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Abstract.
Inversion of the magnetic field in a large-scale model of

αΩ-dynamo with α-effect with stochastic memory is under
the investigation. The model allows us to reproduce the main
features of the geomagnetic field reversals. It was established
that the polarity intervals in the model are distributed accord-
ing to the power law. Model magnetic polarity time scale is
fractal. Its dimension is consistent with the dimension of the
real geomagnetic polarity time scale.
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1 Introduction

The existence of large-scale magnetic fields of planets, stars
and galaxies is usually attributed to the action of the dynamo
mechanism (Zeldovich et al., 1983). Magnetohydrodynamic
equations are symmetric with respect to the change of sign
of the magnetic field, which leads to a potential reversal in
the dynamo system. These reversals are observed in cosmic
dynamo systems. For example, the reversal of the magnetic
field of the Sun occurs approximately every 11 years, Stix
(1989). We get the information on the geomagnetic field re-
versals from paleomagnetic records, on the basis of which
the geomagnetic polarity time scale is constructed. The se-
quence of moments of geomagnetic field reversals is a non-
periodic random sequence (Merril et al., 1996). Thus, the sta-
tistical reversals of magnetic fields of the Sun and Earth are
very different. However, concerning geomagnetic reversals,
we mean the transition between stable states of a geomag-
netic dipole, averaged over a few thousands of years (Merril
et al., 1996). Therefore, the difference in the reversals of the
magnetic fields of the Sun and the Earth is the difference in
the processes at absolutely different time scales.

It is known that different scales of geomagnetic polarity
form a self-similar fractal structures (Ermushev et al., 1992;
Ivanov, 1993; Pechersky et al., 1997). Intervals between the
reversals (polarity intervals) differ by several orders of mag-
nitude, there are long intervals without reversals, superchrons
(Gaffin, 1989; Merril et al., 1996). A large scatter of the in-
terval lengths does not allow us to use such characteristics
as mean or variance correctly. It is known that the random
variables with the properties such as self-similarity of the set
of realizations, the range, the infinity of points may be well
described by power law distributions (Sornette, 2006).

Of course, one can not rely on the construction of a geo-
dynamo model, which would fully reproduce the real pale-
omagnetic scale. It is only possible to get similar statistical
characteristics. Different models of geodynamo allow us to
obtain random sequence reversals, the properties of which
are very different. In some models the solutions are peri-
odic or quasiperiodic (Hejda and Anufriev, 2003; Rikitake,
1965), in others they exhibit fractal properties (Anufriev and
Sokoloff, 1994; Hollerbach et al., 1992).

In this paper, we consider the bi-modal model of a large-
scale αΩ-dynamo in which there is the perturbation of α-
effect of a Non-Markovian random pulse process. Physi-
cally, this process may be interpreted as the effect of re-
jected modes of mean-field. According to the authors, non-
Markovian character of the process is of principle, because it
expresses the ”memory” (hereditarity) of the model, the re-
sponse values of α-effect on the change in the magnetic field
depends not only on the present, but also on the previous val-
ues of the field.

The mechanism of αΩ-dynamo was proposed by Parker
(Parker, 1955). This kind of dynamo is typical for astrophys-
ical objects (planets, stars, galactic disks) and suggests differ-
ential rotation of the object and turbulence in the character of
motion of a conducting medium in this object.
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The essence of such a dynamo is as follows. During the
initial moment, the existence of a poloidal field of dipole type
is supposed. During the differential rotation, the magnetic
field lines of a highly conducting medium curl around the
axis of rotation, this leads to the appearance of the toroidal
field in the convective zone of a star or a planet liquid core.

To close the cycle, it is necessary to get a new poloidal field
from this toroidal one. It is assumed that this is due to the
breaking of mirror symmetry flows in the convection zone.
Turbulent mirror-asymmetric flow generates effective EMF
in the direction of the toroidal field (α-effect), which leads to
the excitation of a new poloidal field. The theory of α-effect
was developed by Steenbeck, Krause and Redler (Steenbek et
al., 1966; Steenbek and Krause, 1969). A detailed description
of the mean-field theory is given in the books Krause and
Rädler (1980); Moffat (1978); Zeldovich et al. (1983).

Induction equation for the magnetic field in a conducting
medium is the following:

∂B
∂t

=∇× (v×B) + νm4B,

∇B = 0,

(1)

where v is the velocity field of the medium, and νm is the
magnetic viscosity.

