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Oscillating α2-dynamos and the reversal phenomenon of the global
geodynamo
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Abstract. A geodynamo-model based on an α-effect which has been computed under conditions suitable for the geody-
namo is constructed. For a highly restricted class of radial α-profiles the linear α2-model exhibits oscillating solutions on a
timescale given by the turbulent diffusion time. The basic properties of the periodic solutions are presented and the influence
of the inner core size on the characteristics of the critical range that allows for oscillating solutions is shown. Reversals are
interpreted as half of such an oscillation. They are rather seldom events because they can only occur if the α-profile exists
long enough within the small critical range that allows for periodic solutions. Due to strong fluctuations on the convective
timescale the probability of such a reversal is very small. Finally, a simple non-linear mean-field model with reasonable
input parameters based on simulations of Giesecke et al. (2005) demonstrates the plausibility of the presented theory with a
long-time series of a (geo-)dynamo reversal sequence.
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1. Introduction

Paleomagnetic measurements show that the Earth’s magnetic
field exists for more than 109 years with nearly the same mag-
nitude (Kono & Tanaka 1995). The process that is responsible
for the production of this field is called the geodynamo and
essentially takes place in the fluid outer part of the Earth’s
core. The magnetic field is dominated by a dipole which –
as the most characteristic feature – from time to time “starts
to oscillate” and changes its polarity from one sign to the
other. This phenomenon has been called reversals and typi-
cally lasts 103−104 years (Bogue & Merill 1992). The dura-
tion of such “oscillating” phase is extremely short compared
with the time between consecutive reversals. In fact the aver-
age time between two reversals is about 50 times longer than
the duration of the reversal itself. The appearance of the re-
versals seems to be chaotic rather than periodic (Krause &
Schmidt 1988), and the probability of a reversal during a cer-
tain time span can be described by a Poisson distribution. On
geological time scales (∼ 107 − 108 years) the average rate
of reversals changes (Merill et al. 1996) and there exist even
very long periods were no reversal occurs – so called super-
chrons.
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Closely related to the reversal phenomenon are so called
excursions a kind of aborted reversals, where the polarity be-
gins to change but, instead of executing a full transition, the
dipole returns to the original polarity. Excursions occur about
ten times more often than reversals.

Deviations from a perfectly axisymmetric field become
manifest in the tilt of the dipole axis with respect to the ro-
tation axis (currently 11◦) and in the non-axisymmetric field
components in terms of localized flux patches. Such field pat-
terns in average exhibit a common directed drift motion, the
so called westward drift (see e.g. Bloxham & Jackson 1989;
Bloxham & Jackson 1992). Roughly simplifying the value of
this westward drift amounts approximately 0.◦3/year.

Simulations of the 3D MHD-equations (that describe a
thermal/chemical driven turbulent flow of a conducting fluid
in the Earth’s outer core and the magnetic field that is in-
duced by this flow) have been able to reproduce some of the
observed features of the Earth’s magnetic field (Glatzmaier
& Roberts 1996; Kageyama & Sato 1997; Christensen et al.
1998; Kuang & Bloxham 1999). Unfortunately such calcula-
tions are computational very expensive. The time periods that
can be covered are rather short compared to the time scales
on which for example changes of the mean reversal rate oc-
cur. In order to examine geodynamo-models in matters of the
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statistics of the reversal phenomenon mean-field models re-
main indispensable.

A further unsolved issue is the influence of the small
scales. Global MHD simulations are restricted in the achiev-
able parameter regime and in the affordable spatial resolu-
tion. These limits prevent from resolving the actual scales
of the turbulence in the fluid outer core, and for reasons of
numerical stability unphysical large values for the viscous
losses have to be adopted. Therefore the smaller scales are
artificially damped, and properties and influence of the small
scale turbulence remains unsure.

Sarson & Jones (1999) developed a 2.5D model to exam-
ine the reversal mechanism in detail. Their general picture
is a “large scale” αΩ-dynamo mechanism, where a strong
zonal flow and meridional circulations are responsible for the
dynamo action. Reversals are induced by fluctuations of the
meridional flow. The authors reclaim that a opposite dipole
polarity can evolve if the velocity remains long enough in a
regime that allows for oscillating magnetic fields.

