several variants both in global (Holm et al., 2002; Ingleby et al., 2013)
and in limited area models (Gustafsson et al., 2011).

The 4D-Var algorithm commonly used in NWP (e.g. Rabier et al., 2000) has some ability
to handle nonlinearities. It solves for the most probable state in Eq. (1) by minimizing a non-
quadratic cost function with nonlinearities in the model and in the observation operator
mapping the model state to the observation space. The approach, known in the community
as incremental 4D-Var (Courtier et al., 1994), is based on a form of truncated Gauss–
Newton iterations. The problem is solved by minimizing a succession of inner-loop quadratic
optimization problems with increasing horizontal resolutions, in which the model is simplified
and linearised around the state adjusted by the previous outer-loop iteration (Laroche and
Gauthier, 1998).

The PDF of observation errors is also non-Gaussian in general. In NWP, quality-control
are performed to exclude observations that are outliers compared to the model and using
statistical knowledge (Lorenc, 1986). Unfortunately, this can be erroneous and a more
flexible framework has been introduced for instance by Anderson and Järvinen (1999). It
explicitly computes the probability of gross error for each observation, given the preliminary
analysis from the outer loops. The weight of each observation is smoothly decreased with
increased likelihood for gross error. More recently, this scheme has been replaced by the
use of a Huber norm (Tavolato and Isaksen, 2014). The NG of observation errors is out of
the scope of this paper.

The main goal of this paper is to document the non-Gaussianities of background and
of analysis errors in the context of convective scale NWP. For this purpose, a large
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ensemble of perturbed cycled assimilations has been set up with the AROME-France1

model. The perturbations simulate the evolution of the true background and analysis errors
(Houtekamer et al., 1996; Fisher, 2003; Berre et al., 2006). The diagnosis of NG may help to
find out for which variables and/or in which areas efforts could be made to improve Gaussian
assumptions in the assimilation algorithm, or to help designing advanced data assimilation
schemes taking into account displacement errors for instance (Ravela et al., 2007).

The paper is organized as follows: Sect. 2 presents the univariate D’Agostino test
for NG (D’Agostino, 1970)

:::::::::::::::::::::::
(D’agostino et al., 1990) and evaluates its efficiency on some

specified PDFs. Section 3 describes the ensemble from which the NG is diagnosed. This
ensemble is composed of assimilations and forecasts performed by the AROME-France
model for a highly precipitating event over the Mediterranean sea, of interest for the HyMeX
campaign (Ducrocq et al., 2013). Results of the NG diagnostics are then documented.
After an overview for model prognostic variables, time evolution of NG is discussed. The
dependence of NG to physical nonlinear processes is then described by making use of
geographical masks based on cloud contents. In Sect. 4, the impact of the data assimilation
process on NG is studied by comparing diagnostics performed on both background and
analysis errors, and by computing diagnostics in the control space of the minimization.
Conclusions are given in Sect. 5.

2 An index of non-Gaussianity

In NWP, dimensions of the state and observation vectors, including satellite and radar,
are huge (respectively around 108 and 105 in AROME-France). As mentioned in Bocquet
et al. (2010) only the simpler statistical tests of Gaussianity are tractable for such high
dimensional problems. Therefore, we will rely on simple univariate tests for NG.

1Application de la Recherche à l’Opérationnel à Méso-Echelle (Seity et al., 2011).
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2.1 D’Agostino test

The D’Agostino test (hereafter K2 test, D’Agostino, 1970)
::::::::::::::::::::::::::::::::::::::::
(hereafter K2 test, D’agostino et al., 1990) is

a statistical test where the deviation from Gaussianity is detected from the PDF’s skewness
and kurtosis. The skewness is a measure of the asymmetry of the PDF about its mean.
Positive (negative) values are associated with a mode

:::::::
median of the PDF smaller (larger)

than its mean and with a large right (left)-tail. For instance, a negative skewness for specific
humidity at some point indicates that at least a part

:::::
more

:::::
than

:::
the

::::
half

:
of the ensemble is

much dryer
:::::
more

::::::
humid

:
than the mean value of the ensemble. The kurtosis measures the

peakedness of the distribution (Thode, 2002). A PDF with larger tails and a narrow modal
peak has a large kurtosis.