If the velocity field is defined, then the equation (1) is lin-
ear and defines the kinematic dynamo problem. However, the
magnetic field affects the flow of a medium by the Lorentz
force. The effect of this force in the equations of motion of
the medium is quadratic in the magnetic field, so in the case
of small magnetic fields, we can be restricted to kinematic
approximation. The formal criterion of the non-applicability
of the kinematic approximation is the satisfaction of the ratio
EK . EB , where EK and EB are the kinetic energy of the
moving medium and the energy of the magnetic field, respec-
tively.

In this case, it is necessary either to solve (1) together with
the equations of motion, or to enter a modeling approach,
where v is the given functional of B. In any case the solved
equations become nonlinear.

In the mean-field theory the expansion of fields v and B
in the large-scale U and B and fluctuations u and b are intro-
duced. We do not assume the smallness of fluctuations. Then
from the equation (1) we obtain the equation for the mean-
field generation (Zeldovich et al., 1983):

∂B
∂t

=∇×
(
U×B +αB

)
+β4B,

∇B = 0.

(2)

Here α and β are, in general, second-rank tensors, depend-
ing on the velocity and magnetic field. To determine the form
of these curves is the main task of mean-field theory. Convo-
lution of αB determines the turbulent EMF (α-effect), and
β∆B gives the diffusion of the magnetic field, which con-
sists of molecular and turbulent diffusions.

We will further consider the isotropic case of scalar α and
β; β is assumed to be the constant.

2 The simplest equations of the large-scale αΩ-dynamo

We suppose that the spatial structure of the mean-field is sim-
ple and confine ourselves to a single-mode approximation
for the toroidal and poloidal components. Then these com-
ponents may be described by the scalar functions BT (t) and
BP (t), respectively. We also assume that the mean flow U is
the differential rotation.

Taking into the account the above assumptions, on the ba-
sis of (2) the dynamo cycle stages may be written in the form
of the following equations:

dBT

dt
=GBP −βL−2BT ,

dBP

dt
= L−1αBT −βL−2BP ,

(3)

where G> 0 is the characteristic value of the differential ro-
tation, α is the value of the alpha-effect, L is the characteris-
tic linear dimension of the region. The first of equations (3)
describes the Ω-stage, and the second is for the α-stage cycle.

Note that G is not the angular velocity of the field in these
equations but just a measure of differential nature of the mid-
dle course. For example, if r is the distance to the rotation
axis and the Ω is the angular velocity, then G∼ |r∂rΩ|.

It is convenient to make the system dimensionless on the
characteristic time of the magnetic diffusivity L2β−1 and the
characteristic value of the field B0. As a result, we obtain the
following system of dimensionless variables:

dBT

dt
=RΩB

P −BT ,

dBP

dt
=RαB

T −BP .
(4)

Dimensionless characteristics of the stages of the dynamo
cycle RΩ and Rα are GL2/β and αL/β, respectively.

In the assumption of the constancy of RΩ and Rα, field
generation, i.e. the growth of small fluctuations of B =√
|BT |2 + |BP |2 occurs at Rα >R−1

Ω . The field increases
indefinitely at an exponential rate. If Rα <R−1

Ω , the field is
attenuated. Limited-largest non-vanishing solution can occur
only ifRαRΩ = 1. Thus,D =RαRΩ is the dynamo-number.
When D = 1, except for the zero steady-state solution, a lot
of stationary regimes of the form BT =RΩB

P appear in the
system (4), forming a straight line in an asymptotically stable
phase plane.

Limited nonvanishing solutions of (2) are obtained by tak-
ing into account the feedback that is the change of the turbu-
lent flow characteristics by the magnetic field in the result of
the Lorentz force. In the models of (4) type this mechanism
is implemented in the form of the prescribed dependence
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Rα on B. In the simplest case, functional dependencies of
the form Rα = f(B(t)) are introduced. Such type models
are known as algebraic quenching models and the α-effect
value depends on the field current value, i.e. a response to the
changes in the field of turbulence instant. The simplest ver-
sion of this dependence is given in Zeldovich et al. (1983).
More complex variants, based on the representation of α as
the differences between the kinetic helicity and corrent helic-
ity, were studied, for example, in Field and Blackman (2002);
Brandenburg and Sandin (2004).

It is more realistic, however, that the restructuring of tur-
bulence takes some time. Thus, it is interesting to note the re-
sults of Frick et al. (2006), the authors of which investigated
the multiscale model dynamo. In this model, the equations
of large-scale dynamo and the equations of shell-model of
MHD turbulence were integrated. In the large-scale part of
the model, the authors used the α2-dynamo when a toroidal
field is generated from a poloidal one by α-effect. The α-
effect values were calculated by the variables of shell-model.