Statistical properties in a one-dimensional αΩ-dynamo
model where reversals are triggered by a fluctuating α-effect
have been examined by Hoyng et al. (2002). Their model was
able to predict some basic features of the Sint-800 data and
although there have been some contradictions in general their
mean-field approach seems to be selfconsistent.

Other models, based on the absence of differential rota-
tion (or any shear flows) in the Earth’s core, interpreted the
geodynamo as an α2-dynamo (Steenbeck & Krause 1966). It
is known that the spherical α2-dynamo “almost always” pos-
sesses stationary axisymmetric magnetic field solutions (for
scalar α-effect) or longitudinally drifting non-axisymmetric
solutions (Rüdiger et al. 2003) and therefore such models
have difficulties to explain the reversal phenomenon. There
are few exceptions of the rule that α2-dynamos with scalar
α-effect are stationary.

Fearn & Rahman (2004) solved the Navier-Stokes equa-
tion and a mean-field induction equation for an α2-dynamo
model with a radial dependence of the α-effect given by
α ∝ sin π(r − Rin). This radial profile leads to a vanish-
ing α-effect at the boundaries of the fluid outer core but the
α-effect does not show any zero within the interior. They ob-
tained non-linear periodic solutions if the α was larger than
a certain critical value. In contrast to the solutions of Sar-
son & Jones (1999) their results were strongly influenced
by the non-linear back-reaction of the Lorentz force on the
flow which serves as a saturation mechanism for the mag-
netic field.

Without considering any mean flow, Stefani & Gerbeth
(2003) found oscillating α2-dynamos in case that the α-effect
(uniform in θ) changes its sign in radius. Already Soward
(1974) with his quasi-linear approximation for rotating con-
vection in layers with uniform density found that the α-effect
strongly varies with depth: it is negative (positive) in the
lower (upper) part of the convection layer – well described
by a radial sinus-function. Giesecke et al. (2005) have shown
that such profiles indeed result from numerical simulations
of the convection in the outer fluid core where the density
stratification is very small (see Sect. 3).

In the present paper we shall show that radial sin-profiles
of the α-effect lead to oscillating α2-dynamos but already a
slight deviation from this profile provides stationary modes.
Combining the principle properties of the α-effect from the
calculations of Giesecke et al. (2005) with a simple α2-
dynamo, a mean-field model is constructed that exhibits ir-
regular reversals induced by a fluctuating α-effect.

2. The equations

Taking the induction equation

∂B

∂t
= ∇×

(
u×B−η∇×B

)
(1)

and split magnetic field B and velocity u in a mean part, 〈B〉,
〈u〉 and a fluctuating component B′, u′ the mean magnetic
field 〈B〉 = B − B′ is determined by

∂〈B〉
∂t

= ∇×
(
〈u〉 × 〈B〉 + E − η∇× 〈B〉

)
(2)

with E =
〈
u′ × B′〉 as the mean electromotive force (EMF)

and η the (molecular) magnetic diffusivity. The components
of the EMF are usually given by

Ei = αij〈Bj〉 + βijk∂k〈Bj〉. (3)

The tensor αij correlates the EMF due to turbulent motions
with the large-scale magnetic field, including the effects of
anisotropy. In the simplest case the tensor βijk is related to
the turbulent diffusivity by βijk = ηTεijk which is the case
that we shall discuss here. In the following all mean flows
〈u〉 are neglected and we end up with a mean-field induction
equation that describes an α2-dynamo:

∂〈B〉
∂t

= ∇×
(

α〈B〉 − ηT∇× 〈B〉
)

