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Abstract  12 

Auto Regressive Integrated Moving Average (ARIMA) models have been widely used to calculate 13 

monthly time series data formed by inter-annual variations of monthly data or inter-monthly variation. 14 

However, the influence brought about by inter-monthly variations within each year is often ignored. 15 

An improved ARIMA model is developed in this study accounting for both the inter-annual and 16 

inter-monthly variation. In the present approach, clustering analysis is performed first to hydrologic 17 

variable time series. The characteristics of each class are then extracted and the correlation between 18 

the hydrologic variable quantity to be predicted and characteristic quantities constructed by linear 19 

regression analysis. ARIMA models are built for predicting these characteristics of each class and the 20 

hydrologic variable monthly values of year of interest are finally predicted using the modeled values 21 

of corresponding characteristics from ARIMA model and the linear regression model. A case study is 22 

conducted to predict the monthly precipitation in Lanzhou precipitation station, China, using the 23 

model, and the results show that the accuracy of the improved model is significantly higher than the 24 

seasonal model, with the mean residual achieving 9.41 mm and the forecast accuracy increasing by 25 

21%. 26 

Keywords Hydrological Process, Seasonal ARIMA model, Clustering Regression, Precipitation 27 

prediction 28 
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1. Introduction 30 

Hydrological processes are complicated; they are influenced by not only deterministic, but also 31 

stochastic factors (Wang et al. 2007). The deterministic change in a hydrological process is always 32 

accompanied by the stochastic change. Generally speaking, determinism includes periodicity, 33 

tendency, and abrupt change. A strict deterministic hydrological process is rare. Stationary time series 34 

has been widely used in hydrological data assimilation and prediction to tackle the stochastic factors 35 

in hydrological processes. From the point of view of stochastic processes, hydrological data series 36 

usually comprises trend term and stationary term. The basic idea of Auto Regressive Integrated 37 

Moving Average (ARIMA) model, one of the most commonly used time series model, is to remove 38 

the trend term of series by difference elimination, so that a nonstationary series can be transformed 39 

into a stationary one. Some researchers have used ARIMA model for the analysis of hydrological 40 

process without considering the effects of seasonal factors (Jin et al. 1999; Niua et al. 1998; Toth et al. 41 

1999). However, most studies (Ahmad et al. 2001; Lehmann et al. 2001; Qi et al. 2006) neglected 42 

stationary test and the influence from inter-monthly variation within a year. In this paper, the seasonal 43 

ARIMA model is improved by removing the effect of seasonal factors, and the improved model is 44 

tested through a case study. The paper is organized as follows: the ARIMA model is introduced first, 45 

followed by the introduction of the issues in the currently existing ARIMA model and our proposed 46 

methods to improve it. A case study is conducted and discussion is addressed finally. 47 

2. ARIMA model 48 

A hydrological time series {y , 1,2, , }t t n could be either stationary or nonstationary. Given 49 

that there are essentially no strictly deterministic hydrological processes in nature, the analysis of 50 

hydrological data by means of nonstationary time series is of importance, among which ARIMA 51 

model is one of the available choices. 52 

2.1 ARIMA model 53 

For a stationary time series, ARMA ),( qp  model is defined as follows: 54 

 1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y u u u u                     (1) 55 



 

 

Where p denotes the autoregressive (AR) parameters, q represents the moving average (MA) 56 

parameters, the real parameters 
1 2, , ,  and p    are called autoregressive coefficients, the real 57 

parameters j （ qj ,...,2,1 ）are moving average coefficients, and tu  is an independent white 58 

noise sequence, i.e. ),0(~ 2Nut
. Usually the mean of  ty is zero; if not,  tt yy  is used in 59 

the model.  60 

Lag operator (B) is then introduced, thus  61 
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1 2( ) 1 q

qB B B B          (3) 63 

where ( )B  is the autoregressive operator and ( )B  is the moving-average operator.  64 

Then the model can be simplified as 65 

 ( ) ( )t tB y B u    (4) 66 

If  ty  are nonstationary, we can obtain the stationarized sequence tz  by means of difference, i.e.,  67 

 (1 )d d

t t tz B y y     (5) 68 

where d is the number of regular differencing. Then the corresponding ARIMA ),,( qdp model for 69 

ty  can be built (Box et al. 1997), where d is the number of differencing passes by which the 70 

nonstationary time series might be described as a stationary ARMA process.  71 

2.2 Seasonal ARIMA( , , )p d q  model 72 

Most hydrological time series have obviously seasonal (quasi-periodic) variation (Box et al. 73 

