

1 **An improved ARIMA model for hydrological simulations**

2 H.R. Wang¹, C. Wang^{1*}, X. Lin², and J. Kang²

3 1. College of Water Sciences

4 Key Laboratory for Water and Sediment Sciences Ministry of Education,
5 Beijing Normal University,
6 19 Xinjiekouwai Street, Beijing, 100875 China

7 2. College of Mathematic Sciences, Beijing Normal University

8 19 Xinjiekouwai Street, Beijing, 100875 China

9 * Correspondence email: chengw@knights.ucf.edu

10

11

12 **Abstract**

13 Auto Regressive Integrated Moving Average (ARIMA) models have been widely used to calculate
14 monthly time series data formed by inter-annual variations of monthly data or inter-monthly variation.
15 However, the influence brought about by inter-monthly variations within each year is often ignored.
16 An improved ARIMA model is developed in this study accounting for both the inter-annual and
17 inter-monthly variation. In the present approach, clustering analysis is performed first to hydrologic
18 variable time series. The characteristics of each class are then extracted and the correlation between
19 the hydrologic variable quantity to be predicted and characteristic quantities constructed by linear
20 regression analysis. ARIMA models are built for predicting these characteristics of each class and the
21 hydrologic variable monthly values of year of interest are finally predicted using the modeled values
22 of corresponding characteristics from ARIMA model and the linear regression model. A case study is
23 conducted to predict the monthly precipitation in Lanzhou precipitation station, China, using the
24 model, and the results show that the accuracy of the improved model is significantly higher than the
25 seasonal model, with the mean residual achieving 9.41 mm and the forecast accuracy increasing by
26 21%.

27 **Keywords** Hydrological Process, Seasonal ARIMA model, Clustering Regression, Precipitation
28 prediction

29

30 **1. Introduction**

31 Hydrological processes are complicated; they are influenced by not only deterministic, but also
32 stochastic factors (Wang et al. 2007). The deterministic change in a hydrological process is always
33 accompanied by the stochastic change. Generally speaking, determinism includes periodicity,
34 tendency, and abrupt change. A strict deterministic hydrological process is rare. Stationary time series
35 has been widely used in hydrological data assimilation and prediction to tackle the stochastic factors
36 in hydrological processes. From the point of view of stochastic processes, hydrological data series
37 usually comprises trend term and stationary term. The basic idea of Auto Regressive Integrated
38 Moving Average (ARIMA) model, one of the most commonly used time series model, is to remove
39 the trend term of series by difference elimination, so that a nonstationary series can be transformed
40 into a stationary one. Some researchers have used ARIMA model for the analysis of hydrological
41 process without considering the effects of seasonal factors (Jin et al. 1999; Niua et al. 1998; Toth et al.
42 1999). However, most studies (Ahmad et al. 2001; Lehmann et al. 2001; Qi et al. 2006) neglected
43 stationary test and the influence from inter-monthly variation within a year. In this paper, the seasonal
44 ARIMA model is improved by removing the effect of seasonal factors, and the improved model is
45 tested through a case study. The paper is organized as follows: the ARIMA model is introduced first,
46 followed by the introduction of the issues in the currently existing ARIMA model and our proposed
47 methods to improve it. A case study is conducted and discussion is addressed finally.

48 **2. ARIMA model**

49 A hydrological time series $\{y_t, t=1,2,\dots,n\}$ could be either stationary or nonstationary. Given
50 that there are essentially no strictly deterministic hydrological processes in nature, the analysis of
51 hydrological data by means of nonstationary time series is of importance, among which ARIMA
52 model is one of the available choices.

53 **2.1 ARIMA model**

54 For a stationary time series, ARMA (p,q) model is defined as follows:

55
$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + u_t - \theta_1 u_{t-1} - \theta_2 u_{t-2} - \dots - \theta_q u_{t-q} \quad (1)$$

56 Where p denotes the autoregressive (AR) parameters, q represents the moving average (MA)
 57 parameters, the real parameters ϕ_1, ϕ_2, \dots , and ϕ_p are called autoregressive coefficients, the real
 58 parameters θ_j ($j = 1, 2, \dots, q$) are moving average coefficients, and u_t is an independent white
 59 noise sequence, i.e. $u_t \sim N(0, \sigma^2)$. Usually the mean of $\{y_t\}$ is zero; if not, $y'_t = y_t - \mu$ is used in
 60 the model.

61 Lag operator (B) is then introduced, thus

$$62 \quad \varphi(B) = 1 - \varphi_1 B - \varphi_2 B^2 - \dots - \varphi_p B^p \quad (2)$$

$$63 \quad \theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q \quad (3)$$

64 where $\varphi(B)$ is the autoregressive operator and $\theta(B)$ is the moving-average operator.

65 Then the model can be simplified as

$$66 \quad \varphi(B)y_t = \theta(B)u_t \quad (4)$$

67 If $\{y_t\}$ are nonstationary, we can obtain the stationarized sequence z_t by means of difference, i.e.,

$$68 \quad z_t = (1 - B)^d y_t = \nabla^d y_t \quad (5)$$

69 where d is the number of regular differencing. Then the corresponding ARIMA (p, d, q) model for
 70 y_t can be built (Box et al. 1997), where d is the number of differencing passes by which the
 71 nonstationary time series might be described as a stationary ARMA process.

72 2.2 Seasonal ARIMA(p, d, q) model

73 Most hydrological time series have obviously seasonal (quasi-periodic) variation (Box et al.
 74 1967), representing recurring of hydrological processes over a relatively (but not strictly) fixed time
 75 interval. Monthly data series often shows a seasonal period of 12 months while quarterly data series
 76 always present a period of 4 quarters. Seasonality can be determined by examining whether the

77 autocorrelation function of the data series with a specified seasonal order is significantly different
78 from zero. For instance, if the autocorrelation coefficient of a monthly data series with new data series
79 formed by a lag of 12 months is not significantly different from 0, the monthly data series does not
80 have a seasonality of 12 months; if the autocorrelation coefficient is significantly different from 0, it is
81 very likely this monthly data series has a seasonality of 12 months. A seasonal ARIMA model can be
82 built for a data series with seasonality.

83 For a time series $\{y_t\}$, its seasonality can be eliminated after D orders of differencing with a
84 period of S . If a further d orders of regular differencing is still needed in order to make the data
85 series stationary, a seasonal ARIMA can be built for the data series as follows,

$$86 \quad \phi_p(B)\Phi_P(B^s)(1-B)^d(1-B^s)^D y_t = \theta_q(B)\Theta_Q(B^s)u_t \quad (6)$$

87 where P is the number of seasonal autoregressive parameter, Q is the seasonal moving average order,
88 S is the period length (in month in this work), and D denotes the number of differencing passes.