, (4)

where ηT � η is implied. Equation (4) together with a pre-
scribed α-effect that depends on the radius r and the latitude
angle θ is solved numerically using an explicit finite differ-
ence scheme in two dimensions in spherical coordinates. The
standard resolution is 64 × 64 grid points in both radial and
latitudinal directions. A perfect conductor is assumed to exist
at the inner core boundary which is justified because of the
absence of turbulent motions in the solid inner core so that
the diffusivity is significant smaller inside the solid core than
inside the fluid outer core. However, a finitely conducting in-
ner core affects the behavior of the magnetic field as it has
been shown e.g. by Hollerbach & Jones (1993). At the outer
boundary a vacuum is simulated by increasing the magnetic
dissipation by a factor of 10. The details of the numerical
realizations of these boundary conditions are described by
Rüdiger et al. (2003). To estimate general properties of the
linear mean-field model at first a quenching mechanism is
abandoned to avoid the complicated questions that are asso-
ciated with the non-linearities. Only for the long time simula-
tions in Sect. 4 an equilibration mechanism is used to prevent
the field from growing to infinity.
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3. Geodynamo α-effect

3.1. General properties

Figure 1 shows a typical radial dependence of the α-effect
computed from local simulations of weak stratified and fast
rotating magnetoconvection by Giesecke et al. (2005). The α-
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Fig. 1. Radial dependence of the α-effect for Λ =
B2

2µρΩη
= 1. The

dashed thick line denotes the time average and the grey lines show
fluctuations in time.

effect on the northern hemisphere shows a maximum (mini-
mum) close to the upper (lower) boundary and the cross-over
takes place exactly in the middle of the convective unsta-
ble layer. The radial profile is almost perfectly antisymmetric
with respect to the middle of the layer so that the net α-effect
(integrated over r) approximately vanishes.

The dotted lines divide the domain in three parts. In the
outer zones the exact determination of the α-effect is difficult
because close to the boundaries strong gradients of the mag-
netic field require the exact knowledge of the turbulent dif-
fusivity ηT for an calculation of the α-effect from Eq. (3). In
the central part – between r = 0.48 and r = 0.87 – the field
gradients are negligible and thus the result should be more
reliable. But even if the presented profile comes with some
uncertainties, the qualitative overall behavior can quite well
be described by α ∼ sin r, where the argument of the sin
must be chosen in a way that the α-effect disappears at the
inner and the outer core boundary. If a density stratification
is included in the simulations, the α-effect cross-over moves
more and more towards the bottom of the box (see Rüdiger
& Hollerbach 2004 their Fig. 4.23).

3.2. Oscillating α2-dynamos

The general properties of the above presented α-effect are
used as an input for a global axisymmetric α2-dynamo. The
model is a spherical shell with the inner radius Rin and the
outer radius Rout. For the present date Earth the radius of the
solid inner core is given by Rin = 1222 km and the radius
of the fluid outer core is given by Rout = 3480 km. In all
simulations the radius of the outer core is scaled to 1 and
to maintain the correct ratio, the radius of the inner core is

scaled to 0.35. In the following the α-tensor is antisymmetric
with respect to the equator (∼ cos θ). The “standard profile”
of the α-effect is given by

α(r, θ) = α0 cos θ sin
(

2π
r − Rin

Rout − Rin

)
. (5)

This equation is slightly modified to vary the amplitude in the
upper (lower) half of the sphere and the zero-crossing of the
α-effect. We start with a strict sin-profile in radius of the α-
effect, i.e. with a cross-over R0 in the middle between Rin =
0.35 and Rout = 1 and equal amplitudes. If supercritical the
field grows exponentially and the resulting dynamo oscillates.

The condition to R0 for the excitation of the oscillation
of α2-dynamos is very strict. The oscillations only exist for
R0 ≈ 0.67...0.70. If the radial α-profile does not lie in the
narrow area indicated in Fig. 2 (top) then the dynamo does
not oscillate. The periodic solution due to the strict radial sin-
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Fig. 2. Critical domains for the radial profile of the α-effect that lead
to oscillating solutions. Top: critical interval for the location of the
zero. Bottom: critical interval for the magnitude of the lower ampli-
tude.

profile of the α-effect can also be suppressed by a variation of
one of the amplitudes. Numerical experiments were made by
multiplication of the lower part of the sin-profile with a factor
A. Oscillating solutions are found with δA � 0.1 (see bottom
of Fig. 2). Of course, a similar result would hold for the upper
part of the radial sin-profile but the general property of the
model is now known: The oscillating solution only exists if
the deviations of the actual α-effect profile from the profile
given by Eq. (5) are very small.
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Fig. 3. The magnetic field configuration of the cyclic solution with a strict radial sin-profile of the α-effect. The time in units of the diffusion
time is printed in the lower right corner of each snapshot.