Having calculated the cross-correlation between the model
variations of B and Rα, the Frick et al. (2006) found that si-
multaneous values of B and Rα are uncorrelated. Moreover,
if the response of B to the change of Rα is fast, the inverse
response occurs with a noticeable delay, and the correspond-
ing to the response cross-correlation decline is slow. As a
result, the authors came to the conclusion that the response
of Rα to B is essentially dynamic in nature and may not be
described in terms of algebraic quenching.

This behavior indicates the presence of ”memory” (heredi-
tarity). We can consider two ways to introduce memory in the
model (4). In the first case, Rα is not a function, but a func-
tional of B, i.e. α-effect value depends not only on the cur-
rent state of the field, but also on all its previous states. In the
second case,Rα is a function ofB and a non-Markovian ran-
domly process ξ(t). Physically, this process may be compre-
hended as a contribution to the α-effect of discarded modes
of mean-fields U and B. The dependence of Rα on previous
values B will be implemented through the stochastic mem-
ory of the process ξ(t). These two variants of hereditarity
will be further called the dynamic and random hereditarity,
respectively. Of course, combination of these two types of
memory is also possible.

Further, the simplest variant of the algebraic quenching
will be used as the original form of the feedback

Rα(t) =R−1
Ω

[
1 + ε

(
1−B2(t)

)]
, (5)

where ε > 0 is the model parameter, which determines the
efficiency of the feedback. A similar form of the dependence
was considered in Zeldovich et al. (1983).

For the model (4-5), there are three stationary points.
First and foremost is the zero point, which is unstable,
which provides generation of the field. In addition, there
are rest points of the form BT =±RΩ

(
1 +R2

Ω

)−1/2
, BP =

±
(
1 +R2

Ω

)−1/2
. It is easy to show that these points are

asymptotically stable. Thus, the model (4 - 5) gives field gen-
eration with the output to the characteristic value of B = 1.
In this case, RΩ determines the ratio of characteristic values
of the toroidal and poloidal components. Therefore, during
model calculations we’ll always assume that RΩ = 1.

Introduction of hereditarity of dynamic type requires the
following modification of the formula (5):

Rα =R−1
Ω

1 + ε

1− 1

H(t)

t∫
0

h(t− τ)B2(τ)dτ

 ,
H(t) =

t∫
0

h(τ)dτ,

(6)

where h(t)≥ 0 defines the ”memory” of the system.
The model (4, 6) has the same equilibrium points as (4-

5), and the computational experiments have shown that the
nature of their stability remains the same.

The asymptotic stability of the points BT =

±RΩ

(
1 +R2

Ω

)−1/2
, BP =±

(
1 +R2

Ω

)−1/2
for this

hereditarity model gives no possibility to reversals.
We return to the equations (4) with the constants Rα

and RΩ and consider their solutions more carefully. When
RαRΩ > 1, the solution increases indefinitely without os-
cillations, and the characteristic time of the increase is(
−1 +

√
RαRΩ

)−1
. When 0≤RαRΩ < 1, the solution de-

cays without oscillations for the characteristic time of ∼
1. If RαRΩ < 0, the solution oscillates with the frequency√
|RαRΩ| and decays for the characteristic time of ∼ 1.
Supposing now that Rα is a variable, we can say that neg-

ative peaks of this value are required for the occurrence of
reversals, since during negative Rα in the linear case, oscil-
lations appear. They must be strong enough, so that the os-
cillation period would be less than the characteristic decay
time, and rare enough, so that a feedback mechanism would
recover the field, decreasing during the reversal.

3 Model with random hereditarity

Peaks in the value of Rα, necessary for the formation of
reversals may be obtained by the introduction of a random
hereditarity into the model in the following form:

Rα(t) =R−1
Ω

[
1 + ε

(
1−B2(t)

)
+ ξ(t)

]
, (7)

where ξ(t) is some non-Markov random pulse process with
zero mean value.

In order to analyze the effect of pulses in ξ(t) on the field,
we first made some calculations in the model (4, 7) for a case
of non-random and regular process ξ(t), which is a sequence
of pulses with alternating signs of the type ±Ae−t,A≥ 0.
The interval between the pulses was 50 time units, the value
ε= 0.5. The initial conditions were given as BT (0) = 0,
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BP (0) = 10−2. The results of these calculations are shown
in Fig. 1.