89 **2.3 Implementation of ARIMA model**

90 The procedure of estimating ARIMA model is given by the flowchart in **Fig. 1** which involves
91 the following steps:

92 **(1) Stationary identification.** The input time series for an ARIMA model needs to be stationary,
93 i.e., the time series should have a constant mean, variance, and autocorrelation through time.
94 Therefore, the stationarity of the data series needs to be identified first. If not, the non-stationary time
95 series is then required to be stationaried. Although the stationary test, such as unit root test and KPSS
96 test are used to identify if a time series is stationary, plotting approaches based on scatter diagram,
97 autocorrelation function diagram, and partial correlation function diagram are often used. The latter
98 approach can usually provide not only the information whether the testing time series is stationary but
99 indicate the order of the differencing which is needed to stationarize the time series. In this paper, we
100 identify the stationarity of a time series from the autocorrelation function diagram, and partial
101 correlation function diagram.

102 If a time series is identified nonstationary, differencing is usually made to stationarize the time
103 series. In the differencing method, the correct amount of differencing is normally the lowest order of
104 differencing that yields a time series which fluctuates around a well-defined mean value and whose
105 autocorrelation function (ACF) plot decays fairly rapidly to zero, either from above or below. The
106 time series is often transformed for stabilizing its variance through proper transformation, e.g.,
107 logarithmic transformation. Although logarithmic transformation is commonly used to stabilize the
108 variance of a time series rather than directly stationarize a time series, the reduction in the variance of
109 a time series is usually helpful to reduce the order of difference in order to make it stationary.

110 **(2) Identification of the order of ARIMA model.** After a time series has been stationarized,
111 the next step is to determine the order terms of its ARIMA model, i.e., the order of differencing, d
112 for nonstationary time series, the order of auto-regression, p , the order of moving average, q , and
113 the seasonal terms if the data series show seasonality. While one could just try some different
114 combinations of terms and see what works best strictly, the more systematic and common way is to
115 tentatively identify the orders of the ARIMA model by looking at the autocorrelation function (ACF)
116 and partial autocorrelation (PACF) plots of the sationarized time series. The ACF plot is merely a bar
117 chart of the coefficients of correlation between a time series and lags of itself and the PACF plot
118 present a plot of the partial correlation coefficients between the series and lags of itself. The detailed
119 guidelines for identifying ARIMA model parameters based on ACF and PACF, can be found
120 elsewhere, e.g, Pankratz (1983). It should be noted that, to be strict, the ARIMA model built in this
121 step is actually an ARMA model with if the time series is stationary, which is in fact a special case of
122 ARIMA model with $d = 0$.

123 **(3) Estimation of ARIMA model parameters.** While least square methods (linear or nonlinear)
124 are often used for the parameter estimation, we use the maximum likelihood method (Mcleod, 1983;
125 Melard, 1984) in this paper. A t -test is also performed to test the statistical significance.

126 **(4) White noise test for residual sequence.** It is necessary to evaluate the established ARIMA
127 model with estimated parameters before using it to make forecasting. We use white noise test here. If
128 the residual sequence is not a white noise, some useful information has not been extracted and the

129 model needs to be further tuned. The method is illustrated as follows.

130 Null hypothesis: $H_0: \text{corr}(e_t, e_{t-k}) = 0 \quad \forall k, t$

131 Alternative hypothesis: $H_1: \text{corr}(e_{t_0}, e_{t_0-k_0}) \neq 0 \quad \exists k_0, t_0$

132 The autocorrelation of the data series is measured by the autocorrelation coefficient which is
133 defined as

134
$$r_k = \frac{\sum_{t=k+1}^n e_t e_{t-k}}{\sum_{t=1}^n e_t^2} \quad (k = 1, 2, \dots, m) \quad (7)$$

135 where n is the number of cases, m is the maximum number of lag. In practice, m uses the value of

136 $\left[\frac{n}{10} \right]$ when n is very large and $\left[\frac{n}{4} \right]$ when n is small. When $n \rightarrow \infty, \sqrt{n}r_k \sim N(0,1)$.

137 The test statistics is given by

138
$$Q = n(n+2) \sum_{k=1}^m \frac{r_k^2}{n-k} \quad (8)$$

139 Given the degree of confidence of $1-\alpha$, if

140
$$Q < \chi_{\alpha}^2(m-p-q) \quad (9)$$

141 Then Q fits the χ^2 distribution at the significance of $1-\alpha$ and the null hypothesis is accepted.

142 **(5) Hydrological forecasting.** The linear least squares method is usually applied for
143 rainfall-runoff prediction. In general, based on the n observation values, the values of future L
144 time steps can be estimated (Kohn et al. 1986).

145 3. Improvement of conventional ARIMA model

146 Seasonal ARIMA models apply for time series which arranges in order with a certain time
147 interval or step, e.g., a month. However, in this case, while the seasonal ARIMA model is capable of
148 dealing with the inter-annual variation of each monthly of a monthly data series, the information of

149 inter-monthly variation of the time series may be lost. For example, after an order of 12 of seasonal
150 differencing (term S in a general seasonal ARIMA model) of a monthly time series, the original
151 monthly series has been migrated to a new time series without seasonality. A nonseasonal ARIMA
152 model is then fitted to the new time series where the inter-monthly variation of original monthly time
153 series has also migrated to the inter-monthly variation of the new series after seasonal differencing.
154 The transformation of inter-monthly variation of original monthly data to the new inter-monthly
155 variation of seasonally differenced series may result in loss of accuracy of model performance. In this
156 study, twelve individual seasonal ARIMA models for precipitation prediction for each month are built
157 from each monthly data series, e.g., the January data series from 1951 to 2000, which are referred to
158 as ARIMA models of inter-annual variation ignoring the inter-monthly variation.

159 In order to prevent from losing the inter-monthly variation information, we propose in this study
160 the following improvement to the conventional seasonal ARIMA model, which simultaneously takes
161 into account both kinds of temporal variation (inter-annual variation and inter-monthly variation).
162 Clustering analysis is first applied to classify the monthly data series and extract characteristics of
163 each data series class (Sun et al. 2005). In this study, we use Euclidean distance as the distance
164 measurement in clustering analysis. The characteristics of each data series refer to the maximum,
165 minimum, and truncated mean of the series of this class. A linear regression model is then built with
166 hydrological variable to be predicted, e.g., monthly precipitation, as dependent variables and with
167 maximum, minimum, and truncated mean of each class as independent variables in the linear
168 regression model. For example, a monthly precipitation would be described as a linear regression
169 function of the maximum, minimum, and truncated mean of the data series of a class where this
170 month's precipitation has been clustered in the clustering analysis. A conventional seasonal ARIMA
171 model is built for the maximum, minimum, and truncated mean of each class, respectively, accounting
172 for the inter-monthly variation of each characteristic variable. By this way, we are trying to avoid
173 losing the inter-monthly variation information. The implementation of the improved ARIMA model
174 involves the following procedure, as illustrated in Fig. 2.

