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Abstract

Motivated by important geophysical applications we consider a dynamic model of the
magma-plug system previously derived by Iverson et al. (2006) under the influence of
stochastic forcing. Due to strong nonlinearity of the friction force for solid plug along its
margins, the initial deterministic system exhibits impulsive oscillations. Two types of dy-
namic behavior of the system under the influence of the parametric stochastic forcing have
been found: random trajectories are scattered on both sides of the deterministic cycle or
grouped on its internal side only. It is shown that dispersions are highly inhomogeneous
along cycles in the presence of noises. The effects of noise-induced shifts, pressure stabi-
lization and localization of random trajectories have been revealed with increasing the noise
intensity. The plug velocity, pressure and displacement are highly dependent of noise inten-
sity as well. These new stochastic phenomena are related with the nonlinear peculiarities
of the deterministic phase portrait. It is demonstrated that the repetitive stick-slip motions of
the magma-plug system in the case of stochastic forcing can be connected with drumbeat
earthquakes.

1 Introduction

It is well-known that the behavior of volcanic systems is enormously complex so that a lot
of non-linear feedbacks lead to multiple states even during a single eruption (Tanaka et al.,
2014). Without better modeling forecastings of these dynamic processes the highly im-
portant questions where, when and how volcanic eruptions occur will remain substan-
tially empirical. Nowadays, an elaboration of the adequate mathematical models for vol-
canic dynamics is a challenging problem (Melnik and Sparks, 1999; Barmin et al., 2002;
Nakanishi and Koyaguchi, 2008; Costa et al., 2012).

Many uncertainties in physical parameters of volcanic dynamics (Woo, 2000) lead
to a conclusion that like the climate systems (see, among others, Saltzman, 2002;
Alexandrov et al., 2014) volcanoes, representing stochastic and chaotic systems, need to
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be described in terms of probabilities (Sparks, 2003; Bebbington and Marzocchi, 2011).
Stochastic approaches and mathematical formalisms can be found in (Gardiner, 2009).

It is well-known, that an interplay between nonlinearity and noise can generate vari-
ous probabilistic phenomena such as noise-induced transitions (Horsthemke and Lefever,
1984), stochastic resonance (McDonnell et al., 2008; Pikovsky and Kurths, 1997; Arathi,
2013), noise-induced chaos (Lai and Tél, 2011; Bashkirtseva et al., 2012). Stochastic ef-
fects in nonlinear models are the subjects of intensive investigations in various research
domains (Horsthemke and Lefever, 1984; Lindner et al., 2004; Bashkirtseva et al., 2013;
Alexandrov et al., 2013).

Some of silicic volcanoes analyzed in detail over the last few decades represent complex
periodic systems (Denlinger and Hoblitt, 1999; Michaut et al., 2013). The dome-building
eruption of Mount St Helen (MSH) during 2004 and 2005 has represented a near-
equilibrium cyclic system with the solid plug uplift caused by magma ascent from be-
low with a nearly steady rate of roughly 1–2m3 s−1. This eruption was accompanied by
drumbeat earthquakes recurred every 1–2 min with magnitudes< 2 and focal depth< 1 km
(Iverson et al., 2006; Moore et al., 2008; Matoza and Chouet, 2010). A stick-slip mecha-
nism explains a cyclic behavior of such earthquakes as a consequence of stick-slip motion
of a plug pushed by compressible magma (Denlinger and Hoblitt, 1999). A new dynamic
approach based on this mechanism (connecting the MSH behavior with a damped oscil-
lator) was suggested by Iverson et al. (2006). We use this model to demonstrate unusual
dynamic behavior of similar volcanic systems under the influence of parametric noises.

In order to explain interactions between solid-state extrusion and persistent drumbeat
earthquakes at MSH, Iverson et al. (2006) developed a model based on recurrent stick-slip
motions of the solid plug along its margins with the friction force F (Fig. 1). Let us briefly
discuss the main principles of this dynamic model. The magma influx comes to the base of
an eruptive conduit from below with a nearly steady rate Q. A solid dacite plug of solidified
magma blocks the conduit from above so that its lower boundary is mobile due to the effects
of pressure and basal accretion with mass rate ρB from below (ρ and B stand for the
magma bulk density and the volumetric rate of magma crystallization). The total plug mass

3



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

m changes with time because the difference in mass rates ρB and ρrE as m=m0+κt
(here ρr is the plug bulk density, E is the volumetric rate of surface erosion, m0 is the initial
plug mass, t is the process time, and κ= ρB− ρrE is assumed constant). The horizontal
cross-sectional area A, the magma compressibility α1 and the conduit wall compliance α2

are estimated by Iverson et al. (2006). The dynamic process of plug extrusion is controlled
by the plug weight mg and the friction force F dependent of the plug velocity u (g is the
acceleration due to gravity) whereas the conduit volume V is governed by the law of mass
conservation. A three-parametric differential model connecting independent variables u, p
and V (p is the pressure) was derived by Iverson et al. (2006). Below we use this model to
demonstrate some new special aspects of non-linear dynamics of volcanic systems under
the influence of stochastic noises.