The theoretical skewness and kurtosis are respectively estimated over an ensemble
by the sample third (G3) and fourth (G4) standardized moments. They are defined given
a sample xi=1..Ns of size Ns and its sample mean x as

G3 =
m3

m
3
2
2

=
1
Ns

∑Ns
i=1(xi−x)3[

1
Ns

∑Ns
i=1(xi−x)2

] 3
2

(2)

G4 =
m4

m2
2

=
1
Ns

∑Ns
i=1(xi−x)4[

1
Ns

∑Ns
i=1(xi−x)2

]2 (3)

with m2, m3, and m4 the sample second(variance), third, and fourth order moments. These
quantities estimate the theoretical skewness and kurtosis of the distribution. For a Gaussian
PDF, skewness is zero and kurtosis equals 3. Thus, the sample skewness and kurtosis
defined above could be used to detect deviation from Gaussianity, yet their convergence to
normality with ensemble size is slow. As reported in Tables 3.1 and 3.2 of Thode (2002),
the normality is reached with sufficient accuracy typically for ensemble sizes of the order
of ∼ 5000. For smaller ensemble sizes (more suitable to NWP), it has been suggested
to transform these quantities into f3(G3) and f4(G4) respectively, in order to remedy this
situation (D’Agostino, 1970)

:::::::::::::::::::::::::::::::::::::::::::::
(D’Agostino, 1970; Anscombe and Glynn, 1983) . f3 is defined
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as

A = G3×

√
(Ns+1)(Ns+3)

6(Ns− 2)

B = 3

(
N2

s +27Ns− 70
)
(Ns+1)(Ns+3)

(Ns− 2)(Ns+5)(Ns+7)(Ns+9)

C =
√
2(B− 1)− 1

D =
√
C

E =
1√
ln(D)

F =
A√
2

C−1

f3(G3) = E× ln(F +
√
F 2+1)
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and f4 is defined as

O = G4×
Ns(Ns+1)

(Ns− 1)(Ns− 2)(Ns− 3)
− 3

(Ns− 1)

(Ns+1)

P =
24Ns(Ns− 2)(Ns− 3)

(Ns+1)2(Ns+3)(Ns+5)

Q =
(Ns− 2)(Ns− 3)

(Ns+1)(Ns− 1)
√
P
×O

R =
6
(
N2

s − 5Ns+2
)

(Ns+7)(Ns+9)

√
6(Ns+3)(Ns+5)

Ns(Ns− 2)(Ns− 3)

S = 6+
8

R

[
2

R
+

√
1+

4

R2

]

T =
1− 2

S

1+Q
√

2
S−4

f4(G4) =
1− 2

9S −T
1
3√

2
9S

.

The
:::::
While

::::::::
positive

::::::::::
(negative)

::::::
values

::
of

:::::::
f3(G3):::::

point
::::
out

::::::::::::
distributions

::::
with

:
a
::::::::
median

:::::::
smaller

:::::::
(higher)

:::::
than

:::
the

::::::
mean

::::
and

::::
with

::
a

::::::
longer

:::::
right

::::
(left)

::::
tail,

::::::::
positive

:::::::::
(negative)

:::::::
values

::
of

:::::::
f4(G4)

:::::
mean

:::::
that

::::::::::
distribution

:::::
tails

::::
are

::::::::
heavier

:::::::
(lighter)

:::::
than

::::::::::
Gaussian

:::::::::::::
distribution’s,

::::
with

:::::
also

::
a

::::::
bigger

::::::::
(smaller)

:::::::
modal

:::::
peak.

:

:::::::
f3(G3) ::::

and
:::::::
f4(G4) statistics are then combined to produce an omnibus test K2, able to

detect deviations from normality due to either skewness or kurtosis:

K2 = f23 (G3)+ f24 (G4). (4)
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For a Gaussian PDF,
::::::
When

::::::
testing

::
a
:::::::::
Gaussian

:::::::::::
distribution,

:::::::::::
asymptotic

::::::
values

:::
for

::::
the

:::::
three

::::::
criteria

::
(f3(G3):,::::::::

f4(G4),::::
and

:::::
K2)

:::
are

::::::::::::
respectively

::::::::::::
f3(G3) = 0,

::::::::::::
f4(G4) = 0,

::::
and

::::::::
K2 = 2.

:::::
Using

::::::
finite

:::::::::
sampling

:::::
with

::::::::::
ensemble

:::::
size

::::::::
Ns > 20

::::::::::::::::
(Thode, 2002) ,

:::::::
f3(G3):and f4(G4)

both
:::::
could

:::
be

:::::
both

::::::::::
assumed

:::
to

:
follow a Gaussian law with a zero mean and a unity

variance. In this case,
:
K2 follows approximately a χ2 distribution with two degrees of

freedom. This property may be used to evaluate the null hypothesis H0: “the sample is
from a Gaussian PDF”. Using unilateral testing

:::::::::::
Confidence

::::::::
intervals

::
at

:::
95%

:::
are

:::::
then

:::::
given

::
by

:::::::::::::::::::::
f3(G3) ∈ [−1.96;1.96], K2 > 6.271 (for Ns = 100) indicates a reject of Gaussianity at

the
:::::::::::::::::::::
f4(G4) ∈ [−1.96;1.96],

::::
and

:::::::::::::::
K2 ∈ [0;5.991].