175 i). Perform clustering analysis on monthly data, and group the months with similar
176 hydrological variation.

ii). Find the maximum, minimum, and truncated mean of each cluster.

iii). Build linear regression models and determine the associated parameters for each monthly data series. For example, for the precipitation in the i -th month,

$$y_i = a_i y_{j,\max} + b_i y_{j,\min} + c_i y_{j,\text{avg}} + d_i \quad (10)$$

where a_i , b_i , c_i , and d_i are the coefficients in the model for the i -th month hydrologic parameter, e.g., precipitation, which need to be estimated, and $y_{j,\max}$, $y_{j,\min}$, and $y_{j,\text{avg}}$ are respectively the maximum, minimum, and truncated mean of the j -th class where the time series of the i -th month is identified in cluster analysis.

iv). Build ARIMA models for the maximum, minimum, and truncated mean of each class and predict the characteristics for the time year of interest using the established ARIMA models.

v). Substitute the predicted characteristics into the linear regression model built in Equation (10) and obtain the monthly hydrologic variable, say precipitation.

4. Case study

In this section, we are presenting an application of the proposed improved ARIMA model to the precipitation forecasting of Lanzhou precipitation station in Lanzhou, China. Lanzhou is located in the upper basin of Yellow River. It has a continental climate of mid-temperate zone, with an average precipitation of 360 mm and mean temperature of 10°C. In general, rainfall seasons are May through September, while drought occurs in spring and winter. The Lanzhou precipitation station is located at 103.70°E, 35.90°N. The monthly precipitation data from 1951 to 2000 is used for parameter estimation and the monthly precipitations of 2001 are then predicted using the proposed model and compared with the observation values. In order to show the improvement of this present approach, we first build a conventional seasonal ARIMA model and a set of 12 ARIMA models for each monthly precipitation series which account for the seasonal variation. The improved ARIMA model accounting for both inter-month and inter-annual variation of monthly precipitation time series is then

201 built using the presented approach and its prediction results are compared with the conventional
202 ARIMA model and seasonal ARIMA model, as well as auto-regressive models.

203 **4.1 Conventional seasonal ARMA modeling**

204 The precipitation at the Lanzhou precipitation station from 1951 through 2001 and from 1991
205 through 2001 are plotted as shown Fig. 3 (a) and (b) respectively. The two figures show less
206 precipitation in winter and spring and more in summer and autumn. Fluctuation occurs to the data
207 during high precipitation seasons. Using power transformation with an order of 1/3, fluctuations at
208 high values are removed and the data become stationary, as shown in Fig. 3(c). According to
209 autocorrelation and partial correlation functions, as shown in Fig. 4, seasonal term with a period of 12
210 exists. With the difference elimination method, the order of the model can be determined from, and
211 the following seasonal ARIMA model is obtained.

212
$$(1 - B^{12})y_t = (1 - \theta_1 B)(1 - \theta_2 B^{12})u_t \quad (11)$$

213 The maximum-likelihood method is then used for parameter estimation and the results are listed
214 in Table 1. As shown in Table 1, parameter estimation is statistically significant. A white noise test is
215 performed for the residual sequence. If the test does not pass, the model needs to be improved. As
216 shown in Table 2, with a significance level of 5%, the test is passed, i.e., the useful information is
217 extracted and the model is acceptable.

218 **4.2 Individual ARIMA model for each month data series**

219 As discussed in Section 2.2, the data can be classified into 12 groups associated with each month
220 respectively. Stationary identification, stationary treatment, model identification, parameter estimation
221 and residual test are performed for the 12 groups of data. A total of 12 ARIMA models are built and
222 the estimated parameters are shown in Table 3.

223 **4.3 The improved ARIMA model based on clustering and regression analysis**

224 Box-Cox transformation is applied as a pretreatment of data for clustering analysis in order to
225 stable the variance of the monthly precipitation data series. Given that the precipitation has values of

226 zero resulting in negative infinity in the transformation, Box-Cox transformation (Thyer et al., 2002;
227 Meloun et al., 2005; Ip et al., 2004) is corrected as follows.

228
$$\text{Data after transformation} = \begin{cases} \frac{(\text{original data} + 1)^\alpha - 1}{\alpha} & \alpha \neq 0 \\ \log(\text{original data}) & \alpha = 0 \end{cases}$$

229 After Box-Cox transformation, as shown in Fig. 6, the data are much more symmetric than the
230 original data series, which is helpful for the later clustering analysis. Moreover, it can be seen that
231 there are many zero precipitation values in the raw monthly precipitation data series and so does the
232 transferred data. This indicates that the samples of data sequence may not be from one individual
233 population but from multiple populations which further implies the necessity of clustering analysis
234 for the data series. Clustering analysis with Euclidean distance is then applied which indicates that the
235 monthly precipitation sequences can be clustered into three classes, as shown in Fig. 7.

236
$$\begin{cases} \text{Class 1: Jan., Feb., Nov., and Dec.} \\ \text{Class 2: Mar., Apr., and Oct.} \\ \text{Class 3: May, Jun., Jul., Aug., and Sep.} \end{cases}$$

237 It is interesting that the clustering results are mostly coincides with the precipitation season. For
238 example, Class 1 looks like corresponding to the drought season while Class 3 corresponds to the
239 rainfall season. After the clustering analysis to the monthly precipitation time series, the
240 characteristics of each class, i.e., maximum, minimum, and truncated mean, are identified, as shown
241 in Fig. 8. Whereas fluctuations in the mean and minimum data series are relatively small, relatively
242 larger variation are shown in the maximum data series.

243 Linear regression models for each monthly precipitation are fitted using the characteristics of
244 each class where the monthly precipitation data series is located. The parameters corresponding to
245 each linear regression model are presented in Table 4 which pass the t -test at the significance of 0.05
246 indicating that those linear models fit their data series well respectively. Following the steps described
247 in Section 2.3, nine ARIMA modes are built for each of the characteristic variables of each class. The
248 estimated parameters are shown in Table 5. Auto-regressive models with orders of 24 and 36, or AR
249 (24) and AR (36), are also fitted to the monthly precipitation time series for comparative study with

250 the improved ARIMA model and conventional ARIMA model.

