This is a well-written paper that deals with the so-called non-dissipative Lorenz model (NLM), which is
3D with X, Y and Z representing the amplitudes of selected Fourier modes. The system of equations
describing the 3D-NLM has two nonlinear terms (XY and XZ) and one linear driving term rX, where r is
the normalized heating parameter. Despite the fact that the system is called non-dissipative, one term
with the Prandtl number is still present; I'd like to ask the author to comment in the paper on the
presence and relevance of this term for the 3D-NLM. All terms of the 3D-NLM are the same as in the
original 3D Lorenz model (3D-LM), however, the 3D-LM has two additional linear terms. In the studies
presented in this paper, the author concentrates on the role played by the nonlinear terms and the
linear heating term in the behavior of the 3D-NLM, and in its energy conservation.

First, the author solves a nonlinear equation, which is obtained by elimination of Y and Z in terms of X,
and by making an assumption that r = 0; with this assumption, the 3D-NLM is truly non-dissipative as the
term with the Prandtl number disappears. He obtains the closed-form solutions, which represent wave-
like (oscillatory) motions in phase space, and demonstrates that the nonlinear (X?) term, called the
nonlinear feedback loop, works together with the linear heating term to produce the resulting
oscillatory solutions. This is a new and interesting result, which may be used to interpret solutions to
the Duffing equation in the limit of no driving force and a small spring constant; there is an extensive
literature about the Duffing system and its solutions, however, only very few papers deal with the above
mentioned limits. I'd like to ask the author to comment in the paper on potential similarities and
differences between the 3D-NLM and Duffing systems in the non-dissipative limits.

Since the 3D-NLM in the limit of r = 0 is non-dissipative (truly Hamiltonian), the author investigates its
energy conservation and studies the resulting energy cycle. The studies of the latter are also extended
to the cases when r is non-zero, which means that the term with the Prandtl number is included, and the
formation of the so-called big cycle is observed. I'd like to suggest that the obtained results are also
applied to the non-dissipative Duffing system and the resulting conclusions are included in the paper.

Since the considered systems are Hamiltonian (or Hamiltonian-like) systems, it’d be interesting to
explore the dependence of solutions on initial perturbations by using the KAM theorem, and the
standard techniques, such as Lyapunov exponents, the Fast Lyapunov Indicator (FLI) and the Mean
Exponential Growth Factor of Nearby Orbits (MEGNO) to investigate the onset of Hamiltonian chaos in
these systems.

In summary, this paper does contain new and significant results, which are presented clearly and

concisely in the main text as well as in six figures. I'd like to recommend the paper for publication in
NPG assuming that the author would address the above suggestions.