1967), representing recurring of hydrological processes over a relatively (but not strictly) fixed time 74 

interval. Monthly data series often shows a seasonal period of 12 months while quarterly data series 75 

always present a period of 4 quarters. Seasonality can be determined by examining whether the 76 



 

 

autocorrelation function of the data series with a specified seasonal order is significantly different 77 

from zero. For instance, if the autocorrelation coefficient of a monthly data series with new data series 78 

formed by a lag of 12 months is not significantly different from 0, the monthly data series does not 79 

have a seasonality of 12 months; if the autocorrelation coefficient is significantly different from 0, it is 80 

very likely this monthly data series has a seasonality of 12 months. A seasonal ARIMA model can be 81 

built for a data series with seasonality.  82 

For a time series  ty , its seasonality can be eliminated after D  orders of differencing with a 83 

period of S . If a further d orders of regular differencing is still needed in order to make the data 84 

series stationary, a seasonal ARIMA can be built for the data series as follows,  85 

 ( ) ( )(1 ) (1 ) ( ) ( )s d s D s

p P t q Q tB B B B y B B u        (6) 86 

where P is the number of seasonal autoregressive parameter, Q is the seasonal moving average order, 87 

S is the period length (in month in this work), and D denotes the number of differencing passes. 88 

2.3 Implementation of ARIMA model 89 

The procedure of estimating ARIMA model is given by the flowchart in Fig. 1 which involves 90 

the following steps: 91 

(1) Stationary identification. The input time series for an ARIMA model needs to be stationary, 92 

i.e., the time series should have a constant mean, variance, and autocorrelation through time. 93 

Therefore, the stationarity of the data series needs to be identified first. If not, the non-stationary time 94 

series is then required to be stationaried. Although the stationary test, such as unit root test and KPSS 95 

test are used to identify if a time series is stationary, plotting approaches based on scatter diagram, 96 

autocorrelation function diagram, and partial correlation function diagram are often used. The latter 97 

approach can usually provide not only the information whether the testing time series is stationary but 98 

indicate the order of the differencing which is needed to stationarize the time series. In this paper, we 99 

identify the stationarity of a time series from the autocorrelation function diagram, and partial 100 

correlation function diagram.  101 



 

 

If a time series is identified nonstationary, differencing is usually made to stationarize the time 102 

series. In the differencing method, the correct amount of differencing is normally the lowest order of 103 

differencing that yields a time series which fluctuates around a well-defined mean value and whose 104 

autocorrelation function (ACF) plot decays fairly rapidly to zero, either from above or below. The 105 

time series is often transformed for stabilizing its variance through proper transformation, e.g., 106 

logarithmic transformation. Although logarithmic transformation is commonly used to stabilize the 107 

variance of a time series rather than directly stationarize a time series, the reduction in the variance of 108 

a time series is usually helpful to reduce the order of difference in order to make it stationary.  109 

(2) Identification of the order of ARIMA model. After a time series has been stationarized, 110 

the next step is to determine the order terms of its ARIMA model, i.e., the order of differencing, d  111 

for nonstationay time series, the order of auto-regression, p , the order of moving average, q , and 112 

the seasonal terms if the data series show seasonality. While one could just try some different 113 

combinations of terms and see what works best strictly, the more systematic and common way is to 114 

tentatively identify the orders of the ARIMA model by looking at the autocorrelation function (ACF) 115 

and partial autocorrelation (PACF) plots of the sationarized time series. The ACF plot is merely a bar 116 

chart of the coefficients of correlation between a time series and lags of itself and the PACF plot 117 

present a plot of the partial correlation coefficients between the series and lags of itself. The detailed 118 

guidelines for identifying ARIMA model parameters based on ACF and PACF, can be found 119 

elsewhere, e.g, Pankratz (1983). It should be noted that, to be strict, the ARIMA model built in this 120 

step is actually an ARMA model with if the time series is stationary, which is in fact a special case of 121 

ARIMA model with 0d  . 122 

(3) Estimation of ARIMA model parameters. While least square methods (linear or nonlinear) 123 

are often used for the parameter estimation, we use the maximum likelihood method (Mcleod, 1983; 124 

Melard, 1984) in this paper. A t -test is also performed to test the statistical significance.  125 