It is clear that positive pulses cause a sharp rise in the field,
but are not accompanied by reversals. Field response on the
negative peaks depends on the magnitude of these peaks. We
see that for the small pulses the poloidal component does not
change the sign (A= 2), then BP (t) changes the sign for a
short time and returns to its original value (A= 4.2). Such
behavior of the field is well known in the paleomagnetic data
and is called excursion (Merril et al., 1996). Then there is
the reversal (A= 10). During the subsequent growth, the re-
versal is replaced by field excursion (A= 15) again. Then
excursion combination appears with the subsequent reversal
(A= 30), followed by two consecutive excursion (A= 50).
The trend shown in Fig. 1 continues further, for example,
when A= 100 the combination of two excursions and a re-
versal appears. However, such sharp peaks inRα are difficult
to admit in a real system. It is also clear that there are critical
values of the amplitude A, separating the different types of
field reversal. In particular, the critical value of A, separating
the cases A= 4.2 and A= 10 from Fig. 1 is 4.455± 0.005.

We also see that for the chosen value of ε= 0.5 the time of
tB field transfer to a steady state is about 30 units. In general,
as the numerical experiments showed, this dependence has a
power law tB ∼ ε−0.9.

We now define the random process ξ(t) by the following
formula

ξ(t) =
∑
θk≤t

ηkexp{−λ(t− θk)} . (8)

Here θk is the increasing sequence of random instants of
exponential pulses, ηk is random pulse amplitude, the con-
stant λ−1 > 0 determines the pulse width.

We assume that the time intervals between pulses τk =
θk − θk−1 are independent and identically distributed with
the probability density function (pdf) pτ (t). Amplitudes ηk
are assumed to be Gaussian random variables that are inde-
pendent between each other and with the times of the pulses
having zero mean and variance σ2.

The important element of this model is the law of distri-
bution of pτ (t). If it is exponential, the pulse sequence forms
a Poisson processes of events, and the process ξ(t) turns to
be a Markov one. Any other kind of law pτ (t) leads to the
fact, that the waiting time of the next pulse will depend on
the time from the previous pulse. Thus, ξ(t) will turn to be a
non-Markov process.

We assume that the law pτ (t) has a power asymptotic de-
pendence∼ 1/tγ ,γ > 1. We will give a number of arguments
in favor of this assumption.

Random intervals τk may be considered as the result of
the joint effect of a large number of independent factors. If
we suppose the additive character of the joint effect, than, ac-
cording to the generalized central limit theorem, pτ (t) should
refer to the class of stable laws (Samorodnitsky and Taqqu,
1994). All such laws, except for the Gaussian one, have the

power asymptotic dependence. Note, that for stable power
laws 1< γ < 3.

In addition, just the power distributions have the property
of self-similarity, manifesting themselves in the reversals of
geomagnetic field. Finally, the power of statistics are gen-
erally characteristic for turbulent phenomena, which include
α-effect.

The explicit form of the pdf for the unilateral power stable
laws is unknown, except for the distribution of Levi-Smirnov
(γ = 3/2). It causes difficulties in obtaining their computer
implementations.

Therefore, in the calculations we used the following ex-
pression for the pdf:

pτ (t) =
γ− 1

(1 + t)γ
, t≥ 0, 1< γ < 3. (9)

This form of the distribution law allow us to obtain the
random variables τk easily.

The accepted distribution coincides with the stable one
only asymptotically, and therefore for the distribution of
polarity intervals, we will further be interested only in its
asymptotics.

4 Simulation results

We consider the results of computational experiments in the
model (4,7-9).

In the calculations, the values of the parameters RΩ = 1,
λ= 1 were applied. Standard deviation of random ampli-
tudes ηk of pulses in (7) is σ = 6.6. For this value of σ the
reversal in the result of negative pulse in ξ(t) occurs with the
probability of 0.5. The initial values for the field components
were chosen as BT (0) = 0, BP (0) = 10−2.

We suppose the characteristic size of the Earth L= 3.48×
106 m (the radius of the liquid core) and the turbulent mag-
netic diffusion β = 10m2/s. Then our dimensionless time
5×104 corresponds to the length of the longest scale of geo-
magnetic polarity (Pechersky, 1997) in 1,700 Myear. There-
fore, calculations in the model were carried out up to t=
5× 104.

Fig. 2 shows an example of a segment of one of the mag-
netic field realizations and the toroidal and poloidal compo-
nents for ε= 5.

We calculated the different values of the parameters ε and
γ. For ε parameter, the values 0.1, 0.5, 1.0, 5.0 were used,
and for γ, the values from 1.1 to 2.9 with 0.2 step were
used. For each parameter combination, histogram of the in-
terval lengths of polarity and the fractal dimension of polarity
model scale were estimated.