2 The model and its deterministic behavior

The following system of reduced governing equations based on the laws of conservation of
the solid plug linear momentum, solid plug mass and conduit fluid mass was derived and
discussed in detail by Iverson et al. (2006). These equations can be written in the form of

du

dt
=−g+

1

m0+κt
(pA−κu−F ), (1)

dp

dt
=− 1

(α1+α2)V
(Au+RB−Q), (2)

dV

dt
=

α1

α1+α2
(Au+RB−Q)+Q−B, (3)

where R= 1− ρ/ρr = 1− (ρ0/ρr)exp[α1(p− p0)] is found from the isothermal equation
of state (Iverson et al., 2006). Here, p0 and ρ0 represent the static equilibrium pressure
and magma density. The key aspects of MSH friction force measured in experiments
(Moore et al., 2008) can be described by a function (Iverson et al., 2006)
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F (u) = sgn(u)f0(u), f0(u) = F0

(
1− c sinh−1|u/uref|

)
, (4)

where sgn(u) is the sign of u, F0 is the friction force at static equilibrium, c≪ 1 is a rate-
weakening parameter and uref is a reference value of u (Iverson et al., 2006). Equation (4)
includes the main physical aspects of the process: the friction force at u= 0 abruptly
changes its sign due to the fact that the gravity force, which shifts the plug in downward
direction, is opposite to the friction force. However, an abrupt behavior of expression (Eq. 4)
is not good physical approximation of the friction force. Therefore, let us model this force by
the close continuous function

F (u) = sgn(u)f1(u), (5)

where

f1(u) =

{
f0(u), |u| ≥ uref

F0| u
uref

|, 0< |u|< uref
.

In present paper, we focus on the autonomous case, when κ= 0. The model (Eqs. 1–
3) demonstrates the stick-slip oscillations (see Figs. 2 and 3). An important point is that

this system has only one unstable equilibrium (u,p,V ) for any V0, where u =
Q

A
=

2

3
×

10−4ms−1, p= p0 = 12936× 103 Pa, and V = V0. This equilibrium is plotted by an open
circle in Fig. 2.

In Fig. 2, u-p-projections of phase trajectories of the system (Eqs. 1–3) for the fixed initial
value V0 = 6.32× 105m3 are plotted by the thin black lines. These trajectories tend to the
close curve (thick black line) of the cycle. Time series of this cycle are presented in Fig. 3.
A vertical left part of this cycle in Fig. 2 corresponds to the slow movement, and the rest arc
part of the cycle reflects fast movement. Slow dynamics switches to fast one at the corner
point C in the case of movement in a clockwise direction along the thick black curve. The
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stability of this cycle is highly non-uniform: the vertical part is extremely stable, but arc curve
possesses a neutral stability.

Essential details of the phase portrait are shown in Fig. 2b by an enlarged fragment of
Fig. 2a. As one can see, there exists a pseudo-separatrix (dashed red line) which divides
two types of dynamics. If the initial state lies to the left of this red curve, then the trajec-
tory quickly verges towards the vertical part of the cycle (arrows pointing to the left). If the
initial state lies to the right of this pseudo-separatrix, then the phase trajectory goes away
from the cycle (arrows pointing to the right), and only after a long excursion, the trajectory
approaches to the vertical part of the cycle. Physically it means that small deviations in
u at sufficiently large p may redeploy the dynamic system through its pseudo-separatrix.
This feature of the deterministic phase portrait playing an important role in understanding
of stochastic phenomena will be discussed below.

Note, that this cycle is not a limit cycle in the classical mathematical sense. Indeed, for
different values of V0, the non-linear system (Eqs. 1–3) exhibits different closed curves. The
cycles and time series for various values of V0 are compared in Fig. 4. Note that an increase
of V0 implies an increase of both amplitude and period of oscillations.

