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Abstract

Marine coastal processes are highly variable over different space and time scales. In this
paper we analyse the intermittency properties of particle size distribution (PSD) recorded
every second using a LISST instrument (Laser In-Situ Scattering and Transmissometry).
The particle concentrations have been recorded over 32 size classes from 2.5 to 500 pm,
at 1 Hz resolution. Such information is used to estimate at each time step the hyperbolic
slope of the particle size distribution, and to consider its dynamics. Shannon entropy, as an
indicator of the randomness, is estimated at each time step and its dynamics is analysed.
Furthermore, particles are separated into four classes according to their size, and the
intermittent properties of these classes are considered. The empirical mode decomposition
(EMD) is used, associated with arbitrary order Hilbert spectral analysis (AHSA), in order to
retrieve scaling multi-fractal moment functions, for scales from 10 s to 8 min. The intermittent
properties of two other indicators of particle concentration are also considered on the
same range of scales: the total volume concentration C\gi0tai @nd the particulate beam
attenuation coefficient ¢,(670). Both show quite similar intermittent dynamics and are
characterized by the same exponents. Globally we find here negative Hurst exponents
(meaning the small scales show larger fluctuation than large scales) for each time series
considered, and nonlinear moment functions.

1 Introduction

Ocean data fields show a high variability over many different time and space scales. Such
variability is often associated with turbulence, and multi-scaling properties of oceanic fields
have been reported and studied in many previous studies: sea state (Kerman, [1993);
phytoplankton concentration (Seuront et al., (19964, ol [1999; [Lovejoy et al., 2001a); rainfall
and cloud radiance (Tessier et al., |1993; [Lovejoy and Schertzer, 2006); satellite images
of ocean colour, chlorophyll ¢ and sea surface temperature (Lovejoy et al., |2001bj; Nieves
et al., 2007;|Pottier et al.,|2008]; Turiel et al., 2009;|Montera et al.,|2011|;|Renosh et al.,|2015).

2

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



20

25

Here we focus on coastal waters and consider particles transported by oceanic currents in
this highly energetic medium (Svendsen, [1987]; |Schmitt et al., 2009). The solid phases
in the environment have been described by hyperbolic particle size distributions (PSD) of
clay aggregates in water (Amal et al., [1990), biological aggregate and marine snow (Jiang
and Logan, |[1991};|Logan and Wilkinson, [1991), aerosol agglomerates (Wu and Friedlander,
1993) and flocs produced in the water and waste water discharge (Li and Ganczarczyk,
1989).

PSD has major influence in biological, physical and chemical processes in the aquatic
environment (Boss et al., 2001} [Twardowski et al., |2001; |Reynolds et al.l |2010). For
instance, PSD is strongly involved in the trophic interaction within the plankton community
and in the chemical/geological aspects. The shape of the PSD is also used in computing
the sinking rate of the sediment fluxes. The study carried out by |Renosh et al.| (2014) using
the same in situ data set as the present study showed that the dynamics of the PSD is
controlled by many oceanographic parameters like tidal currents, waves, and turbulence.
The present study is a continuation of this work.

All environmental and geophysical data sets are nonlinear and non-stationary at many
different scales of time and space. Intermittency is a property that occurs in fully developed
turbulence ranging between the large scale injection and the small scale dissipation
(Frisch| 11995; |Popel, [2000). The main objective of this study is to analyse the intermittency
properties of particle size distribution (PSD). In this study we mainly focus on the dynamics
of the PSD along with the velocity data. For that we decomposed the PSD into different size
classes and also derived the Shannon entropy from the probability density function (PDF)
of the PSD.

Empirical Mode of Decomposition (EMD) together with Hilbert spectral analysis (HSA) is
a well-known time-frequency analysis method for non-stationary and nonlinear time series
(Huang et al., [1998| [1999). Such analysis is done in two parts: the EMD is an algorithm
to decompose a time series into a sum of mono-chromatic modes, and HSA extends
for each mode into characteristic amplitude and frequency. Hence this method is a time-
amplitude-frequency analysis, which is recalled in Appendices A and B. This approach can
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be generalised to extract intermittency exponents (Huang et al., [2008,[2011). AHSA scaling
exponent function £(q) is related with the classical structure function scaling exponent ((q)
by £(q) = ((¢) + 1, where q is the statistical moment. This is presented in Appendix C.