Due to fluctuations a simple radial sin-profile of the α-
effect is rather seldom. A possible oscillation of the dynamo
only happens if the profile of the α-effect lasts long enough
within the critical range that allows for periodical solutions.
The minimum time which must be covered by the (critical)
radial α-profile in order to excite (half of) an oscillation has
been estimated from the simulations and is given approxi-
mately by
tmin ≈ 0.3 · τdiff (6)
with the diffusion time τdiff defined by

τdiff =
R2

out

η
. (7)

If this minimum time is not reached by the radial profile of
the α-effect the stationary solution would not start to become
oscillating.

In all simulations the time the dipole needs for the transi-
tion from one polarity to the other is of the order of τdiff . If we
assume η � 2 · 104 cm2/s (for molten iron under conditions
in the fluid outer core) we retrieve τdiff ∼ 105 years. To keep
the model consistent with the observed duration of a reversal
(104 years) we have to assume a turbulence-induced enhance-
ment of the magnetic diffusivity by one order of magnitude:

ηT ≈ 10 · η. (8)

With ηT ≈ 20m2/s the diffusion time reduces to 104 yrs, the
typical duration of a reversal. The ratio ηT/η ≈ 10 seems
not to be totally devious and was also the result of a rough
estimation of Giesecke et al. (2005). A comparable value has
been presented by Hoyng et al. (2002) who independently
determined a turbulent diffusion time of 10000−15000 years
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from the analyzation of autocorrelation functions from the
Sint-800 observations. However, it should be kept in mind,
that this are very rough estimations.

3.3. Field pattern of a reversal

Figure 3 shows the temporal behavior of the magnetic field
projected on a meridional plane during one oscillation. The
left-hand side of each panel shows the isolines of the toroidal
field component where solid (dashed) lines denote field direc-
tions clockwise (counterclockwise). The arrows on the right
hand side represent the poloidal field component. The length
of the arrows is scaled with the field length. The magnetic
field is concentrated near the rotation axis which is a con-
sequence of the latitudinal cos θ-dependence of the α-effect.
The solution is of dipolar parity. Regarding the toroidal com-
ponent in the northern hemisphere the considered reversal
cycle starts close to the rotation axis with a clockwise ori-
ented toroidal field in the upper half of the outer core and
a field of opposite sign starts in the lower part of the outer
core. The outer part weakens (1,2) and is replaced by a grow-
ing toroidal field of opposite sign (2,3,4). Between the two
belts of equally counterclockwise (clockwise) oriented com-
ponents that determine the appearance of the magnetic field
in the northern (southern) hemisphere in the middle of the re-
versal sequence (5,6) a new opposite directed field appears
(7) and pushes away the lower toroidal component (8). The
reversal is completed in panel (9) when the lower part of the
sphere is completely filled out by this new reversed oriented
field. Note that the poloidal field component already shows
the reversed polarity in part (6) of Fig. 3 and only undergoes
minor changes in the remainder of the sequence.

3.4. Oscillation period and critical dynamo number

Figure 4 shows the oscillation period (dashed line, in units of
τdiff ) and the critical dynamo number (solid line)

Ccrit
α =

αcritRout

ηT
(9)

in dependence of the location of the zero of the α-effect (R0).
Ccrit

α determines the minimum amplitude of the α-effect at
which dynamo-action occurs. The vertical dotted lines indi-
cate the transition between oscillating and stationary solu-
tions. The critical dynamo number is always larger for the
oscillating solutions. This is not a surprising result. The os-
cillating solutions have smaller scales than the stationary so-
lutions so that the Ohmic losses are larger for the oscillat-
ing solutions. The immediate consequence is that for given
amplitude of α the oscillating solutions are less nonlinear
than the non-oscillating solutions. In the center of the crit-
ical interval the oscillation-period is nearly constant for R0

and increases strongly if the zero of the α-effect is close to
the upper or lower boundary that separates the oscillating so-
lutions from the stationary states. The values of the critical
dynamo number for the symmetric and antisymmetric (with
respect to the equator) axisymmetric modes (S0, A0) and for
the first non-axisymmetric modes (A1, S1) are specified in
Table 1. Since the dominant part of the Earth’s magnetic field
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Fig. 4. The characteristics of the linear α2-dynamo model in depen-
dence of the location of the cross-over point R0 in the radial α-
profile.

is a dipole the A0 mode is of profound interest. Note that the
A0-mode (leads to a dipole solution) and the S0-mode (leads
to a quadrupole solution) coincide within our numerical ac-
curacy.