3 The role of stochastic forcing

In order to study possible deviations of the friction force from expression (Eq. 5) let us
consider the parametric random disturbances. Such disturbances simulate the influence
of different physical processes and phenomena leading to variations in the friction force
behavior (e.g. the effects of frictional melting, temperature-dependent friction, and so on).

At first, we analyze the following F -noise: F0 → F0(1+ εξ(t)), where ξ(t) is a standard
Gaussian white noise with parameters ⟨ξ(t)⟩= 0, ⟨ξ(t)ξ(τ)⟩= δ(t− τ), and ε is a noise
intensity. Corresponding stochastic system includes Eqs. (2) and (3) whereas Eq. (1) should
be replaced by

du

dt
=−g+

1

m0
[pA−F (u)]− ε

m0
F (u)ξ(t). (6)
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Note that under stochastic disturbances, random trajectories leave the deterministic cycle
and form some bundle of stochastic trajectories.

If the noise intensity is small enough, such bundle has a small dispersion and is localized
near the deterministic cycle (green lines in Fig. 5a). As the noise intensity increases, along
with the natural increase of dispersion, the following unexpected phenomenon is observed:
the bundle’s right side of stochastic trajectories is shifted inside the deterministic cycle (blue
and red lines in Fig. 5a). Some details of the corresponding probabilistic distributions are
presented in Figs. 5a,b. The probability density functions of u coordinates of intersection
points of the random trajectories with the line p= 1.2935×107 Pa are plotted for three values
of the F -noise intensity in Fig. 5b whereas the probability density functions of time intervals
between successive intersections are shown in Fig. 5c. As one can see, with increasing
noise, both the amplitude and period of stochastic oscillations decrease.

This stochastic phenomenon can be explained by the phase portrait peculiarities of initial
deterministic system (see Fig. 2b) near the upper part of vertical fragment of the cycle. In
the deterministic case, the phase trajectory slowly moves along the vertical part of the cycle
up to the point C. At the point C, this trajectory abruptly changes the direction, and begins
to move along the arc part quickly. Under the stochastic disturbances, random trajectories
deviate from this vertical part of the deterministic cycle. As a result of this deviation, the
random trajectory can cross the red pseudo-separatrix, and then it falls within the region
of large arc-form excursions. In this case, the random trajectory turns right before the point
C. The more noise, the earlier this turn. Such stochastic deformation of the random flow
results in a decrease of u- and p-oscillation amplitudes and of the period.

Under the further increasing of noise intensity, random states of the system (Eqs. 2, 3
and 6) are localized and leave the interior of deterministic cycle. This noise-induced shift
is demonstrated in Fig. 6. Here, an essential decrease of the dispersion of p coordinate
is observed. In other words, p stabilizes near its certain value with increasing the noise
intensity.

The dynamics of plug displacement is shown in Fig. 7. If the noise intensity is large
enough so that the system leaves its cycle, the plug displacement increases with noise. If
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the system is within its cycle, the displacement is also within the corresponding deterministic
stepwise curve (black line in Fig. 7).

In order to study an influence of possible changes in magma influx, let us consider a role
of Q-noise: Q→Q(1+ δξ(t)), where ξ(t) is a Gaussian white noise, and δ is a Q-noise
intensity. In this case, a non-linear dynamic system consists of Eq. (1) as well as of the
following stochastic equations

dp

dt
=− 1

V (α1+α2)
[Au−Qeα1(p−p0)] +

δ

V (α1+α2)
Qeα1(p−p0)ξ(t), (7)

dV

dt
=

α1

α1+α2
[Au−Qeα1(p−p0)]− δα1

α1+α2
Qeα1(p−p0)ξ(t). (8)

For weak noise, stochastic trajectories are localized near the deterministic cycle (Fig. 8a).
As noise intensity increases, the dispersion of random trajectories increases as well
(Figs. 8b,c). It can be seen that the dispersion is extremely non-uniform along the cycle.
For the vertical part, a dispersion is small even for large noise, and the random trajec-
tories do not differ from the deterministic cycle. Along the arc part, the dispersion of the
random trajectories increases. The probability density functions of u coordinates of inter-
section points of the random trajectories with the line p= 1.2935× 107 Pa are plotted for
three values of the Q-noise intensity in Fig. 9a. Panel b of this figure shows the probability
density functions of time intervals between successive intersections. As one can see, the
dispersions grow and the mean values are practically unchangeable with increasing noise.