251 **5. Results and discussion**

252 The monthly precipitations of 2001 are predicted using the improved ARIMA model as well as
253 the conventional seasonal ARIMA model, the 12 seasonal ARIMA models for the precipitation of
254 each month, and AR(24) and AR(36) models, the prediction results shown in Table 6 and Fig. 9. The
255 absolute error of each method is 9.41, 11.49, 11.78, 17.05, and 17.82 mm for the improved ARIMA
256 model, conventional ARIMA model, individual ARIMA for each month data series, AR(24), and
257 AR(36), respectively, indicating that the improved ARIMA presented in this paper performs the best
258 with the smallest errors. Compared with the conventional ARIMA model, the improved ARIMA
259 model increases the prediction accuracy by 24%.

260 The conventional ARIMA model predicts accurately for March, June, August, ad November but
261 mismatches the other months' precipitation. It predicts more accurately for October precipitation than
262 the improved ARIMA model. The 12 individual ARIMA models for each month data series performs
263 similarly to the conventional ARIMA model. The overall performance of AR(24) model does not
264 show difference from that of AR(36) model; neither models perform as good as the improved ARIMA
265 model or the conventional ARIMA model. However, the AR models give a better prediction for
266 September precipitation of 2001 than the other two models.

267 While the improved ARIMA model catches the correct trend overall and predicts the monthly
268 precipitation in most months with high accuracy, it predicts highly accurately for the dry seasons,
269 such as January, February, March, November, and December. However, it overestimates the
270 precipitation of July and October and underestimates the September precipitation significantly. After a
271 closer look at the data, we find that the mean precipitations of July and October are 63.8 and 23.48
272 mm over the period of 1951 through 2000, respectively, whereas the observation precipitations of
273 both months in 2001 are 39.5 and 5.2mm, respectively, much lower than the average precipitation of
274 the two month. Over the 51 years period of 1951 through 2001, the precipitations of July and October
275 in 2001 are 8th and 14th smallest, respectively. However, the precipitations of July and October in
276 2001 are the 2nd and 3rd smallest from 1991 to 2001, respectively and significantly smaller than the

277 precipitation of other months. This may be the reason that the improved and conventional model
278 underestimates for these two months. However, it is interesting that the AR models underestimates the
279 July precipitation but overestimates the October precipitation. This may be because of the much lower
280 precipitation in July, 2000 and much higher precipitation in October, 2000, relative to the July and
281 October in 2001, which, we believe, dominate the prediction of AR models. Similarly, the September
282 precipitation of 2000 is close to the precipitation of September in 2001, which results a better AR
283 prediction in that month. According to the performance of AR models, we expect an improvement if
284 we apply AR model to stationarized data series rather than the raw data series.

285 While the mean precipitation of September is 44.99 mm over the period of 1951 through 2000,
286 the observation of September in 2001 is 82mm, the 4th largest one from 1951-2001, and the largest on
287 in past 45 years. Furthermore, September, 2001 is the only one whose precipitation is larger than the
288 August's precipitation in the previous ten years. These facts clearly show that the precipitation of
289 September, 2001, is an extreme value, or outlier from statistical point of view. Therefore, it is fair to
290 conclude that the built ARIMA model needs to be further improved for extreme situations.

291 Given that both the inter-annual variation and inter-monthly variation of the hydrological data
292 effect the prediction of hydrological time series, it is better to account for both for better prediction.
293 Inter-monthly data may result from different populations as well as nonstationary factors, so the
294 conventional seasonal ARIMA model which usually neglect the inter-monthly variations is not
295 effective enough. An improved ARIMA model has been built in this paper taking account for both
296 inter-annual and inter-monthly variation of hydrological data. Based on clustering analysis and
297 regression, much more information is extracted from the data series. A case study is conducted for the
298 precipitation of Lanzhou precipitation station with the improved ARIMA model and the comparison
299 with the conventional ARIMA model indicates that the accuracy of the improved ARIMA model is
300 significantly higher than that of the conventional ARIMA model. This improved approach can be
301 applicable to other hydrological processes prediction with time series data, such as runoff, water level,
302 and water temperature.

303 Apparently, the present model could be further improved, especially for the prediction of

304 extreme phenomena. Given that the selection of clustering method does affect model performance,
305 different clustering methods, e.g., the definition of distance in the hierarchical clustering can be
306 applied (Wang et al. 2005) to obtain better fittings. Characteristics value should be constructed by the
307 features of hydrological time series, not limited to the extreme or mean values. A higher order of
308 regression model rather than the linear regression may be used for the hydrologic forecasting. Last but
309 not the least, artificial intelligence approaches, such as neural network or support vector machine, can
310 be used to further improve the proposed ARIMA model.

311 **References**

312 Ahmad, S., Khan, I.H., and Parida, B.P.: Performance of stochastic approaches for forecasting river
313 water quality. *Water Research*, 35(18): 4261-4266, 2001.

314 Box, G.E.P.: *Time Series Analysis Forecasting And Control*. China Statistics Press, Beijing, China,
315 1997.

316 Box, G.E.P.: Models for forecasting seasonal and nonseasonal time series, in: *Spectral Analysis of
317 Time Series*, Harris, B. ed., Wiley, New York, pp 271-311, 1967.

318 Toth, E.A. and Montanari, B.A.: Real-time flood forecasting via combined use of conceptual and
319 stochastic models, *Phys. Chem. Earth (B)*, 24(7): 793-798, 1999.

320 Ip, W.C., Wong, H., and Wang, S.G.: A GIC rule for assessing data transformation in regression.
321 *Statistics & Probability Letters*, 68(1): 105-110, 2004.

322 Jin, J.L., Ding, J., and Wei, Y.M.: Threshold autoregressive model based on genetic algorithm and its
323 application to forecasting the shallow groundwater level. *Hydraulic Engineering*, 27(6):51-55,
324 1999.

325 Kohn, R.: Estimation, prediction, and interpolation for ARIMA models with missing data. *J. Amer.
326 Statist. Assoc.*, 81: 751-761, 1986.

327 Lehmann, A. and Rode, M.: Long-term behaviour and cross-correlation water quality analysis of the
328 River Elbe, Germany. *Water Research*, 35(9):2153-2160, 2001.

329 Mcleod, A.I. and Sales, P.R.H. An algorithm for approximate likelihood calculation of ARMA and
330 seasonal ARMA models. *Applied Statistics*, 32:211-223. 1983

331 Melard, G. A fast algorithm for the exact likelihood of autoregressive-moving average models.
332 *Applied Statistics*, 33: 104-119. 1984.