:::::::::
Because

:::
G3::::

and
::::
G4 :::

are
:::::::::::::
uncorrelated

:::
but

:::
not

:::::::::::::
independent,

::::
K2

:::::
does

::::
not

::::::
follow

:::
an

:::::
exact

::::
χ2

:::::::::::
distribution,

::::
and

:::::::::::
confidence

::::::::
interval

::
is

::::::
slightly

:::::::::
different.

::::::
Using

::
a

::::::::::
right-tailed

:::::::::
unilateral

:::::::
testing

::
at 95confidence level%

::
for

::::::::::
Ns = 100,

:::
the

::::::
critical

::::::
value

::
of

::::
K2

::
is

::::::
6.271

:::::::
instead

::
of

::::::
5.991.

2.2 Evaluation

The efficiency of the K2 test can be evaluated by measuring its probability of detection
(POD) for the hypothesis H0. For a sample known to be from a non-Gaussian PDF, the
POD gives the probability that the test accurately rejects H0. The best result is POD=1.

POD of K2 test is estimated from Nxp independent experiments. For each experiment,
K2 is computed from Ns elements sampled from a known distribution. Depending on the
K2 value, H0 is accepted or rejected. When the known distribution is non-Gaussian, POD
is given by the frequency of H0 rejections over the Nxp experiments.

The POD is estimated for three non-Gaussian distributions: uniform, log-normal, and
a Gaussian mixture. The Gaussian mixture is defined through its PDF as P (x) = w1P1(x)+
w2P2(x)+w3P3(x) with P1, P2, and P3, three Gaussian distributions with zero mean and
respectively 0.1, 0.05, 0.02 as chosen standard deviation. The chosen weights are given by
(w1,w2,w3) = (0.2,0.5,0.3). The representation of the shapes of these three distributions
is given in Fig. 1a, alongside the Gaussian distribution.

POD are estimated over Nxp = 105 experiments. For both tests, different ensemble sizes
Ns are tested (Ns= 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200). Results of this ideal
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case are shown in Fig. 1b. The log-normal distribution is the easiest one to discriminate
from the Gaussian distribution, yielding the highest POD that reach almost one as soon as
the ensemble size is above forty. For the two others, non-Gaussian distributions (uniform
and Gaussian-mixture) K2 test is only correctly discriminating from Gaussianity (with
POD> 0.8) when Ns > 70. For Ns = 90, which corresponds to the ensemble size for the
real dataset composed of AROME-France forecasts (see Sect. 3), POD values are over
0.9 for all three non-Gaussian distributions. In conclusion, the K2 test is able to correctly
discriminate NG for the ensemble size considered in this paper.

There are some
:
A
:::::::

review
:::

of
:

other well-established tests for univariate Gaussianity

:::::::::::
Gaussianity

::::
are

::::::::::
presented

:::
in

:::::::::::::::::::::
Bocquet et al. (2010) , such as the

::::::::
measure

:::
of

::::::::
entropy

::::::::::::::::
(kullback (1959) ,

:::::
used

::
in
::::::::::::

geophysics
::
by

:::::::::::::::::::
Pires et al. (2010) ),

:::
or

::::
the

:::::::::
univariate

:
Anderson–

Darling goodness-of-fit test (Anderson and Darling, 1954). The latter has been also tested
in the same framework and the performances proved to be very similar to the ones of the
K2 test. When comparing the results, obtained over the ensemble (Sect. 3), these two tests
also give very similar results. e.g. they indicate the same areas of NG over ≈ 90% of the
domain. But, measuring skewness and kurtosis may be more informative and may be of
interest for some assimilation schemes that account for skewness (Hodyss, 2012). Also,
describing the values of K2 has the advantage to prevent the results from depending on
the chosen confidence level.

3 Diagnosis of the non-Gaussianity of AROME forecast errors

3.1 An AROME-France ensemble for a high-precipitating case

AROME-France is an operational non-hydrostatic model covering France with a 2.5 km
horizontal resolution at the time of the experiments. Its lateral boundary conditions are given
by the global model ARPEGE2. Assimilation steps are done every three hours with a 3D-

2Action de Recherche Petite Échelle Grande Échelle (Pailleux et al., 2000).

10



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Var scheme and make use of a comprehensive set of observations such as conventional,
satellite or Doppler radar data (see Seity et al. (2011) for more details).