(4) White noise test for residual sequence. It is necessary to evaluate the established ARIMA 126 

model with estimated parameters before using it to make forecasting. We use white noise test here. If 127 

the residual sequence is not a white noise, some useful information has not been extracted and the 128 



 

 

model needs to be further tuned. The method is illustrated as follows.  129 

Null hypothesis: 
0 : corr( , ) 0     ,t t kH e e k t    130 

Alternative hypothesis: 
0 0 01 0 0: corr( , ) 0     , t t kH e e k t    131 

The autocorrelation of the data series is measured by the autocorrelation coefficient which is 132 

defined as 133 
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where n is the number of cases, m is the maximum number of lag. In practice, m uses the value of 135 
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The test statistics is given by 137 
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Given the degree of confidence of 1 , if 139 

 
2 ( )Q m p q     (9) 140 

Then Q fits the 2  distribution at the significance of 1   and the null hypothesis is accepted. 141 

(5) Hydrological forecasting. The linear least squares method is usually applied for 142 

rainfall-runoff prediction. In general, based on the n  observation values, the values of future L  143 

time steps can be estimated
 
(Kohn et al. 1986). 144 

3. Improvement of conventional ARIMA model 145 

Seasonal ARIMA models apply for time series which arranges in order with a certain time 146 

interval or step, e.g., a month. However, in this case, while the seasonal ARIMA model is capable of 147 

dealing with the inter-annual variation of each monthly of a monthly data series, the information of 148 



 

 

inter-monthly variation of the time series may be lost. For example, after an order of 12 of seasonal 149 

differencing (term S in a general seasonal ARIMA model) of a monthly time series, the original 150 

monthly series has been migrated to a new time series without seasonality. A nonseasonal ARIMA 151 

model is then fitted to the new time series where the inter-monthly variation of original monthly time 152 

series has also migrated to the inter-monthly variation of the new series after seasonal differencing. 153 

The transformation of inter-monthly variation of original monthly data to the new inter-monthly 154 

variation of seasonally differenced series may result in loss of accuracy of model performance. In this 155 

study, twelve individual seasonal ARIMA models for precipitation prediction for each month are built 156 

from each monthly data series, e.g., the January data series from 1951 to 2000, which are referred to 157 

as ARIMA models of inter-annual variation ignoring the inter-monthly variation.  158 

In order to prevent from losing the inter-monthly variation information, we propose in this study 159 

the following improvement to the conventional seasonal ARIMA model, which simultaneously takes 160 

into account both kinds of temporal variation (inter-annual variation and inter-monthly variation). 161 

Clustering analysis is first applied to classify the monthly data series and extract characteristics of 162 

each data series class (Sun et al. 2005). In this study, we use Euclidean distance as the distance 163 

measurement in clustering analysis. The characteristics of each data series refer to the maximum, 164 

minimum, and truncated mean of the series of this class. A linear regression model is then built with 165 

hydrological variable to be predicted, e.g., monthly precipitation, as dependent variables and with 166 

maximum, minimum, and truncated mean of each class as independent variables in the linear 167 

regression model. For example, a monthly precipitation would be described as a linear regression 168 

function of the maximum, minimum, and truncated mean of the data series of a class where this 169 

month’s precipitation has been clustered in the clustering analysis. A conventional seasonal ARIMA 170 

model is built for the maximum, minimum, and truncated mean of each class, respectively, accounting 171 

for the inter-monthly variation of each characteristic variable. By this way, we are trying to avoid 172 

losing the inter-monthly variation information. The implementation of the improved ARIMA model 173 

involves the following procedure, as illustrated in Fig. 2. 174 

i). Perform clustering analysis on monthly data, and group the months with similar 175 

hydrological variation. 176 



 

 

ii). Find the maximum, minimum, and truncated mean of each cluster. 177 

iii). Build linear regression models and determine the associated parameters for each monthly 178 

data series. For example, for the precipitation in the i -th month, 179 

 ,max ,min ,i i j i j i j avg iy a y b y c y d      (10) 180 

where ia , ib , ic , and id  are the coefficients in the model for the i -th month 181 

hydrologic parameter, e.g., precipitation, which need to be estimated, and ,maxjy , ,minjy , 182 

and ,j avgy  are respectively the maximum, minimum, and truncated mean of the j -th 183 

class where the time series of the i -th month is identified in cluster analysis.  184 