The first part of the paper presents the study area and in-situ data, which contains the
separation of different size classes and the hyperbolic shape of the PSD. Intermittency
analysis using the EMD-AHSA method (presented in the appendices) are then provided in
the next section.

2 In situ data

The measurements were conducted above (50 cm) from the bottom of coastal waters of the
eastern English Channel at a fixed station (50 45.676° N, 01 35.117° E) from the 25-28 June
2012 (Fig. 1).

We consider here simultaneous measurements of velocity and particle concentrations.
The in-situ sampling of Laser In-Situ Scattering and Transmissometry (LISST 100X type C)
has been carried out at 1.0 Hz. The main part of the instrument is a collimated laser diode
and a specially constructed annular ring detector. The primary information collected by the
LISST is the scattering of the laser at 32 angles, which are converted into size distribution
using an inverting method. The size distribution is presented as volume concentration with
units of micro-litres per litre (uL L~1). The LISST measures the volume concentration Chol,i
of particles having diameters ranging from 2.5 to 500 um in 32 size classes in logarithmic
scale (Agrawal and Pottsmithl, 2000). Because of instability in the smallest and largest
size classes, the data recorded in the inner and outer rings are excluded from further
analysis (Traykovski et al., [1999; [Jouon et al., [2008; Neukermans et al., 2012). These
instabilities observed in the smaller size classes have also been related to effects of stray
light (Reynolds et al., [2010). The LISST also records the beam attenuation (¢) at 670 nm
(£0.1nm) over a 5cm path length with an acceptance angle of 0.0135°. The particulate
attenuation coefficient ¢, has been derived from c after calibration with MilliQ water before
and after the field campaign, using the assumption that chromophoric dissolved organic
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matter (CDOM) does not absorb light at 670 nm. ¢,(670) is an important parameter which
is directly linked to the suspended particulate matter (SPM) of the water body (Boss et al.,
2009} INeukermans et al., [2012). Simultaneously, velocity time series are measured using
a Nortek Vector ADV current meter fixed on the same platform along with the LISST at 0.5 m
above the sea bottom. The ADV measured the North, East and Up components of velocity
with an accuracy of 4-0.5%.

2.1 Separation into size classes

The volume concentration distributed of a particle size class can also be expressed as the
concentration Cye (o) per unit volume per unit bin width (Jouon et al.,|2008):

Cual(0) = ] (1)
VO( ) O'max(z)_o'min(z)

where o is the median diameter of the particle size class i, omax(i) and omin(i) are

respectively the maximum and minimum particle size of the class i. This resulting volumetric

PSD is expressed in pL L~ um~1. The total volume concentration of the PSD (Cyol.total) has

been derived at each time step:

31
Cvol—total(t) = Z Cvol,i(t)- (2)
1=6

This quantity gives the total volume of the particles in L L=1. For the present study we
consider 4 different size classes, using the following classification: Silt/Clay (o < 30pum),
Fine (30 < o < 105um), Coarse/Micro (105 < o < 300um) and Macro flocs/particles (o >
300um) (Lefebvre et al., 2012; Renosh et al., 2014). Figure 2 shows the time series of
normalized volume concentrations (VC) of different size classes of PSD. All 4 size classes
are showing large temporal fluctuations in their magnitude. Their statistical and dynamical
properties are considered below.
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2.2 PSD slope (&)

The particle size distribution in the ocean, which describes the particle concentration as
a function of particle size/number, typically shows a rapid decrease in concentration with
increasing size from a sub-micrometer range to hundreds of micrometers. This feature is
common to all the suspended particles and also for plankton micro-organisms (Sheldon
et al., [1972; McCave, [1983;; |Stramski and Kiefer, |1991}; Jackson et al.,[1997). The number
of particles for a given size o is estimated by a normalisation by their volume (Jouon et al.,
2008). We obtain the number density n(c), which is also the product of the probability
density function of the size, p(c), times N, the total number of particles:

CvoI(U)

n(c) = Np(o) = 3r(0/27

3)
The PSD of this density number classically follows a power law distribution for aquatic
particles in suspension (Sheldon et al., [1972; Kitchen et al., [1982; |Jonaszz, [1983; Boss

et al, 2001}; [Twardowski et al., 2001} |Loisel et al., 2006} |Reynolds et al., |2010}; [Renosh
et al.| [2014):

n(o) ~ Ko~%, (4)

where K is a constant and £ > 0 is the PSD hyperbolic slope. Since the LISST provides
size class information at each time step, the power-law distribution can be fitted at each
time step, providing the exponent as a time series £(t). The £ value provides information on
the relative concentration of small and large particles: the steeper the slope (the greater &),
the more small particles relative to large particles are present in the water (and vice versa).
A small portion of 3000 samples of £ is shown in Fig. 3a: large temporal fluctuations in its
magnitude are visible. When considering all size classes in all the time steps, a hyperbolic
PDF is also obtained, represented in Fig. 3b with a slope value of £ = 2.9 +0.16.

The study carried out by Renosh et al. (2014) considered the dynamics of the £(t) in
relation with different hydrodynamic quantities like waves, tidal currents and turbulence.
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It showed that turbulence has a major role in the re-suspension of the particles in the
aquatic environment. It also showed that along-shore (U) and cross-shore (V') components
of velocity have power spectra showing different scaling regimes in low frequency and high
frequency regions (Fig. 4). At low frequency scale there is a typical Kolmogorov —5/3 slope
and at high frequency a scaling regime with a 0.6 slope. For high frequencies there is
a hump like structure, which can be identified as the high energy associated with surf zone
wave breaking (Schmitt et al., 2009).

The study of |Renosh et al.| (2014) showed that the low frequency variability of £(¢) and
¢p(670) is controlled by turbulence and that the high frequency part is related to dynamical
processes impacted by the sea bottom. The present study is a continuation of |Renosh
et al.| (2014); it considers the high frequency scaling regimes and studies the intermittency
of particle concentration in this range of scales.

3 Intermittent dynamics
3.1 Velocity intermittency

We first consider here the scaling and intermittency properties of the velocity. Figure 4a
shows the Fourier and Hilbert (HSA) estimation of the U and V' components of the velocity.
Scaling range are found from 20 to 500s with a slope of about —0.6. In this range of
scales the AHSA method has been applied to characterise intermittency in a multi-fractal
framework (see Appendix C for the AHSA method). First a negative Hurst exponent is found:
Hy =—0.304+0.02 and Hy = —0.2040.02. Such negative sign for H values indicates that
small scales show larger fluctuations than the larger scales in a scaling way (Lovejoy and
Schertzer, 2012). Both curves become quite different for larger moments: the U curve is
more nonlinear, associated to larger intermittency (Fig. 4b).
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3.2 Dynamics of the entropy of particle size

The LISST system records at each time step a discretized PDF of the particle size. Hence
it is possible to estimate at all time step the entropy of the particle size distribution as:

ZP )log P;(t (5)

where P;(t) =n(o;)(t)/N(t). The Shannon Entropy S(¢) is estimated at each time step;
with values centered around S = 1.59+0.03. Figure 5a shows a sample of S(t) and Fig. 5b
shows its PDF, which is centered around S with values ranging mainly between 1.5 and 1.7.
As a stochastic process, in order to consider the dynamics of S(t), we plot in Fig. 5c the
autocorrelation of S(¢). A memory time of the entropy series can be estimated as:

To
= / Cs(t)dt, (6)
0

where C is the autocorrelation of the entropy S and Ty is the first time for which Cs(t) = 0;
we find here Ty = 7826s and we compute 7' = 2176s = 36.26 min. This characteristic time
scale could be related to the transition scale (Fig. 4a) between two scaling regimes of low
frequency injection scale and high frequency wave breaking scale.

The entropy of particle sizes characterises the “disorder” of the size distribution, its
information content. We showed here that the dynamics of such quantity can be considered
by using LISST data. A very interesting feature of LISST measurements is hence to be able
to characterise nonlinear classical indicators such as the Shannon entropy, in a dynamical
way.