333 Meloun, M., Sáňka, M., and Němec P.: The analysis of soil cores polluted with certain metals using
334 the Box-Cox transformation. *Environmental Pollution*, 137(2):273-280, 2005.

335 Pankratz, A.: *Forecasting with Univariate Box-Jenkins Models: Concepts and Cases*. Wiley, New
336 York, 1983.

337 Qi, W. and Zhen, M.P.: Winters and ARIMA model analysis of the lake level of salt Lake Zabuye,
338 Tibetan Plateau. *Journal of Lake Science*, 18(1):21-28, 2006.

339 Shumway, R. H. and Stoffer, D. S.: *Time Series Analysis and Its Applications* Springer-Verlag New
340 York, Inc., Secaucus, NJ, USA, 2005.

341 Sun, L.H., Zhao, Z.G., and Xu, L.: Study of summer rain pattern in monsoon region of east China and
342 its circulation cause. *Journal of Applied Meteorological Science*, 16(z1):57-62, 2005.

343 Thyer, M., Kuczera, G., and Wang, Q.J.: Quantifying parameter uncertainty in stochastic models
344 using the Box–Cox transformation. *Journal of Hydrology*, 265(1-4):246-257, 2002.

345 Wang, H.R., Ye, L.T., and Liu, C.M.: Problems in wavelet analysis of hydrologic series and some
346 suggestions on improvement. *Progress in Natural Science*, 17(1):80-86, 2007.

347 Wang, Y., Yin, L.Z., and Zhang, Y.: Judging model of fuzzy optimal dividing based on improved
348 objective function clustering method. *Mathematics Practice and Theory*, 35(11):142-147, 2005.

349 Niua, X.F., Edmiston, H.L., and Bailey, G.O.: Time series models for salinity and other
350 environmental factors in the Apalachicola estuarine system. *Estuarine, Coastal and Shelf Science*,
351 (46):549–563, 1998.

352

353

Table 1. Estimated parameters of the conventional seasonal ARMA model

Parameter	Estimated value	Standard deviation	t - test	Tail probability
θ_1	-0.16379	0.03959	-4.14	<.0001
θ_2	0.93434	0.02117	44.14	<.0001

354

355

Table 2. Autocorrelation of the residuals of the conventional seasonal ARIMA model

AR Order	χ^2 statistic	Degree of freedom	Tail probability	Autocorrelations of residue*					
				-0.007	-0.018	0.021	-0.007	0.020	
6	0.770	4	0.943	0.000	-0.007	-0.018	0.021	-0.007	0.020
12	6.910	10	0.734	0.013	0.014	0.012	-0.043	0.086	-0.019
18	13.400	16	0.643	0.092	0.014	0.031	-0.004	0.021	0.020
24	16.810	22	0.774	0.042	0.007	-0.022	-0.026	-0.032	0.039
30	20.650	28	0.840	0.050	-0.031	-0.048	0.003	0.018	0.008
36	28.100	34	0.752	0.045	0.018	0.064	-0.044	0.036	0.044
42	30.900	40	0.849	0.057	-0.015	0.019	0.023	0.006	-0.001
48	52.940	46	0.224	-0.012	0.040	-0.022	0.032	-0.079	-0.156

356

*: Autocorrelations of residue for lag 1 through lag 48, 6 lags per row from Column 5 through 10.

357

358

359

Table 3. Seasonal ARIMA models for each month

Month	Model	ML parameter estimation
1	$(1 - \alpha B)y_t = (1 - \beta B)u_t$	$\alpha = -0.95, \beta = -0.97$
2	$(1 - \alpha B^2)y_t = u_t$	$\alpha = -0.49$
3	$y_t = (1 - \beta B)u_t$	$\beta = 0.38$
4	$y_t = (1 - \beta_1 B - \beta_2 B^2)u_t$	$\beta_1 = 0.27, \beta_2 = -0.22$
5	$y_t = (1 - \beta B^2)u_t$	$\beta = -0.30$
6	$y_t = (1 - \beta B)u_t$	$\beta = -0.32$
7	$y_t = (1 - \beta B^2)u_t$	$\beta = -0.3349$
8	$(1 - \alpha B)y_t = (1 - \beta B)u_t$	$\alpha = -0.182, \beta = -0.0528$
9	$(1 - \alpha B)y_t = (1 - \beta B)u_t$	$\alpha = 0.956, \beta = 0.469$
10	$y_t = (1 - \beta B)u_t$	$\beta = -0.32$
11	$(1 - \alpha B)y_t = (1 - \beta B)u_t$	$\alpha = 0.681, \beta = 0.741$
12	$(1 - \alpha B)y_t = (1 - \beta B)u_t$	$\alpha = 0.650, \beta = 0.766$

360

361

Table 4. Estimated parameters for linear regression models

Class	Month	d_i^*	a_i^*	c_i^*	b_i^*
1	1	0.16	0.09	0.39	0.23
	2	0.21	-0.12	1.21	-0.14
	11	-0.54	0.30	1.51	-0.62
	12	0.16	-0.27	0.89	0.53
2	3	1.92	-0.50	0.46	0.53
	4	-0.39	-0.57	2.33	-0.62
	10	-1.53	1.07	0.21	0.09
	5	2.17	-0.41	0.22	0.98
3	6	-0.19	-0.22	1.49	-0.35
	7	-0.22	0.27	1.05	-0.35
	8	-2.11	1.07	0.24	0.05
	9	0.35	-0.72	2.01	-0.33

*: See Eq. (10) for definition.

362

363

364

Table 5. Parameters of ARIMA models for characteristic variables of each class

Class	Characteristic variable	ARIMA model	ML parameter estimating	Standard deviation estimating	Value of P		
1	maximum	$(1-B)(1-\alpha B)y_t = u_t$	-0.56	0.13	<0.0001		
	mean	$(1-B)y_t = (1-\beta B)u_t$	0.92	0.07	<0.0001		
	minimum	$(1-B)^2 y_t = (1-\beta B)^2 u_t$	0.84	0.09	<0.0001		
2	maximum	$(1-B)y_t = (1-\beta B)^2 u_t$	-0.30	0.14	0.00311		
	mean	$(1-\alpha B^2)(1-B)^2 y_t = u_t$	-0.52	0.12	<0.0001		
	minimum	$(1-\alpha B^2)(1-B)^2 y_t = u_t$	-0.64	0.11	<0.001		
3	maximum	$(1-\alpha B^2)(1-B)^2 y_t = u_t$	-0.45	0.13	0.0006		
	mean	$(1-\alpha B)^2(1-B)^2 y_t = (1-\beta B^4)u_t$	-0.82	0.81	0.20	0.16	<0.0001
	minimum	$(1-\alpha B)^2(1-B)^2 y_t = (1-\beta B^4)u_t$	-0.81	0.80	0.12	0.17	<0.0001