iv). Build ARIMA models for the maximum, minimum, and truncated mean of each class and 185 

predict the characteristics for the time year of interest using the established ARIMA models. 186 

v). Substitute the predicted characteristics into the linear regression model built in Equation (10) 187 

and obtain the monthly hydrologic variable, say precipitation. 188 

4. Case study 189 

In this section, we are presenting an application of the proposed improved ARIMA model to the 190 

precipitation forecasting of Lanzhou precipitation station in Lanzhou, China. Lanzhou is located in the 191 

upper basin of Yellow River. It has a continental climate of mid-temperate zone, with an average 192 

precipitation of 360 mm and mean temperature of 10℃. In general, rainfall seasons are May through 193 

September, while drought occurs in spring and winter. The Lanzhou precipitation station is located at 194 

103.70°E, 35.90°N. The monthly precipitation data from 1951 to 2000 is used for parameter 195 

estimation and the monthly precipitations of 2001 are then predicted using the proposed model and 196 

compared with the observation values. In order to show the improvement of this present approach, we 197 

first build a conventional seasonal ARIMA model and a set of 12 ARIMA models for each monthly 198 

precipitation series which account for the seasonal variation. The improved ARIMA model 199 

accounting for both inter-month and inter-annual variation of monthly precipitation time series is then 200 



 

 

built using the presented approach and its prediction results are compared with the conventional 201 

ARIMA model and seasonal ARIMA model, as well as auto-regressive models.  202 

4.1 Conventional seasonal ARMA modeling 203 

The precipitation at the Lanzhou precipitation station from 1951 through 2001 and from 1991 204 

through 2001 are plotted as shown Fig. 3 (a) and (b) respectively. The two figures show less 205 

precipitation in winter and spring and more in summer and autumn. Fluctuation occurs to the data 206 

during high precipitation seasons. Using power transformation with an order of 1/3, fluctuations at 207 

high values are removed and the data become stationary, as shown in Fig. 3(c). According to 208 

autocorrelation and partial correlation functions, as shown in Fig. 4, seasonal term with a period of 12 209 

exists. With the difference elimination method, the order of the model can be determined from, and 210 

the following seasonal ARIMA model is obtained. 211 

 
12 12

1 2(1 ) (1 )(1 )t tB y B B u       (11) 212 

The maximum-likelihood method is then used for parameter estimation and the results are listed 213 

in Table 1. As shown in Table 1, parameter estimation is statistically significant. A white noise test is 214 

performed for the residual sequence. If the test does not pass, the model needs to be improved. As 215 

shown in Table 2, with a significance level of 5%, the test is passed, i.e., the useful information is 216 

extracted and the model is acceptable.  217 

4.2 Individual ARIMA model for each month data series 218 

As discussed in Section 2.2, the data can be classified into 12 groups associated with each month 219 

respectively. Stationary identification, stationary treatment, model identification, parameter estimation 220 

and residual test are performed for the 12 groups of data. A total of 12 ARIMA models are built and 221 

the estimated parameters are shown in Table 3.  222 

4.3 The improved ARIMA model based on clustering and regression analysis 223 

Box-Cox transformation is applied as a pretreatment of data for clustering analysis in order to 224 

stable the variance of the monthly precipitation data series. Given that the precipitation has values of 225 



 

 

zero resulting in negative infinity in the transformation, Box-Cox transformation (Thyer et al., 2002; 226 

Meloun et al., 2005; Ip et al., 2004) is corrected as follows. 227 

(original data 1) 1
0

Data after transformation

log( ) 0original data








  


 
 

 228 

After Box-Cox transformation, as shown in Fig. 6, the data are much more symmetric than the 229 

original data series, which is helpful for the later clustering analysis. Moreover, it can be seen that 230 

there are many zero precipitation values in the raw monthly precipitation data series and so does the 231 

transferred data. This indicates that the samples of data sequence may not be from one individual 232 

population but from multiple populations which further implies the necessarily of clustering analysis 233 

for the data series. Clustering analysis with Euclidean distance is then applied which indicates that the 234 

monthly precipitation sequences can be clustered into three classes, as shown in Fig. 7. 235 

Class 1: Jan., Feb., Nov., and Dec.

Class 2: Mar., Apr., and Oct.

Class 3: May, Jun., Jul., Aug., and Sep.