Table 1. Critical dynamo number for different basic dynamo modes
for α taken from Eq. (5) (R0 = 0.675)

A0 A1 S0 S1

C crit
α 17.04 17.67 17.04 17.67

3.5. Influence of the inner core size

The solid inner core of the Earth is growing on geological
time scales (hundreds of millions of years). Due to the spe-
cific thermodynamic conditions in the Earth’s interior the liq-
uid iron first freezes out at the center of the Earth because the
melting point of iron decreases faster with increasing pres-
sure than the temperature increases towards the center. The
appearance of a solid inner core few billion years ago resulted
in important changes of the physical conditions and processes
that dominate the flow in the fluid core. It is obvious that the
size of the solid inner core also should have a strong influence
on the oscillations of the α2-model that has been presented
above. We restrict our examination to the geometric effects
that arise from different sizes of the inner core and do not
consider the changes in the turbulence that are associated e.g.
with the emerging compositional convection. Figure 5 shows
the critical profiles of the α-effect that lead to oscillating so-
lutions for different ratios of Rout/Rin. For increasing size
of the inner core – indicated by the solid vertical line on the
left side – the critical interval becomes smaller (indicated by
the dashed line). At the same time the center of this interval
moves closer to the center of the fluid outer core (denoted
by the dotted line). For Rin = 0.1 (bottom curve) the criti-
cal cross-over-points of the α-profiles are clearly located in
the upper half of the fluid outer core, whereas for Rin = 0.7
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(top curve) the critical profile is nearly a perfect sin-profile as
given by Eq. (5) where the zero is located exactly in the mid-
dle of the fluid outer core and the width of the critical interval
has become very small.
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Fig. 5. Critical α-profiles for oscillating solutions for different sizes
of the inner core. From top to bottom: Rin = 0.7, 0.5, 0.35, 0.2, 0.1.
The dashed lines confine the critical interval and the dotted line de-
notes the center of the fluid outer core.

Although the critical interval becomes smaller with in-
creasing size of the inner core – making it more difficult to
excite an oscillation – one can speculate that the overall prob-
ability for a reversal in case of a fluctuating α-profile might
be approximately constant (or at least > 0) for all sizes since
the center of the interval moves towards the middle of the
fluid outer core which is the preferred location for the zero
cross-over of the α-effect (see Fig. 1).

3.6. Non-axisymmetric modes

The α-effect is a nontrivial tensor if the rotation is fast:
αzz → 0 for Ω → ∞ (in cylindrical ccordinates, see Moffatt
1970; Rüdiger 1978; Busse & Miin 1979) where αzz refers to
the α-effect in cylindrical coordinates and z denotes the di-
rection parallel to the rotation axis. The tensorial structure
of the α-effect is now taken into account, i.e. relation the
αzz = 0 is used in the dynamo equation.

Figure 6 shows Ccrit
α (solid line) and the drift period

(dashed line) for the lowest non-axisymmetric modes. Again
the results for the symmetric mode (S1) and the antisymmet-
ric mode (A1) coincide in both quantities. The dotted vertical
lines denote the critical interval for oscillating solutions for
the A0- respective S0-mode for the (scalar) isotropic α-tensor
as described in the previous section.

For the zero of the α-effect below R0 ≈ 0.705 we obtain
a westward drift. Above R0 ≈ 0.71 both modes show an east-
ward directed drift motion. The characteristic drift time scale
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Fig. 6. Ccrit
α of the non-axisymmetric modes for the case αzz = 0.