As one can see, the volcanic model under consideration demonstrates quite different
qualitative and quantitative response on the random perturbations of different parameters.
The system is extremely sensitive to F -noise so that even a weak F -noise implies a crucial
deformation of the oscillatory behavior. An increase of F -noise leads to a decrease of the
period and amplitude of oscillations. Note that the system is also sensitive to Q-noise so that
a large noise intensity implies a dispersion increase of the arc-part of stochastic oscillations.
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4 Conclusions

The phase portrait of deterministic system contains a point of unstable equilibrium and
a pseudo-separatrix, which subdivides the system into different dynamic areas (point C
and dashed red line in Fig. 2). In addition, if point (u,p) of the phase plane lies below this
pseudo-separatrix (Fig. 2b), the system quickly reaches its equilibrium state (thick vertical
line in Fig. 2). If, however, the phase point (u,p) is above this pseudo-separatrix, the sys-
tem tends to its equilibrium state in course of long time interval. An important point of the
deterministic behavior is that a certain constant value of the plug velocity u establishes at
different pressures p in the state of equilibrium (thick vertical line in Fig. 2b). This equilibrium
state also persists at different conduit volumes V0 (Fig. 4). A time of system transition to its
equilibrium state (vertical line in Fig. 4a) therewith increases with increasing V0. In additiion,
more broad conduits might have a rather big variation in u and p than more narrow ones
during the deterministic process of volcanic plug evolution. By this is meant that a time re-
quired to attain the equilibrium state increases with increasing the conduit’s cross-sectional
area.

In order to analyze a role of variations of two main parameters of the plug motion (friction
force F and magma influx Q), two types of noises have been introduced in the model equa-
tions: F -noise and Q-noise. It was shown that these noises lead to different evolutionary
types of the dynamic system. Let us summarize the main aspects of those behavior. In the
first place, random trajectories are scattered either on both sides of the deterministic cycle
(Q-noise) or on its internal side (F -noise). Dispersions corresponding to random trajecto-
ries of both noises upon that grow with increasing the noise intensities. As this takes place,
one can see that both dispersions are highly inhomogeneous along cycles (Figs. 5 and 8).
Note that these dispersions are small enough in the vertical parts of corresponding cycles
for F - and Q-noises.

An important point is that, an increase in dispersion occurs in the vicinity of pseudo-
separatrix under the influence of F -noise. This is due to the fact that phase trajectories
intersect the pseudo-separatrix and the phase points undergo transitions across it under
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the action of F -noise. Let us especially emphasize that F -noise phase trajectories leave
the corresponding deterministic cycle and form some stochastic bundle shifted into the cy-
cle’s interior. As this takes place, the bundle’s dispersion increases while the period and
amplitude of oscillations decrease with increasing the F -noise intensity (Fig. 5). By this
is meant that the presence of F -noise reduces possible variations in the plug velocity u
and pressure p and decreases a time required to attain the equilibrium state (thick vertical
line in Fig. 5a). It is significant that the effect of pressure stabilization near a certain value
(dependent of the noise intensity) occurs with a rise in the F -noise intensity. The random
trajectories therewith leave the corresponding cycle and localize in the vicinity of this value
(Fig. 6). A dynamic behavior of the plug displacement is dependent of whether the dynamic
system is within or beyond its phase cycle. In the former case, the plug displacement os-
cillates within the bounds of the corresponding deterministic stepwise curve (Fig. 7). In the
latter case when the noise intensity is sufficiently large, the plug displacement increases
drastically.

It is known that the eruption of Mount St. Helens was accompanied by rather regular
repetitive long-period (or drumbeat) earthquakes over a long time. Moreover, such drum-
beat events were more random from time to time. In addition, subevents in the form of
randomly occurring series of smaller seismic events (produced by a separate random
process) have been imposed upon these long-period events (Matoza and Chouet, 2010).
The present study demonstrates that repetitive stick-slip motions of the plug representing
stochastic oscillations can be connected with these drumbeat earthquakes. The calculated
period between drumbeats (see Figs. 5 and 9) is in agreement with experimental data
(30–300 s, Iverson et al., 2006). The physical reason is that such earthquakes observed at
shallow depths (< 1 km at MSH) can be caused by the stick-slip motions of the magma-plug
system under the influence of noises where the driving force acting on a compliant crustal
body is large enough (the force drop responsible for this kind of seismicity can be estimated
from our calculations as ∆F =∆pA∼ 6× 107 kgm s−2, where ∆p∼ 2× 103 Pa).

Acknowledgements. This work was supported by the Ministry of Education and Science of the Rus-
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