 236 

It is interesting that the clustering results are mostly coincides with the precipitation season. For 237 

example, Class 1 looks like corresponding to the drought season while Class 3 corresponds to the 238 

rainfall season. After the clustering analysis to the monthly precipitation time series, the 239 

characteristics of each class, i.e., maximum, minimum, and truncated mean, are identified, as shown 240 

in Fig. 8. Whereas fluctuations in the mean and minimum data series are relatively small, relatively 241 

larger variation are shown in the maximum data series. 242 

Linear regression models for each monthly precipitation are fitted using the characteristics of 243 

each class where the monthly precipitation data series is located. The parameters corresponding to 244 

each linear regression model are presented in Table 4 which pass the t -test at the significance of 0.05 245 

indicating that those linear models fit their data series well respectively. Following the steps described 246 

in Section 2.3, nine ARIMA modes are built for each of the characteristic variables of each class. The 247 

estimated parameters are shown in Table 5. Auto-regressive models with orders of 24 and 36, or AR 248 

(24) and AR (36), are also fitted to the monthly precipitation time series for comparative study with 249 



 

 

the improved ARIMA model and conventional ARIMA model.  250 

5. Results and discussion 251 

The monthly precipitations of 2001 are predicted using the improved ARIMA model as well as 252 

the conventional seasonal ARIMA model, the 12 seasonal ARIMA models for the precipitation of 253 

each month, and AR(24) and AR(36) models, the prediction results shown in Table 6 and Fig. 9.The 254 

absolute error of each method is 9.41, 11.49, 11.78, 17.05, and 17.82 mm for the improved ARIMA 255 

model, conventional ARIMA model, individual ARIMA for each month data series, AR(24), and 256 

AR(36), respectively, indicating that the improved ARIMA presented in this paper performs the best 257 

with the smallest errors. Compared with the conventional ARIMA model, the improved ARIMA 258 

model increases the prediction accuracy by 24%.  259 

The conventional ARIMA model predicts accurately for March, June, August, ad November but 260 

mismatches the other months’ precipitation. It predicts more accurately for October precipitation than 261 

the improved ARIMA model. The 12 individual ARIMA models for each month data series performs 262 

similarly to the conventional ARIMA model. The overall performance of AR(24) model does not 263 

show difference from that of AR(36) model; neither models perform as good as the improved ARIMA 264 

model or the conventional ARIMA model. However, the AR models give a better prediction for 265 

September precipitation of 2001 than the other two models. 266 

While the improved ARIMA model catches the correct trend overall and predicts the monthly 267 

precipitation in most months with high accuracy, it predicts highly accurately for the dry seasons, 268 

such as January, February, March, November, and December. However, it overestimates the 269 

precipitation of July and October and underestimates the September precipitation significantly. After a 270 

closer look at the data, we find that the mean precipitations of July and October are 63.8 and 23.48 271 

mm over the period of 1951 through 2000, respectively, whereas the observation precipitations of 272 

both months in 2001 are 39.5 and 5.2mm, respectively, much lower than the average precipitation of 273 

the two month. Over the 51 years period of 1951 through 2001, the precipitations of July and October 274 

in 2001 are 8
th
 and 14

th
 smallest, respectively. However, the precipitations of July and October in 275 

2001 are the 2
nd

 and 3
rd

 smallest from 1991 to 2001, respectively and significantly smaller than the 276 



 

 

precipitation of other months. This may be the reason that the improved and conventional model 277 

underestimates for these two months. However, it is interesting that the AR models underestimates the 278 

July precipitation but overestimates the October precipitation. This may be because of the much lower 279 

precipitation in July, 2000 and much higher precipitation in October, 2000, relative to the July and 280 

October in 2001, which, we believe, dominate the prediction of AR models. Similarly, the September 281 

precipitation of 2000 is close to the precipitation of September in 2001, which results a better AR 282 

prediction in that month. According to the performance of AR models, we expect an improvement if 283 

we apply AR model to stationarized data series rather than the raw data series.  284 

While the mean precipitation of September is 44.99 mm over the period of 1951 through 2000, 285 

the observation of September in 2001 is 82mm, the 4
th
 largest one from 1951-2001, and the largest on 286 

in past 45 years. Furthermore, September, 2001 is the only one whose precipitation is larger than the 287 

August’s precipitation in the previous ten years. These facts clearly show that the precipitation of 288 

September, 2001, is an extreme value, or outlier from statistical point of view. Therefore, it is fair to 289 

conclude that the built ARIMA model needs to be further improved for extreme situations.  290 