Table 6. Predicted monthly precipitation data for 2001

Month (2001)	Observation (mm)	Prediction by improved ARIMA model (mm)		Prediction by conventional ARMA model (mm)		Prediction by 12 seasonal ARIMA models (mm)		Prediction by AR(24) model (mm)		Prediction by AR(36) model (mm)	
		prediction	residual	prediction	residual	prediction	residual	prediction	residual	prediction	residual
1	2.8	2.54	-0.25	0	-2.8	1.14	-1.66	0.27	-2.53	0.57	-2.23
2	1.9	1.897	-0.003	0	-1.9	3.58	1.68	6.4	4.5	6.4	4.5
3	0	0.099	0.099	5.38	5.38	12.10	12.10	4.89	4.89	5.24	5.24
4	22.2	12.32	-9.871	11.99	-10.21	12.32	-9.88	5.81	-16.3	7.25	-14.9
5	11.1	12.61	1.515	31.26	20.16	33.17	22.07	6.49	-4.61	12.05	0.95
6	33	33.58	0.582	41.28	8.28	38.16	5.16	77.86	44.86	79.75	46.75
7	39.5	60.26	20.76	64.88	25.38	47.19	7.69	22.55	-16.9	20.09	-19.4
8	69.8	72.92	3.12	71.82	2.02	84.12	14.32	110.5	40.72	114.5	44.73
9	82	32.5	-49.5	37.98	-44.02	35.17	-46.83	65.89	-16.11	63.2	-18.8
10	5.2	32.03	26.83	20.15	14.95	24.37	19.17	55.45	50.25	58.78	53.58
11	1.9	1.532	-0.368	0	-1.9	2.68	0.78	3.9	2	3.79	1.89
12	0.9	0.898	-0.002	0	-0.9	0.94	0.04	0	-0.9	0	-0.9
Mean absolute error (mm)		9.41		11.49		11.78		17.05		17.82	

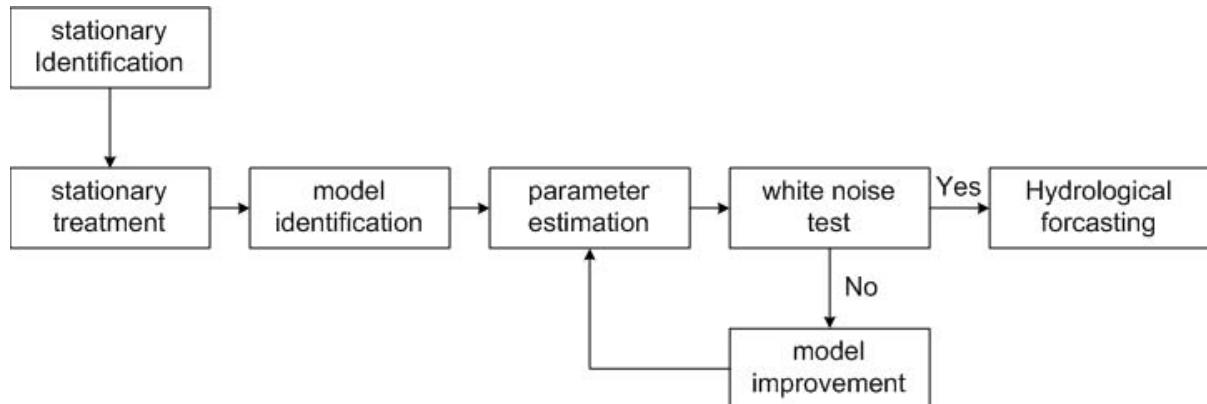


Fig. 1. Procedure of applying ARIMA model

372

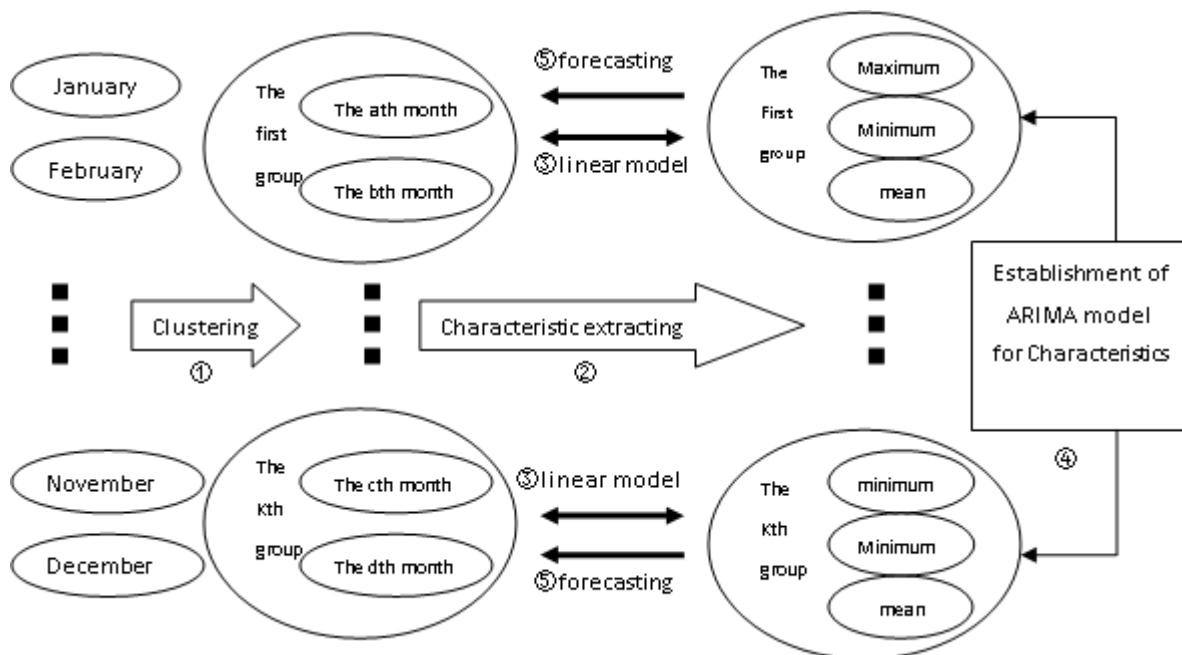
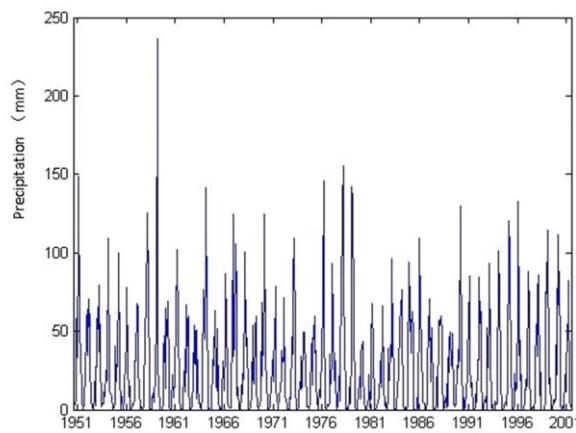
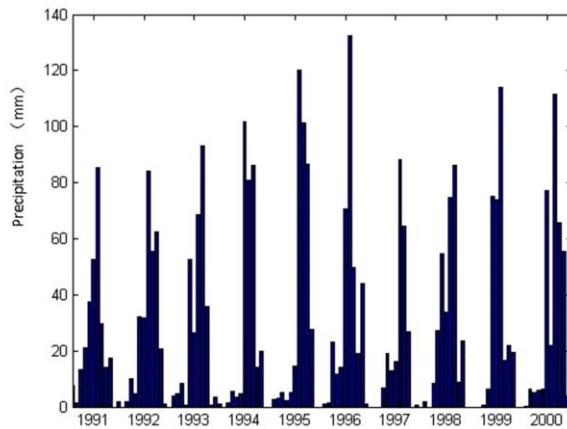