The simulation of background and analysis errors is achieved by using a Monte-Carlo
sampling, called an Ensemble Data Assimilation (EDA) in the context of NWP. A 90-
members EDA is first run for the global model (AEARP, Berre and Desroziers, 2010). Each
EDA member is based on a 4D-Var cycled assimilation which uses perturbed observations
and a perturbed background, in order to simulate the error evolution (Berre et al., 2006).
Observation perturbations are constructed as random draws of the specified observation
error covariance matrix, and background perturbations result from the forecast evolution of
previous analysis perturbations and from their inflation at the end of each forecast (Raynaud
et al., 2012). This global ensemble provides perturbed boundary conditions to an ensemble
of perturbed 3D-Vars for AROME-France, as described in Ménétrier et al. (2014). True
background errors are then approximated by the deviations of the perturbed backgrounds
from the ensemble mean. A few cycles (typically four) are necessary to reach a regime
where the spread of the ensemble is representative of the true error spread; these cycles
are discarded from the diagnostics presented below.

The case of interest is the 4 November 2011 between 00:00 and 06:00 UTC. A strong
Southerly convergent flow occurs at low levels over Southern France (Fig. 2). Warm and
moist air from the Mediterranean sea is advected over land, which triggers deep convection.
Those high intensity events are studied by the HyMeX research program (Ducrocq et al.,
2014). Associated precipitations are visible all along the Rhone valley, with local maxima
exceeding 25mmh−1. Also, associated with a low pressure area over the North-East
Atlantic (not shown), a cold active front extending from the bay of Biscay to the eastern
Britannic coast, is sweeping North-West of France with locally strong precipitations.

3.2 Vertical profiles of NG

The vertical profiles of quantities related to NG are shown in Fig. 3 for different variables,
namely zonal (U) and meridian (V ) winds, temperature (T ) and specific humidity (q). On
average, except near the surface, q is the variable that shows the largest deviation from

11



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Gaussianity, confirming results obtained at the global scale (Holm et al., 2002). From 850 to
350 hPa, q is indeed characterized with an increase of the deviation from Gaussianity. As
shown in Fig. 3b, this NG is partly explained by negative values of the skewness, highlighting
a right-tailed

:::::::::
left-tailed PDF of the background errors, meaning that many values are more

humid than the ensemble mean.
In the troposphere, the increase of K2 seems inversely proportional to

::
is

::::::::::
increasing

:::::
while

:
the q mean content

:
,
:
displayed in Fig. 3d,

:::
is

:::::::
largely

:::::::::::
decreasing. Values at higher

levels, where q is almost nonexistent, may however be taken with caution. Below 850 hPa,
K2 is peaking around 960 hPa. Above 850 hPa, the wind components and T remain close
to Gaussianity. Below however, all variables have significant deviation from Gaussianity,
especially T for which high values of K2 are found at ground level, making of it the less
Gaussian variable in the boundary layer.

3.3 Horizontal structures of NG

The horizontal
::::::
range,

:::::::
defined

:::
as

::::
the

::::::::::
difference

::::::::
between

::::
the

::::
95th

:::::
and

:::
the

::::
5th

:::::::::::
percentiles,

:::::
could

:::
be

:::::
used

:::
to

:::::::::
describe

:::::::
roughly

::::
the

::::::::::
horizontal

::::::
spatial

::::::::::
variability

:::
for

:::::
each

::::::::
vertical

:::::
level.

:::::::
Vertical

:::::::
profiles

:::
of

:::::::
ranges

:::
of

::::
K2,

::::::::
f3(G3),::::

and
::::::::
f4(G4) ::::

(not
::::::::
shown)

:::::
have,

:::
all

:::::::
three,

:::::
large

::::::::::
similarities

::::::::
between

::::::
each

::::::
other,

::::
and

::::
with

::::
the

::::::::
shapes

::
of

::::
K2

:::::::
profiles

::::::::::
displayed

::
in

::::
Fig.

::::
3a.

:
It
:::::::::
includes

::
in

::::::::::
particular

::::
two

::::::::
maxima

::
in

::::
the

:::::::::
boundary

::::::
layer

::::
and

::
in

:::::
high

::::::::::::
troposphere

:::
for

::
q

:::
and

::::::
larger

:::::::
values

::::::::
towards

::::
the

:::::::
surface

:::
for

::
T.

::::::::
Ranges

::::
are

:::::
much

::::::
larger

:::
for

::::
the

::::
four

:::::::::
variables

::::::::::::::
(approximately

::::
four

::::::
times

::::
as

::::::
large)

:::::
than

::::
the

:::::::::::
respective

::::::
mean

:::::::
values

::::::
given

:::
in

::::
Fig.

:::
3,

::::::::
implying

:
a
:::::
large

:::::::
spatial

:::::::::
variability

:::
for

:::
the

::::::
three

:::
NG

::::::::::::
diagnostics.