3.3 Intermittent dynamics of different size classes

As explained above, the PSD is decomposed into 4 different size classes of particles
(Silt/Clay, Fine particles, Coarse/Micro particles and Macro particles/flocs). The power
8
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spectra of these 4 size classes have been derived using Fourier as well as Hilbert transform
(Fig. 6) for understanding the turbulent characteristics. Similar spectra are found from
Fourier and Hilbert transform and there is a good power-law behaviour observed in the
high frequency region (0.09-0.002 Hz).

This scale range has been taken for the extraction of the scaling exponents. The scaling
exponent function £(¢) has been extracted for all size classes using arbitrary order Hilbert
spectral analysis (Appendix C). The exponent ((¢q) =&(¢) —1 is computed. Nonlinear
functions are visible for each size classes (Fig. 7). The Hurst number H = (1) =&(1) — 1
is estimated for each classes: we find H = —0.17+0.01; —0.194+0.01; —0.38+0.02;
—0.26 +0.02 for increasing size classes. The high H values are observed in the larger size
classes and low H values are observed in lower size classes. This parameter determines
the rate at which mean fluctuations grow (H > 0) or decrease (H < 0) with the scale. We
found negative H values in the present study. Negative H values have not been found in
many studies. Recently in Lovejoy and Schertzer| (2012} [2013) it was argued that Haar
wavelet analysis can be used to extract the H values with any sign for the exponent
(—1 < H < 1). Such sign indicates that small scales show larger fluctuation than large
scales. If ((q) is linear, the statistical behaviour is mono-scaling; if {(¢) is nonlinear and
concave/convex, the behaviour is defined as multi-scaling, corresponding to a multi-fractal
process. The concavity of this function is a characteristic of the intermittency: the more
concave is the curve, the more intermittent is the process (Frisch|, (1995; |Schertzer et al.,
1997} |Vulpiani and Livi, [2003;; |Lovejoy and Schertzer, 2012). The slight curvature which is
found here for all size classes (Fig. 7) is hence a signature of intermittency in the particle
dynamics.

3.4 Intermittent concentration dynamics

We perform here an analysis of intermittency of concentration dynamics considering two
indicators of this particle concentration: ¢,(670) and total volume concentration (Cyol-total)-
At first order, ¢,(670) is driven by the suspended particulate matter (SPM). We observe
here a large variability in the ¢,(670) data (Fig. 8a). The total volume concentration of

9

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



20

25

the PSD has been derived for each time step using Eq. (2). The derived Cgl-total ShOWS
large fluctuation in its magnitude (Fig. 8b). The turbulent power spectra derived for these
series show 2 scaling regimes similar to the size classes (Fig. 8c and d). A good scaling
between 0.002-0.09 Hz with a /5 value of 0.8 for ¢,(670) and of 0.9 for Cygl.total for the
power spectra F(f) of the form E(f)~ f~” is observed (Fig. 8c and d). Hence the
region between 0.002 and 0.09 Hz (10s to 8 min) has been identified for the multi-scaling
analysis. The structure function scaling moment function derived for this series shows
a nonlinearity and concavity in its shape (Fig. 8e). The H value derived for the Cygltotal
is slightly negative; 7 = —0.08 £ 0.01. The scaling moment function of the ¢,(670) showed
a nonlinearity in its behaviour showing its intermittent characteristics (Fig. 8e). We find here
H = —0.06+0.01 which is quite similar to C\-tota1- Globally, for power spectra as well as for
their intermittency properties, both proxies of SPM show similar scaling properties. These
two different indicators of particle concentrations show quite similar dynamics and statistical
intermittent properties.

For comparison purpose, the Haar wavelet structure function method, which can also be
used for negative H values (Lovejoy and Schertzer|, 2012, [2013) has also been applied
to the time series. First order Haar structure function has been selected for the Hurst
number estimation. The same scaling region as for AHSA has been chosen for this analysis.
Negative Hurst exponents for all parameters have been found, with values similar to those
from the AHSA method. In some cases, there are some slight differences (Table 1).

An interesting point that can be noticed for these time series is that none of the scaling
moment function extracted through AHSA method for various parameters showed ((0) = 0.
This is due to the fact that a large number of AX values are equal to 0, where X is the time
series: ¢(0) = 0 only if there are no zeros in the time series. When H < 0 such situation is
more likely than when H > 0, because the series is noisier.