Fig. 2. Prediction steps of ARIMA model based on clustering and regressive analysis



376



377



378

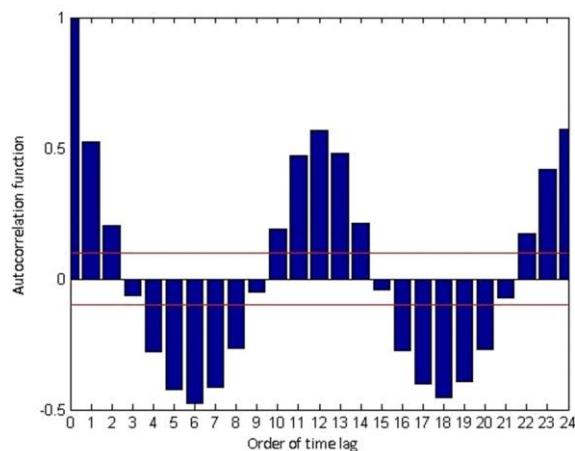
379

Fig. 3. Monthly precipitation in Lanzhou Precipitation Station.

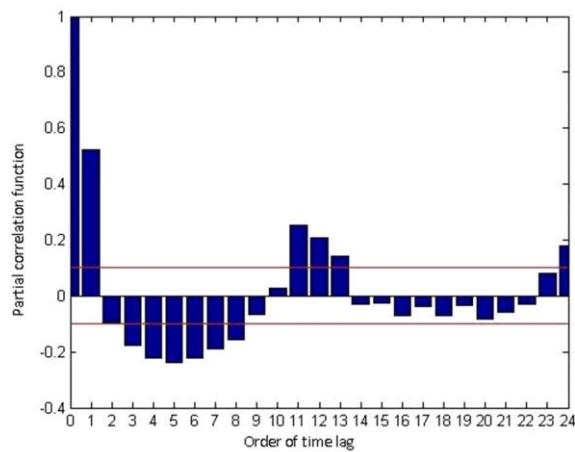
380

Upper: Observation (1951-2001); Middle: Observation (1991-2000); Lower: After power
381 transformation (1951-2001)