:::
An

::::::::
example

::
of

::::
the

:::::::::
horizontal

structures of NG are shown
::
is

:::::
given

:
for q in

:::
the

:::::::::
boundary

:::::
layer

:::
by

:
Fig. 4. They have large

similarities with the meteorological coherent structures, as the Southerly convergent flow
over South of France and the active cold front aloft North-West of France are associated
with high values of K2.

Supporting the conclusion drawn from Fig. 3, transformed skewness f3(G3) is mainly
negative (corresponding to right-tailed

::::::::
left-tailed

::
distributions) over the domain and
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has a larger contribution than transformed kurtosis f4(G4) in large K2 values. Over
Mediterranean sea, the skewness represents on average 70% of K2.

It may be interesting to compare NG with the variance of the ensemble, as K2 is
defined from standard third and fourth standardized moment avoiding any scale effects. As
displayed in Fig. 5, the variance does not coincide with overall NG, even if it happens that
Gaussian areas may coincide with regions of low variance. However, the area diagnosed
with the highest values of variance, located South of the Balearic islands, is associated with
low values of K2.

NG of the surface pressure is not shown in this study since, according to our diagnostics,
it is a mainly Gaussian variable (averaged K2 around 2.7). High values of K2 appears
around the cold front and the convergence area but they are very localized and of smaller
amplitude compared to the other model variables.

3.4 Time evolution of non-Gaussianity

For each member of the ensemble, 18 h-forecasts have been run from the analyses
performed at 00:00 UTC, the 04 November 2011. This allows to diagnose NG every 6 h
during the first 18 h of integration. The corresponding vertical profiles are shown in Fig. 6
for the two most non-Gaussian variables according to Sect. 3.2: q and T .

In order to get insights into the processes that may be involved in NG development, the
diagnostics have been separately computed for cloudy and for clear sky areas, following
a similar approach to that of Montmerle and Berre (2010) and Michel et al. (2011), in which
precipitating masks have been used. Grid points over the domain are separated in two bins:
“cloudy” or “clear sky” points. “Cloudy” bin defines grid points whose vertically integrated
simulated cloud water exceeds 0.1g kg−1 for a majority of ensemble members (i.e. more
than 45 members for the 90-members ensemble). The other points are classified as “clear
sky”. The percentage of “clear sky” points being three to five times larger (not shown) than
the detected “cloudy points”, similarities between “clear sky” profiles, and profiles averaged
over the whole domain (as plotted in Fig. 3) are apparent.
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During the 6 first hours of forecasts, NG quickly increases. For q, all tropospheric model
levels are affected. For T , starting from a fairly Gaussian profile, increase of NG is mainly
affecting the boundary layer and higher levels remain close to Gaussianity. During the
following 12 h (from 6 to 18 h-forecast), changes of NG are smaller for both variables.

::::::
Those

::::::
results

::::::::
support

::::
that

::::
NG

:::
in

::::
the

:::::::::::
background

:::::
may

:::::::
rather

:::::
come

::::::
from

::::::::::
non-linear

::::::::::
processes

::::::
acting

::
on

:::::::
nearly

:::::::::
Gaussian

:::::
pdfs

:::::::
instead

::
of

::::::
linear

::::::::::
processes

::::::
acting

::::::::::::::
non-Gaussian

:::::
pdfs.

It is interesting to notice that different behaviors
:::::::::::
behaviours can be found for diagnostics

computed over “cloudy” and “clear sky” areas. For q, NG is mainly found in “cloudy” areas,
where K2 quickly reaches values above 8, with two peaks around 900 and 700 hPa. The
altitude of the lower peak rises with forecast terms

::::::
ranges, while the amplitude of the higher

one increases. According to Fig. 6c that displays the time evolution of the mean cloud
contents, this evolution of NG in cloudy areas is likely due to nonlinear processes such
as the vertical displacement error of cloud base and top within the ensemble and possibly
the diabatic processes. In surface layers, K2 for T quickly increases especially for clear
air areas where turbulent and radiative processes occur. After 12 h, NG is more spread
vertically within clouds, probably because of diabatic processes.

:::
For

:::
T

::::
and

:::
q,

::::::::
diabatic

:::::::::
processes

::::
are

::::::
good

:::::::::::
candidates

::
to

:::::::::
produce

::::
NG

:::::::::
because

::
of

::::::::
intrinsic

:::::::::::
thresholds

::
in

::::::
cloud

:::::::
physics

:::::
(e.g.

::::::::
moisture

:::::::::::
saturation)

::::
and

:::::::::
non-linear

::::::::::
processes

::::
like

::::::::::
turbulence

:::
on

::::::::::
cloud-top.