The corresponding drift periods are given by the dashed line.

is approximately (0.20...0.30)·τdiff for the westward drifting
modes and (0.40...0.50)·τdiff for the eastward drifting modes.
Note that the ratio of the drift timescale (0.2τdiff) to reversal
timescale (τdiff ) obtained from the simulations coincides with
the same ratio observed for the Earth where the timescale of
the westward drift is ∼ 2000 years and the duration of a rever-
sal ∼ 10000 years. However, these timescales are estimations
with a large uncertainty (e.g. data for the reversal time reach
from 100 to several 10000 years).

The critical dynamo numbers for the axisymmetric modes
(S0, A0) are larger than Ccrit

α of the A1/S1-modes so that
the solution would be dominated by these non-axisymmetric
modes. The axisymmetric modes with the higher eigenval-
ues are oscillating. We know that this constellation is in con-
tradiction to the observations of the Earth’s magnetic field
which is dominated by a stationary dipole-part. The non-
axisymmetric modes only lead to smaller contributions that
are manifested in the dipole tilt and the drifting field pat-
terns. The interaction of the nonaxisymmetric modes (for
anisotropic α) and the oscillating modes (for isotropic α with
cross-overs) is still an open question.

4. Irregular reversals induced by a fluctuating
α-effect

In the following the complications that appear from the non-
axisymmetric modes are ignored. The effects of the full non-
trivial α-tensor will be treated in a subsequent paper.

It is known from numerous calculations that the α-
coefficients are rather noisy quantities (e.g. Ossendrijver et
al. 2001; Giesecke et al. 2005). Figure 7 shows the maximum
(minimum) of the α-effect in dependence of the time in units
of the turnover time or advective timescale taken from the
simulations of Giesecke et al. (2005)

τadv =
Rout − Rin

u′ (10)

(where u′ is the turbulent rms-velocity).
The amplitude of the α-effect in the outer part of the shell

is slightly larger than in the inner part and the strength of the
fluctuations amounts approximately 10% of the average. It is
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Fig. 8. Reversals of the magnetic field. 173 events have been identified as reversals which leads to a mean polarity life-time of approximately
11 diffusion times.
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Fig. 7. Fluctuations of the maximum and the minimum of the α-
effect in dependence of time (in units of the turnover-time τadv)
taken from the results shown in Fig. 1.

obvious that the timescale of the fluctuations is given by τadv.
If we assume a typical value for the Earth’s fluid outer core:
u′ ≈ 5 · 10−4m/s the timescale of the fluctuations τadv is
related to the diffusive timescale τdiff by

τadv ≈ (0.01...0.02) · τdiff (11)

where τdiff is estimated by Eq (8). Thus the duration which
is necessary for the α-effect to stay in a critical state – given
by Eq. (6) – is about 15...30 times longer than the time scale
on which the α-effect fluctuates. This indicates that a reversal
clearly must be a very seldom event. It is also typical for the
presented theory of the reversal phenomenon of the geody-
namo that practically never a realization of the α-profile may
exist so long that a complete oscillation can happen.

For the long time calculations we adopt an isotropic α-
effect given by Eq. (5) and add fluctuations for the magnitude
and for the location of the zero. For simplicity we assume
equal averages for the upper and lower amplitude which both
vary independently. The fluctuations are described by a Gaus-
sian distribution with a standard deviation σ of 10% of the
average. The fluctuations of the zero cross-over are slightly
larger. We adopt an average value of R0 = 0.675 (the middle

of the fluid layer) with a standard deviation of σ = ±0.100.
According to Eq. (11) the actual values for the fluctuating
quantities are updated each 0.01τdiff .

The dynamo number is given by Cα = 20. This is clearly
overcritical and therefore the non-linearities introduced by a
local quenching function for the α-effect given by

α(B) = α0
1

1 + B2 (12)

might also have some influence on the solution. Indeed test
calculations show that increasing Cα – corresponding to a
stronger driven and thus more non-linear dynamo – reduces
the probability of a reversal.