Given that both the inter-annual variation and inter-monthly variation of the hydrological data 291 

effect the prediction of hydrological time series, it is better to account for both for better prediction. 292 

Inter-monthly data may result from different populations as well as nonstationary factors, so the 293 

conventional seasonal ARIMA model which usually neglect the inter-monthly variations is not 294 

effective enough. An improved ARIMA model has been built in this paper taking account for both 295 

inter-annual and inter-monthly variation of hydrological data. Based on clustering analysis and 296 

regression, much more information is extracted from the data series. A case study is conducted for the 297 

precipitation of Lanzhou precipitation station with the improved ARIMA model and the comparison 298 

with the conventional ARIMA model indicates that the accuracy of the improved ARIMA model is 299 

significantly higher than that of the conventional ARIMA model. This improved approach can be 300 

applicable to other hydrological processes prediction with time series data, such as runoff, water level, 301 

and water temperature.  302 

Apparently, the present model could be further improved, especially for the prediction of 303 



 

 

extreme phenomena. Given that the selection of clustering method does affect model performance, 304 

different clustering methods, e.g., the definition of distance in the hierarchical clustering can be 305 

applied (Wang et al. 2005) to obtain better fittings. Characteristics value should be constructed by the 306 

features of hydrological time series, not limited to the extreme or mean values. A higher order of 307 

regression model rather than the linear regression may be used for the hydrologic forecasting. Last but 308 

not the least, artificial intelligence approaches, such as neural network or support vector machine, can 309 

be used to further improve the proposed ARIMA model.  310 
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Table 1. Estimated parameters of the conventional seasonal ARMA model 353 

Parameter Estimated value Standard deviation t - test Tail probability 

1
 -0.16379 0.03959 -4.14 <.0001 

2  0.93434 0.02117 44.14 <.0001 

 354 

Table 2. Autocorrelation of the residuals of the conventional seasonal ARIMA model 355 

AR 

Order 

2 statistic 
Degree of 

freedom 

Tail 

probability 
Autocorrelations of residue*  

6 0.770 4 0.943 0.000 -0.007 -0.018 0.021 -0.007 0.020 

12 6.910 10 0.734 0.013 0.014 0.012 -0.043 0.086 -0.019 

18 13.400 16 0.643 0.092 0.014 0.031 -0.004 0.021 0.020 

24 16.810 22 0.774 0.042 0.007 -0.022 -0.026 -0.032 0.039 

30 20.650 28 0.840 0.050 -0.031 -0.048 0.003 0.018 0.008 

36 28.100 34 0.752 0.045 0.018 0.064 -0.044 0.036 0.044 

42 30.900 40 0.849 0.057 -0.015 0.019 0.023 0.006 -0.001 

48 52.940 46 0.224 -0.012 0.040 -0.022 0.032 -0.079 -0.156 

*: Autocorrelations of residue for lag 1 through lag 48, 6 lags per row from Column 5 through 10. 356 

357 



 

 

 358 

Table 3. Seasonal ARIMA models for each month 359 

Month  Model  ML parameter estimation 

1 tt uByB )1()1(    0.95,  0.97      

2 tt uyB  )1( 2  0.49    

3 tt uBy )1(   0.38   

4 tt uBBy )1( 2

21    
1 20.27,  0.22     

5 tt uBy )1( 2  0.30    

6 tt uBy )1(   0.32    

7 tt uBy )1( 2  0.3349    

8 tt uByB )1()1(    0.182,  0.0528      

9 tt uByB )1()1(    0.956,  0.469    

10 tt uBy )1(   0.32    

11 tt uByB )1()1(    0.681,  0.741    

12 tt uByB )1()1(    0.650,  0.766    

 360 

Table 4. Estimated parameters for linear regression models 361 

Class Month id *
  

ia *
  

ic *
  

ib *
  

1 

1 0.16 0.09 0.39 0.23 

2 0.21 -0.12 1.21 -0.14 

11 -0.54 0.30 1.51 -0.62 

12 0.16 -0.27 0.89 0.53 

      

2 

3 1.92 -0.50 0.46 0.53 

4 -0.39 -0.57 2.33 -0.62 

10 -1.53 1.07 0.21 0.09 

      

3 

5 2.17 -0.41 0.22 0.98 

6 -0.19 -0.22 1.49 -0.35 

7 -0.22 0.27 1.05 -0.35 

8 -2.11 1.07 0.24 0.05 

9 0.35 -0.72 2.01 -0.33 

     
*
:
 