For the wind components, behaviors
::::::::::
behaviours

:
close to T have been found, but with

smaller amplitude (not shown): NG increases mainly in the boundary layer in “clear sky”
areas and may be due to nonlinear turbulent processes.

4 Non-Gaussianity in the data assimilation process

Based on comparisons of NG diagnostics between successive background and analysis
errors, this section focuses on the evolution of NG through cycled 3D-Var assimilations.
Analysis errors will be treated for both model and control variables. The link between
assimilated observations and NG reduction will be shown.

14



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

4.1 Overview

An overview of the NG evolution during the analysis process is given in Fig. 7 that
shows averaged K2 profiles for the analysis and the background errors computed for
two consecutive assimilation/3 h-forecast steps. Comparable results are found for the two
cycles, confirming the increase of NG during the model integration, and highlighting the
substantial reduction of NG during the assimilation process, especially for levels where NG
grows quickly. Values of K2 are indeed brought back to much more Gaussian values, even
in the lower levels for both q and T , and in higher troposphere for q.

Geographical variations of NG are illustrated in Fig. 8. As in Fig. 7, the NG of the
background and of the following 3 h-forecast are similar. The largest decreases of NG
between background and analysis error match areas with a large analysis increment, in
particular where radar data are assimilated (Fig. 8d).

:::
The

:::::::::
analysis

::::::::::
increment

::::::
being

::
a

:::::
linear

::::::::
function

::
of

::::
the

::::::::::
innovation

::::::
vector

::
in

::::::
model

:::::::
space

::::::::::::
(observation

::::::
minus

::::::::::::
background),

:::
its

:::::::::::
Gaussianity

::
is

:::::::
insured

:::
by

:
a
::::::
rough

:::::::::
selection

:::::::
applied

:::::::::::
beforehand

::
to

:::
the

:::::::::::::
observations,

::::::::
allowing

::
to

:::::::
remove

::::::::
outliers

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. for radar data, Caumont et al., 2010; Wattrelot et al., 2014) .

:
Some

NG areas remain though, especially in areas where the background is less constrained by
observations (e.g. above Spain and above the sea). However, most areas where NG has
been reduced thanks to the data assimilation process recover their NG nature after 3 h of
model integration.

4.2 Non-Gaussianity in control space

Previous results are documenting the NG of four model prognostic variables: U , V , T and
q. As it is detailed in Brousseau et al. (2011), the assimilation scheme in AROME-France is
based on a 3D-Var whose control variables are the vorticity ξ

:
ζ, the unbalanced divergence

ηu, the unbalanced temperature and surface pressure (T,Ps)u, and the unbalanced
specific humidity qu. These control variables are linked to the model variables following
the multivariate formalism of Berre (2000), which is based on the decomposition of the
background error covariance matrix in spatial operators and balance transforms. Since the
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minimization is performed in the control space, NG diagnostics have also been computed
for these control variables.

4.2.1 Overview

Vertical profiles of NG for control variables are presented in Fig. 9. Unlike the zonal and
meridian winds, ξ

::
ζ and ηu are strongly non-Gaussian over the whole troposphere, whereas

Tu and qu display much more Gaussian profiles.
Negative values of f3(G3) below 800 hPa for ηu (Fig. 9b) denote a larger spread of the

distribution below the mean, probably due to the occurrence of low level convergence. At
mid-troposphere, error distributions of all four variables are near symmetric. Except for qu,
distributions in tropospheric levels remain symmetric and the K2 index is mainly explained
by the kurtosis (Fig. 9c).

Those results agree with one of the conclusion of Ménétrier et al. (2015). These authors
describe and algorithm to find the optimal truncation dedicated to sample covariances
filtering. This algorithm has two variants. The first one assumes Gaussian PDF for the
background perturbations while the second one does not. Their study indicate that, at
convective scale, the Gaussian variant is accurate for Tu and qu, but the more general
non-Gaussian variant has to be used for ξ

:
ζ
:
and ηu, which are significantly non-Gaussian

variables in agreement with our study.
::
To

:::
go

::::::
further

:::
on

::::
this

:::::
topic,

::::
NG

:::::::::::
diagnostics

:::::
have

:::::
been

:::::::::
computed

:::
for

::::
the

:::::::
spatial

:::::::::
first-order

::::::::::
derivative

::
of

:::
T .

::::::
While

::
T

::
is
::
a
:::::::
nearly

:::::::::
Gaussian

::::::::
variable

::::
(see

::::::::
Fig.3a),

::
its

:::::::
spatial

::::::::::
derivation

::::::
largely

::::::::::
increases

::::
the

:::
NG

:::::
(not

:::::::
shown),

:::
up

:::
to

:::
the

::::::
order

::
of

::::::::::
magnitude

:::::
found

:::
in

::::::
Fig.9a

::::
and

::::::
Fig.10

:::
for

::
ζ

::::
and

::
η.