10
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4 Conclusions

This work analysed the intermittency and scaling properties of particles using the AHSA
method. The intermittent transport of particles in complex flows, like in coastal waters, is
very important for the study of partition dynamics, erosion processes, ecosystem modelling,
sediment transport and turbidity dynamics. Suspended particle dynamics in turbulent flows
are complex; some studies showed preferential concentration (Eaton and Fessler, 1994
Squires and Eaton, |1991) and some other studies showed multifractal repartition according
to the Stokes number (Bec, 2005; Yoshimoto and Goto, [2007). We thus expect here also,
in the natural environment to find intermittent particle dynamics.

This work has analysed the intermittency and scaling properties of the PSD using
different aspects. Time series of normalized volume concentration of different size classes
of PSD and Shannon entropy have been derived from number density of PSD. Here we
showed the intermittency of particles for different size classes. The ¢,(670), a proxy of the
suspended sediment concentration, and the total volume concentration (Cyol-total), Showed
an intermittent and multiscaling properties in their dynamics.

Turbulent scaling of these parameters has been derived through both Fourier power
spectra and spectra derived through HSA. The scaling moment function derived for Cygl-total
and ¢, (670) show similar nonlinear curve stressing the intermittency in their dynamics. The
scaling moment functions derived for each size class of the particle are also nonlinear. The
curvature of the spectrum for various size class shows the intermittency of the particles
dynamics in different sizes.

We may note also that the Hurst exponents derived for the velocity components and the
particle concentrations are negative. This negative sign indicates that small scales show
larger fluctuations than large scales. We have here no theoretical interpretation to propose
to explain these values, which could be related to the particular statistical characteristics of
a bottom boundary layer flow.

This multi-scaling analysis has been tested only in the bottom of the highly dynamic
coastal waters of the Eastern English channel. Such analysis is an illustration of the
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potential provided by LISST data, with many particle size classes recorded at each time
steps. It may be applied to other time series in the open ocean, coastal waters and also fresh
water situations, in order to provide comparison and help to look for universal properties.

Appendix A: Empirical Mode of Decomposition (EMD)

Hilbert Spectral Analysis (HSA) and Empirical Mode of Decomposition (EMD) have been
introduced by Norden Huang and collaborators in the end of the 1990s (Huang et al.,
1998) to locally extract amplitude and frequency information in a time series. It was mainly
introduced for nonlinear and non-stationary time series. The first step of this approach is
EMD. The objective of the EMD method is to decompose a signal into a series of modes.
Each component is defined as an intrinsic mode function (IMF) satisfying the following
conditions: (1) In the whole data set, the number of extrema and the number of zero
crossings must either equal or differ at most by one. (2) The mean value of the envelope
defined using the local maxima and the envelope defined using the local minima are zero
(Huang et al., 11998} |Huang and Wul, [2008). An iterative algorithm was proposed to extract
successive IMF from time series. We do not reproduce all the details of this algorithm here
and refer to original publications (Huang et al., {1998 [1999).

The decomposition process stops when the residue, r,,, becomes a monotonic function
or a function with only one extrema from which no more IMF can be extracted. At the end
of the decomposition, the original time series z(t) is decomposed into a sum of n modes
and a residue:

2(t) = cj(t) +ra(t), (A1)

=1

where ¢;(t) are IMFs and r,(t) is the residue. In this decomposition, each mode has
a decreasing characteristic frequency. If N is the number of points of the original series, we
have: n ~ log,(V), hence in general, 10 < n < 20 (Flandrin and Goncalves, 2004; [Huang
et al., 2008).

12
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Appendix B: Hilbert Spectral Analysis (HSA)

Hilbert Spectral Analysis (HSA) is the second step of the analysis, which is applied to each
mode c;(t) extracted for the time series xz(t) using the procedure discussed in Appendix A.
For any function z(t), its Hilbert transform y(t) is written as:

+oo
o) =)0 = 1 [ A @)

The analytic function z(¢) estimated from x(t) using the Hilbert transform y(¢):
z(t) = x(t) +iy(t) = x(t) +iH{z }(t), (B2)

where ¢ = +/—1. The analytical function is estimated for each mode and at each time step.
For each mode and each time step a local amplitude A and phase function 6 can be
estimated:

At) = (2 +y?)V/? (B3)
0(t) = tanfl(y/x) (B4)
The local frequency is estimated from the phase function:
dé
=, B
w m (B5)

The HSA represents a time-amplitude-frequency analysis. This helps to estimate a joint
PDF p(w, A) of frequency and amplitude. From this, a marginal spectrum is estimated:

h(w) = / p(w, A)A%dA. (B6)
0
This h(w) spectral analysis is done through a Hilbert transform and can be compared to the

Fourier spectrum E( f) obtained through the classical Fourier analysis (Huang et al.,|2008).
13
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Appendix C: Arbitrary order Hilbert Spectral Analysis (AHSA)

The equation obtained in the previous section giving h(w) is a second order statistical
moment; it can be generalised into arbitrary order moment (Huang et al., 2008, 2011),
by taking a moment of order ¢:

o0

Ly(w) :/p(w,A)Aqu, (C1)
0

where ¢ > 0. In case of scale invariance we can write
Ly(w) =~ w &), (C2)

where £(q) is the corresponding scaling exponent, which is related to the classical structure
function by £(¢) =1+ ¢(q) (Huang et al) [2008). For example, for a fractional Brownian
motion £(q) = 1+ qH. Here we are interested by the “Hurst” exponent given by H = ((1) =
&(1) —1. H can be positive or negative and it characterises the degree of stationarity of the
scaling process. The nonlinearity of ((¢) is related to the intermittency of the time series:
the more nonlinear the scaling exponent ((q), the more intermittent is the series (Schmitt
and Huang, [2015).
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Table 1. The Hurst exponent values derived through AHSA and Haar wavelet method for various

parameters.

Parameter H(AHSA) H(Haar wavelet)

u -0.30 £ 0.02 -0.25 £ 0.03

\ -0.20 £ 0.02 -0.20 + 0.01

Silt -0.17 £ 0.01 -0.09 + 0.01
Fine -0.19 £ 0.01 -0.10 + 0.01
Coarse -0.38 + 0.02 -0.24 + 0.04
Macro -0.26 £ 0.02 -0.18 + 0.02
¢p(670) -0.06 + 0.01 -0.02 + 0.01
Cuol-total -0.08 + 0.01 -0.03 + 0.01
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Figure 1. Location (black triangle) of the sampling station in the eastern English Channel together

with the isobaths.
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Figure 2. The first 3000 samples of the time series of volume concentrations of different size classes
of PSD. (a) Silt/Clay, (b) Fine particles, (¢) Coarse/Micro particles (d) Macro particles/flocs.
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Figure 3. The first 3000 samples of the time series of PSD slope () (a) and PSD slope of the entire
dataset with a power-law fit with a slope value of £ = 2.9 £0.16 (b).

22

ITodeJ uOISSNoSI(]

ITode UOISSNOSI(]

ITodeJ UOISSNOSI(]

Tode UOISSNOSI(]



10
BRELLL SRR A T
(a) L 1 s
10° ——HSAU
——HSAV

10 32.26 m

E }I III|II|I| 111 }] II Lo 1

10“ 1 llIlLlll L1 I lllll.lll L L 1 |Hllll| Ll
10° 10° 10* 10° 107 10" 10°
f o (H?

w %% H,=-030£002
T 06— H, =-0.20£0.02

Figure 4. Turbulent power spectra of U and VV components of velocity fields showing different scaling
regimes as calculated by both FFT and HSA (a). The scaling exponents estimated using the HSA
method: (b). The vertical line in (a) shows the memory time of 36.26 min found in Eq. (6).
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Figure 6. Power spectra for different size classes of PSD estimated for Fourier and Hilbert transform.
Silt/Clay (a), Fine (b), Coarse/Micro (¢) and Macro particles/flocs (d). The red lines shows the scaling
range and the slope of the best fit in this range.
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Figure 8. The first 3000 samples of the time series of ¢,(670) in (a), The first 3000 samples of the
time series of Cyorotal in (b), Turbulent power spectrum of ¢,(670) and turbulent power spectrum of
Cuoltotal Showing different scaling regimes (the scaling regime indicated as red is used for the scaling
exponent computation) in (c, d) and scaling moment function of ¢,(670) and Cil-total in (€).
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