First, the obtained distribution of interval lengths of polar-
ity ζ is considered. They are illustrated in Fig. 3.

It is clear that we may speak about the power asymptotic
dependence of distribution of these intervals ∼ 1/ζδ . More
specifically, the power type for ε= 0.1 and ε= 0.5 appears
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Fig. 1. The response of the poloidal component BP (t) on the regular sequence of alternating pulses with different amplitudes A.

from ζ = 10, and for ε= 1 and ε= 5, from ζ = 30. Devia-
tion from the power law at low frequencies also occurs. Sin-
gle events correspond to these frequencies. Therefore, these
deviations may be explained by insufficient data.

We have calculated the value of the index δ on the straight
section of the chart shown in Fig. 3 The obtained values and

the correlation coefficients corresponding to the straight sec-
tions are shown in Table 1.

According to these values, it is easy to show that, for dif-
ferent ε, the correlation coefficient between γ and δ is more
than 0.92. It means that γ and δ are linear, the coefficients of
which depend on the parameter ε.
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√
|BT |2 + |BP |2.

Table 1. Power in the distribution of polarity intervals

γ
ε

0.1 0.5 1.0 5.0
2.1 1.05 0.97 1.04 1.12
2.3 1.11 1.28 1.36 1.49
2.5 1.53 1.63 1.5 1.93
2.7 1.93 1.67 1.91 2.04
2.9 2.22 2.12 1.94 3.53

Integrability conditions of pdf for ζ implies that δ > 1.
These values are obtained from the above-mentioned linear
relations for γ > 2.1.

Also note that Fig. 3 does not show the distributions for
γ < 1. This is due to the fact that for such values of γ the
rectilinear sections, corresponding to the power laws, do not
occur on the graphs.

It may be concluded that the degree distribution of polarity
interval occurs in the model at γ > 2.1.

Now consider the fractal dimension of the derived polar-
ity scales. In the calculation, we followed the procedure pro-
posed in Pechersky et al. (1997) for real geomagnetic polarity
time scale.

The technique is as follows. On the scale of T length, some
interval of ∆ length is distinguished. N(∆) is the number of
intervals of ∆ length on this scale, on which at least one re-
versal occurs. If ∆� T and the reversal are distributed uni-
formly, then N(∆)∼∆−1. If ∆� T and reversal are dis-
tributed unevenly, then we may expect the dependence of the
form N(∆)∼∆−d. In this case, d is the Hausdorff dimen-
sion of the scale reversals and for 0< d < 1 the reversal se-
ries is fractal.

We made calculations in the model for the above men-
tioned values of γ and ε. The value of ∆ decreased in the
geometric progression from 5000 (∆� 5× 104) to ∼ 10.
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Fig. 3. Distribution of relative frequencies ν of polarity intervals with the lengh ζ.

Graphs of the obtained dependencies are illustrated in Fig.
4 The dependence of N(∆) accurately follows the power
law. The figure legend shows the values of the Hausdorff di-
mension d. It is clear that in all the cases, 0< d < 1, and
the reversal series is fractal, although there is a tendency to
achieve the boundary of the fractal region when γ increases.

Note that, according to the data of Pechersky et al. (1997),
Hausdorff dimensions for real geomagnetic polarity time
scales for 170 Myear, 560 MYear, 1700 MYear are 0.88, 0.83
and 0.87, respectively.

5 Conclusions

The large-scale model of αΩ-dynamo with hereditarity α-
effect for the modeling of geomagnetic field reversals was
proposed. Memory is provided by the pulse Markov process,
which is supposed to be interpreted as the influence of re-
jected modes of mean-fields.

The power law was applied as the distribution law of the
pulse waiting time. The reason for this was the power-law
character of stable distributions, limiting distributions in the
scheme of summation of independent random variables with
slowly decaying pdf.

It was found out, that the power law of polarity interval
distribution is asymptotically realized in this model, if the
exponent γ in the distribution of the pulse waiting time is not
less than 2.1. The exponent δ in the distribution of polarity
interval is linearly related to the γ. The coefficients of this
linear relation depend on the effectiveness of the feedback in
α-effect.

It is shown that the model scale of geomagnetic polarity
is a fractal set with Hausdorff dimension of & 0.7. It is con-
sistent with the actual Hausdorff dimension of geomagnetic
scale according to the paper Pechersky et al. (1997).

Thus, it was established that the proposed large-scale dy-
namo model allows us to reproduce the main features of the
process of geomagnetic field reversals.
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Fig. 4. Number of N(∆) intervals of ∆ length, which contain at least one inversion.
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