:::::
This

::::::::
supports

::::
the

:::::::::
attribution

:::
to

:::::::::
derivation

::
for

:::
at

:::::
least

:
a
:::::
part

::
of

:::
the

::::
NG

:::::::::
displayed

:::
for

::::
the

::::::::::
dynamical

:::::::
control

:::::::::
variables.

:

While very similar, the horizontal structures of K2 for ξ
:
ζ
:

and ηu are noisier compared
to the other variables, with very small scale and intense signals (not shown). Maps mostly
follow the land–sea mask, with high values of K2 over sea, and low values over land. Aloft,
NG follows meteorological active structures (cold front and Cevenol event).

:::
As

:::
for

:::::
Fig.7,

:::::::::::
diagnostics

:::
of

:::
NG

:::
for

::::::::
vorticity

:
ζ
::::
and

:::::
total

:::::::::::
divergence

:
η
:::::
have

:::::
been

::::::::::
computed

::::::
before

::::
and

:::::
after

:::
the

::::::::::::
assimilation

::::
step

:::::
(not

::::::::
shown).

:::::
While

::::
NG

:::
of

:::::
levels

:::::::
higher

:::::
than

:::::::
900hPa
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:::
are

:::::::
almost

:::::::::::
unchanged,

::::
the

:::::::::
averaged

:::
K2

:::
of

:
ζ
:::::
and

:
η
::
is
::::::::::::::
systematically

::::::
lower

::
for

::::
the

::::::::
analysis

::::
than

::::
the

:::::::::::
background

::::::
state

::
in

::::
the

:::::::::
boundary

::::::
layer.

:::::::::
However

:::
the

::::::
order

::
of

:::::::::::
magnitude

::
of

::::
the

:::::::::
decrease

::
is

:::::
much

::::::::
smaller

::::
than

:::
for

::
T

::::
and

:::
q,

::::
and

:::
the

::::::::::
dynamical

:::::::::
variables

::
ζ

::::
and

:
η
:::::::
remain

:::
by

::
far

::::::
much

:::::
more

::::::::::::::
non-Gaussian.

:

4.2.2 Non-Gaussianity in the multivariate transform

To go further in the discussion on Gaussianity of the control variables, this section is
comparing the K2 values for total and unbalanced variables.

According to Fig. 10, the debalancing process is not really affecting the NG for the
divergence, except at lower levels where K2 is slightly decreasing while keeping large
values. K2 values remain two to three times larger for the divergence (total or unbalanced)
than for T and q from the surface to the mid-troposphere. On the contrary, NG decreases
significantly for T and q during the debalancing process. Changes mainly appear in
boundary layer for T . For q, changes appear for every model levels especially in the
boundary layer and under

:::::
below

:
the tropopause. From surface to 750 hPa, NG of qu is

equal or smaller than the NG of Tu.

5 Conclusions

It is suggested to use theK2 value from the D’Agostino test for diagnosing non-Gaussianity.
This diagnostic is computed from the univariate sample skewness and kurtosis from an
ensemble. This may allow to describe deviations from the Gaussian hypothesis for AROME-
France background and analysis errors, as illustrated here on a case study characterized
by a Cevenol event and an active cold front with a 90-members ensemble.

According to our diagnostic, among model variables, q has the largest deviation from
Gaussianity, with a maximum of amplitude near the tropopause and in the boundary layer.
Deviation from Gaussianity for U , V , and T only appears in the boundary layer. With
an heterogeneous diagnostic, NG has been separately diagnosed for “cloudy” points and
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“clear sky” points. For q, cloud covering leads to higher NG, especially at the bottom and
at the top of the cloud layer. In “clear sky” situations, surface processes are expected to
enlarge K2 for T , in a larger manner than for “cloudy” points. Studying time evolution
through forecast terms

:::::::
ranges, NG is mainly increasing during the 6 first hours. The 3D-

Var assimilation appears to efficiently reduce the growing NG of the forecast, especially in
well-observed areas. Finally, among control variables of the assimilation, ξ

:
ζ
:
and ηu deviate

from Gaussianity in a larger manner than Tu and qu, which are much more Gaussian than
their balanced counterparts.

Despite this work is attributing non-Gaussian behaviors
:::::::::::
behaviours

:
to well-known

nonlinear processes, such as the microphysical or boundary layer processes, it is not
precisely addressing the cause of NG. However two important questions on variational
data assimilation are highlighted. First, regarding control variables of the assimilation,
according to our diagnostic, the most non-Gaussian variables are the vorticity and the
divergence. Yet, main efforts have been put on “Gaussianisation” of specific humidity (e.g.
Holm et al., 2002) but the discussion may also be focused on vorticity and divergence,
either with a “Gaussianisation” of those variables or with a discussion on the possibility to
use other dynamical variables. Second, with the cloud mask approach, cloud layers have
been associated with high values of NG.