Figure 8 shows the time dependence of the radial mag-
netic field at some point in the spherical shell for a long time
calculations that spans 2000 diffusion times (with the actual
time scaling this corresponds to 20 million years). The mag-
netic field reverses irregularly. Both polarity states occur with
nearly the same probability and field strength. The distribu-
tion of time-periods between each reversal can be described
by an exponential function e−∆t/t, thus the reversals are in-
dependent randomly occurring events (see Fig. 9). The num-
ber of short life-times between consecutive reversals is over-
estimated because it is difficult to distinguish between excur-
sions and reversals. Within the presented 2D-simulations the
only possibility to characterize a reversal is a sign change of
a field component. Other properties, e.g. an slight increase of
the tilt of the dipole axis followed by an immediate decrease
back to the original state as an indication for an excursion,
are intrinsically not available. Here we filtered out all events
where the field changes its sign only “slightly” and for a very
short time (<∼ 0.5 τdiff). This means that an original dipole-
state recovers very fast after the magnetic field just touches
the zero in Fig. 8.

For the chosen set of parameters the mean reversal rate
is about a factor of 5 higher than the rate observed for
the present date Earth. Short-time test-calculations also have
been performed with slightly different values for ηT/η. This
is the crucial relation that specifies the α-effect fluctuation
timescale with respect to the turbulent diffusion time. The
choice of this timescale fixes the time span for which the α-
effect remains in a certain state and therefore determines the
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probability of a reversal. Decreasing ηT/η increases the (tur-
bulent) diffusion time which results in a decrease of the re-
lation τadv/τdiff (assuming that τadv is fixed for the Earth’s
case). Therefore the timescale of the fluctuations of the α-
effect is shorter with respect to the diffusive timescale and
the probability of a reversal decreases. The results show that
already a slightly reduced value for τadv/τdiff significantly
increases the mean time between consecutive reversals.

Fig. 9. Number of realizations of life-times of a single polarity state.

5. Discussion

We have shown that an α2-dynamo is able to exhibit periodic
solutions where the dipole polarity changes on a timescale of
the order of the diffusion time τdiff . A crucial contribution for
the existence of an oscillating α2-dynamo is an α-effect that
strongly depends on the radial coordinate r. The most impor-
tant property of such α-effect is a sign change within the field
producing domain and a certain symmetry between positive
and negative magnitude. Only a highly restricted class of (ra-
dial) α-profiles leads to oscillating solutions. It turned out that
the radial profiles of the α-effect that have been calculated by
Giesecke et al. (2005) under conditions that are suitable for
the Earth’s fluid core provide the essential characteristics that
are necessary to construct such oscillating dynamos.

Long time simulations over 20 million years retrieve solu-
tions which show irregular reversals. The model is very sen-
sitive to the choice of parameters that describe the statistical
properties. In principle it should easily be possible to adopt
values for the fluctuating quantities (Cα, σ and τadv/τdiff) in
a way that would result in a time series which exhibit the ba-
sic properties of the geodynamo. The most important charac-
teristics are the mean reversal rate, the distribution of polarity
states, the distribution of the mean time between reversals and
the ratio between number of excursions to number of rever-
sals. An exact adjustment of the model at this stage is beyond
the purpose of this work because further effects that affect the
behavior of the field as well have not been considered. We ne-
glected the influence of a finitely conducting inner core. Test
calculations have shown that this does not prevent the solu-
tions from oscillating, only some properties like the positions
of the critical intervals might be slightly changed. Possible

changes in the behavior of the convection (changes in ampli-
tude and strength of the fluctuations) have been ignored just
as the (possible) existence of large-scale flows.

An unsolved issue is the inclusion of the non-trivial com-
ponents of the α-effect. Currently it is not possible to re-
trieve the characteristics of the non-axisymmetric parts of the
Earth’s magnetic field. The Ansatz αzz = 0 – based on the-
oretical reasons – resulted in a dynamo that is dominated by
the non-axisymmetric modes (and the axisymmetric modes,
dipole and quadrupole are strongly suppressed). A resulting
realistic solution should be described by a combination of dif-
ferent modes as it seems to be the case for the geodynamo.
Indeed, observations of the magnetic fields of other planets
or moons in the Solar system show, that various manifes-
tations of field configurations are possible. The nearly per-
fect dipole field of Saturn or the non-axisymmetric dominated
fields from Uranus and Neptune are some extraordinary ex-
amples.
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