382



383



384

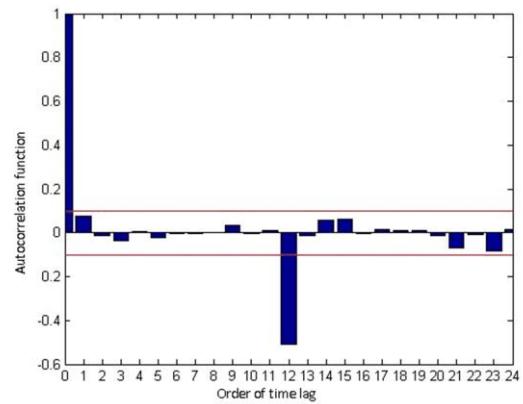
385

Fig. 4. Autocorrelation and Partial Correlation plots of data series

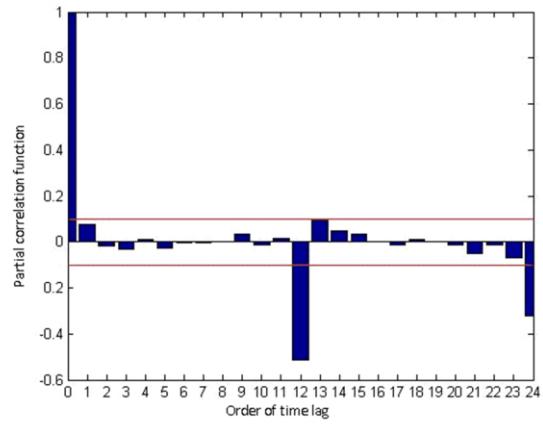
386

Upper: Autocorrelation; Lower: Partial correlation

387



388

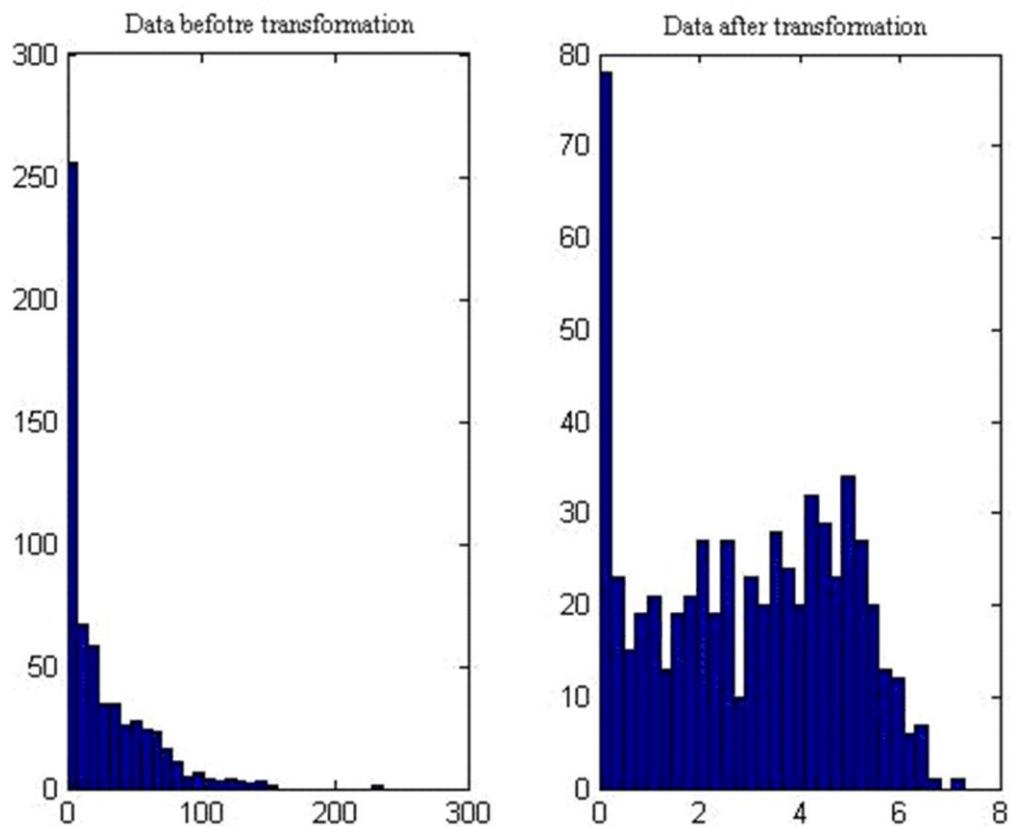


389

390 Fig. 5. Autocorrelation and Partial Correlation plots of data series after differencing

391 Upper: Autocorrelation; Lower: Partial correlation

392

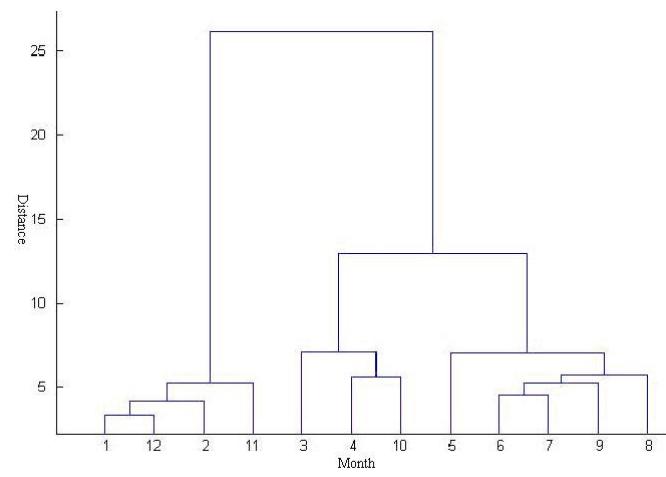


393

394

Fig. 6. Monthly precipitation series before and after Box-Cox transformation

395

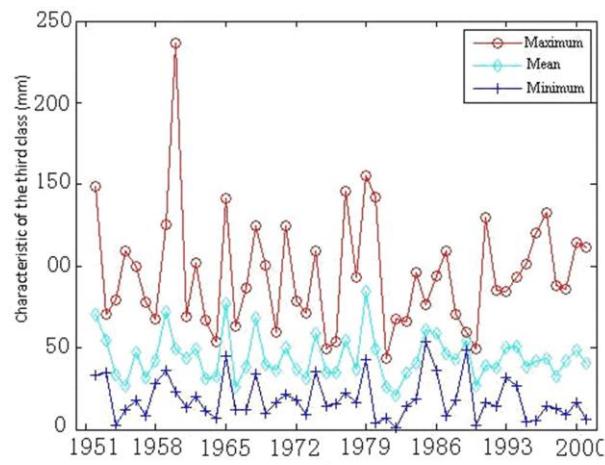


396

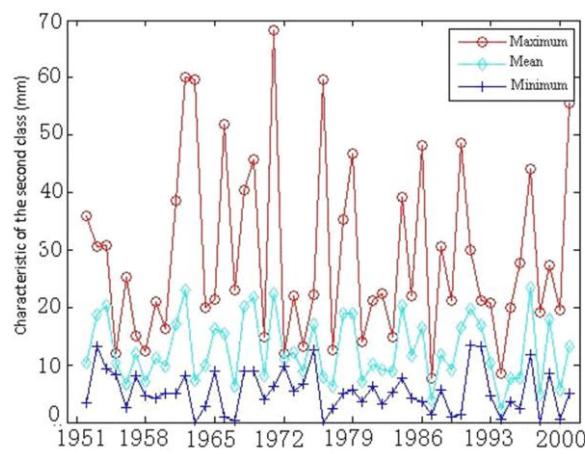
397

Fig. 7. Clusters of monthly precipitation time series

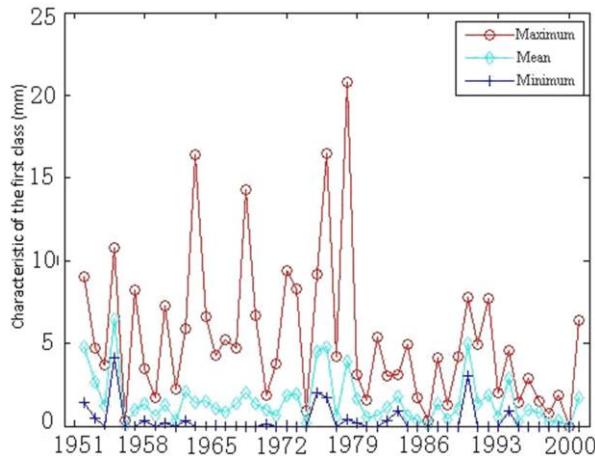
398



399



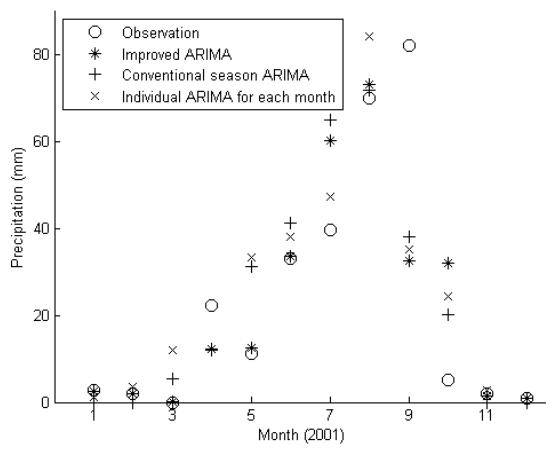
400



401
402
403

Fig. 8. Characteristics of each time series class.
Upper: first class; Middle: second class; Lower: third class

404



405

406

Fig. 9. Comparison between predicted and observed values