This study uses an ensemble at convective scale that does not include model error
neither

:::::
either in the analysis nor

::
or

:
in the forecast steps. It is possible that conclusions would

be different if stochastic noise drawn explicitly from a Gaussian is added to the model states
during the forecasts, as stated by Lawson and Hansen (2004). Also, this study is actually
a part of a work focused on the correction of displacement errors. Since displacement errors
are identified to cause NG (Lawson and Hansen, 2005), diagnostics of NG may be used to
evaluate improvements in the current amplitude error correction step (3D-Var) brought by
a displacement error correction (Ravela et al., 2007). This will be examined in a future work.
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Figure 1. (a) Three non-Gaussian distributions on which POD have been estimated: uniform
distribution, log-normal distribution, and Gaussian mixture (see text for description). (b) Probability
of detection (POD) for K2 test. POD are computed over Nxp = 105 one-dimensional experiments for
different sample sizes Ns.
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(a) (b)

Figure 2. (a) Specific humidity (q, kg kg−1) and (b) surface cumulative precipitation (mm h−1)
overlaid with winds vector, at model level 52 (≈ 920 hPa). Maps are given for one member of
AROME-France 3 h-forecasts ensemble, valid at 03:00 UTC the 4 November 2011.
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Figure 3. Vertical profiles of (a) K2, (b) transformed skewness f3(G3), (c) transformed kurtosis
f4(G4), and (d) q (kg kg−1) for one member of the ensemble. For each level, values are averaged
over the horizontal domain. Profiles are computed from the 90-members ensemble of AROME-
France 3 h-forecasts valid at 03:00 UTC the 4 November 2011. Profiles in (a), (b), and (c) are given
for four model variables: U , V , T , and q.
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Figure 4. (a) K2, (b) transformed skewness f3(G3), and (c) transformed kurtosis f4(G4), for q
at model level 52 (≈ 920 hPa), computed from the 90-members ensemble of AROME-France 3 h-
forecasts valid at 03:00 UTC the 4 November 2011.
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Figure 5. Background-error standard deviations of q (g kg−1) for the model AROME-France, at
model level 52 (≈ 920 hPa). Standard deviations are estimated from the 90-members ensemble of
3 h-forecasts, valid at 03:00 UTC the 4 November 2011.
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Figure 6. Time evolution (from 00:00 to 18:00 UTC, every 6 h) of the vertical profiles of K2 for (a) q
and (b) T computed for (thick

:::
and

:::
hot

:::::::
colours) “cloudy” and (thin

:::
and

::::
cold

:::::::
colours) “clear sky” points

(see text). (c) Vertical profiles of averaged liquid cloud ql ::::
(solid

::::
line)

:
and ice cloud qi :::::::

(dashed
::::
line)

contents (g kg−1).
:::
The

:::::
cloud

::::::::
contents

:::
are

:::::::::
averaged

::::
over

:::
the

:::::::
domain

::::
and

::::
over

:::::
times

:::::
from

:::::
06:00

::
to

:::::
18:00

::::
UTC,

::::::
every

::
6

:
h.
:

Initial cloud water profile is null because the hydrometeors are not cycled.
Consequently the initial profiles of K2 are common for the two regions

:::
bins. Profiles have been

computed using forecasts from
::::::::
initialized

:
the 4 November 2011 00:00 UTC.
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Figure 7. Vertical profiles of K2 on background and analysis errors for (a) q and (b) T , for two
successive cycled assimilation/3 h-forecast steps starting at 00:00 UTC the 4 November 2011.
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Figure 8. K2 for q at level 52 (≈ 920 hPa) for (a) the background, (b) the analysis, and (c) the
following 3 h-forecast starting at 03:00 UTC the 4 November 2011. (d) Corresponding analysis
increment (kg kg−1) with positions of radar precipitation observations assimilated.
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Figure 9. Vertical profiles of (a) K2, (b) transformed skewness f3(G3), and (c) transformed
kurtosis f4(G4). For each level, values are averaged over the horizontal domain. Profiles are
computed from the 90-members ensemble of AROME-France 3 h-forecasts valid at 03:00 UTC the
4 November 2011. Profiles in (a), (b), and (c) are given for four control variables: ξ

:
ζ, ηu, Tu, and qu.
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Figure 10. Comparison of K2 vertical profiles of model variables (thick lines) and control variables
(thin lines). Profiles are computed from 3 h-forecasts valid at 03:00 UTC the 4 November 2011.
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