See Eq. (10) for definition. 362 
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 365 

Table 5. Parameters of ARIMA models for characteristic variables of each class 366 

Class 
Characteristic 

variable 
ARIMA model 

ML parameter 

estimating 

Standard deviation 

estimating 
Value of P  

1 

maximum tt uyBB  )1)(1(   -0.56 0.13 <0.0001 

mean tt uByB )1()1(   0.92 0.07 <0.0001 

minimum tt uByB 22 )1()1(   0.84 0.09 <0.0001 

      

2 

maximum tt uByB 2)1()1(   -0.30 0.14 0.00311 

mean tt uyBB  22 )1)(1(   -0.52 0.12 <0.0001 

minimum tt uyBB  22 )1)(1(   -0.64 0.11 <0.001 

      

3 

maximum tt uyBB  22 )1)(1(   -0.45 0.13 0.0006 

mean tt uByBB )1()1()1( 422    -0.82 0.81 0.20 0.16 <0.0001 

minimum tt uByBB )1()1()1( 422    -0.81 0.80 0.12 0.17 <0.0001 

 367 

Table 6. Predicted monthly precipitation data for 2001 368 

Month 
(2001) 

Observation 
(mm) 

Prediction by 
improved ARIMA 

model (mm) 

Prediction by 
conventional ARMA 

model (mm) 

Prediction by12 
seasonal ARIMA 

models (mm) 

Prediction by AR(24) 
model (mm) 

Prediction by AR(36) 
model (mm) 

prediction residual prediction residual prediction residual prediction residual prediction residual 

1 2.8 2.54 -0.25 0 -2.8 1.14 -1.66 0.27 -2.53 0.57 -2.23 

2 1.9 1.897 -0.003 0 -1.9 3.58 1.68 6.4 4.5 6.4 4.5 

3 0 0.099 0.099 5.38 5.38 12.10 12.10 4.89 4.89 5.24 5.24 

4 22.2 12.32 -9.871 11.99 -10.21 12.32 -9.88 5.81 -16.3 7.25 -14.9 

5 11.1 12.61 1.515 31.26 20.16 33.17 22.07 6.49 -4.61 12.05 0.95 

6 33 33.58 0.582 41.28 8.28 38.16 5.16 77.86 44.86 79.75 46.75 

7 39.5 60.26 20.76 64.88 25.38 47.19 7.69 22.55 -16.9 20.09 -19.4 

8 69.8 72.92 3.12 71.82 2.02 84.12 14.32 110.5 40.72 114.5 44.73 

9 82 32.5 -49.5 37.98 -44.02 35.17 -46.83 65.89 -16.11 63.2 -18.8 

10 5.2 32.03 26.83 20.15 14.95 24.37 19.17 55.45 50.25 58.78 53.58 

11 1.9 1.532 -0.368 0 -1.9 2.68 0.78 3.9 2 3.79 1.89 

12 0.9 0.898 -0.002 0 -0.9 0.94 0.04 0 -0.9 0 -0.9 

Mean absolute error 
(mm) 

9.41 11.49 11.78 17.05 17.82 

369 



 

 

 370 

Fig. 1. Procedure of applying ARIMA model 371 

 372 

 373 

Fig. 2. Prediction steps of ARIMA model based on clustering and regressive analysis 374 
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377 

 378 

Fig. 3. Monthly precipitation in Lanzhou Precipitation Station.  379 

Upper: Observation (1951-2001); Middle: Observation (1991-2000); Lower: After power 380 

transformation (1951-2001) 381 
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 384 

Fig. 4. Autocorrelation and Partial Correlation plots of data series  385 

Upper: Autocorrelation; Lower: Partial correlation 386 

387 



 

 

388 

 389 

Fig. 5. Autocorrelation and Partial Correlation plots of data series after differencing  390 

Upper: Autocorrelation; Lower: Partial correlation 391 

392 



 

 

 393 

Fig. 6. Monthly precipitation series before and after Box-Cox transformation 394 

 395 

 396 

Fig. 7. Clusters of monthly precipitation time series 397 
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399 

400 

 401 
Fig. 8. Characteristics of each time series class.  402 

Upper: first class; Middle: second class; Lower: third class 403 

404 



 

 

 405 

Fig. 9. Comparison between predicted and observed values 406 


