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Dear Reviewer: 

 

We thank you for providing us the opportunity for explaining further the progress we have 

made. In the attached manuscript, we have 

1. provided one section entitled ``Nonlinearity and Diverged trajectories,’’ which includes 

numerical results of the 3D-NLM and calculations of the ensemble Lyapunov exponents 

with five additional figures (i.e., Figures 7-11);   

2. provided  Appendix A to discuss the derivations of Eq. (3) that includes the σY term; 

3. provided Appendix B and Figure B1 to discuss the closed-form solution with elliptic 

functions and compare it with the closed-form solution represented by the elementary 

trigonometric functions in section 3; 

4. provided Figure 5d to show the solutions near stable critical points (with different initial 

conditions for  Xo)  in the 3D-NLM with r ്0.	 
 

Our specific responses to your comments are provided below. We really appreciate your 

comments which have greatly improved the quality of the study and hope that our responses are 

acceptable.   

 

Best Regards, 

 

Dr. Bo-Wen Shen 

 
Associate Professor 
Department of Mathematics and Statistics  
San Diego State University 
5500 Campanile Drive 
San Diego, CA 92182-7720  
Tel: 619-594-5962 
Email: bshen@mail.sdsu.edu 
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Reviewer #2 (Comments to Author):  
Review comments:  
 
General Comments 
 
This is generally a pedagogic contribution elucidating the dynamics and energetics of 
the cyclic behavior of the Lorenz ’63 (L63) system of equations. Starting from the full 3 
component system the author makes the ad hoc simplification of dropping the terms 
accounting for fluid viscosity and and thermal diffusivity leading to the 3D nondissipative 
Lorenz model (3D-NLM). This allows the energy cycle to be analyzed using 
straightforward, elementary mathematical techniques. The paper is not particularly 
novel but does present a useful perspective on the mechanisms that drive 
the ’quasicyclic’ trajectories in the full L63. 
 
 
Thanks for your comments. In addition to the closed-form solution using trigonometric functions, 
we presented another closed-form solution using elliptic functions in Appendix B in the attached 
file. We also added one section to discuss the role of nonlinearity (i.e., nonlinear feedback loop) 
in producing diverged trajectories, showing dependence of solutions on initial conditions.   
 
Specific Comments 
 
Since the L63 has been extensively studied and is such a restricted model of the 
physics of two-dimensional dry convection does its dynamics truly warrant yet another 
publication? It is hoped this question will stimulate some discussion in addition to 
comments from the author. 
 
The author states that the solution to equation (18) has not appeared in the published 
literature. This may or not be true but is hardly noteworthy since the equation is an 
energy conservative system with a gradient potential. The solution could be inferred 
from many texts on classical dynamical systems and appears in at least one 
compendium of solutions to ordinary differential equations; i.e. the text by Murphy. 
 
 
Thanks for your comments and questions. Although the Lorenz’63 model, which has been 
studied widely, is a simplified model with limited physical processes (e.g., limited degree of 
nonlinearity), further analysis on the Lorenz model with or without dissipative terms can help 
understand the fundamental role of nonlinearity in the chaotic solutions and impact of increased 
nonlinearity (i.e., an extension of the nonlinear feedback loop in Shen 2014ab) on solutions’ 
stability. Note that the nonlinearity is from the horizontal advection of temperature term, which 
appears in all of climate and weather models. Therefore, improving the understanding of the 
(thermodynamic) feedback by the nonlinearity may help improve the representation of the 
thermodynamic feedback in numerical models, which remains big uncertainties in climate model 
simulations. The related studies were performed with an ultimate goal of addressing the question 
of under which conditions the increased degree of nonlinearity associated with increased 
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resolutions may help improve the predictability of the real-world climate/weather models (e.g., 
Shen et al., 2012; 2013a,b).   
 
In the attached manuscript, we provided one section to discuss how the solution with 
trigonometric functions may help understand the role of nonlinearity in producing diverged 
trajectories over a long but finite-time period.  
 
 
References: 
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Abstract.

1 Introduction

This file provides responses to reviewers’ comments. We thank the reviewers and Editor for

providing us the opportunity for explaining further the progress we have made. In the manuscript,

we have (1) provided one section entitled “Nonlinearity and Diverged trajectories”, which includes5

numerical results of the 3D-NLM and calculations of the ensemble Lyapunov exponents with five

additional figures (i.e., Figures 7-11); (2) provided Appendix A to discuss the derivations of Eq.

(3) that includes the σ Y term; (3) provided Appendix B and Figure B1 to discuss the closed-form

solution with elliptic functions and compare it with the closed-form solution represented by the

elementary trigonometric functions in section 3; (4) provided Figure 5d to show the solutions near10

stable critical points (with different initial conditions for Xo) in the 3D-NLM with r 6= 0.

2 Nonlinearity and Diverged trajectories

Sensitive dependence of solutions on initial perturbations may also appear in conservative systems.

This is called Hamiltonian chaos. To understand whether the 3D-NLM is chaotic or not, we first

perform analytical analysis and then calculate and analyze ensemble Lyapunov exponents. As15

dX/dτ = σY in Eq. (3), Eq. (15) can be rewritten as: dY/dτ =−M2

σ
X . The two equations with an

initial condition (X,Y ) = (X0,0) lead to three critical points (Xc, Yc) at (0,0) and (±
√

2σr+X2

0
,

0). The first one (0,0) is unstable (as a saddle point), while the other two are stable. These critical

points appear in association with the inclusion of the heating term, as the 3D-NLM with r = 0
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only contains a trivial stable critical point at (0,0). More importantly, the reduced system is two20

dimensional, and thus is not chaotic. In the following, we calculate the ensemble Lyapunov exponent

(eLE) to check if and how it can reveal the stability of solutions in the 3D NLM assuming that we

don’t have prior knowledge of whether the system can be reduced to become two dimensional.

[Through the processes, we may better understand the conditions under which the calculation of

eLE may be applied to complicated weather and climate models.]25

The Lyapunov exponent (LE) has been used to measure the average separation speed of nearby

trajectories on the critical point (e.g., Froyland and Alfsen, 1984; Wolf et al., 1985; Nese, 1989;

Zeng et al. 1991; Eckhardr and Yao, 1993; Christiansen and Rugh, 1997; Kazantsev 1999; Sprott,

2003; Ding and Li, 2007; Li and Ding, 2011). In Shen (2014a), the following two methods were

implemented and tested: the trajectory separation (TS) method (e.g., Sprott, 2003) and the Gram-30

Schmidt reorthonormalization (GSR) procedure (e.g., Christiansen and Rugh, 1997). In this study,

we only discuss the results from the second method. Calculations are conducted with a time interval

(△τ ) of 0.0001, and a total number of iterations, N = 10,000,000, yielding a total dimensionless

time (τ ) of 1,000. To minimize the dependence on the ICs, 10,000 ensemble (En=10,000) runs

with the same model’s parameters but different ICs are performed, and an ensemble-averaged LE is35

obtained from the average of the 10,000 LEs. Figure 7 shows the initial conditions for the ensemble

runs, which represent white Gaussian noises. Figures 8a-c show the three LEs with r = 0 from the

ensemble runs. The summation of the three LEs, shown in Fig. 8d, is very close to zero, suggesting

that the system is conservative. The first leading LEs from the ensemble runs (Fig. 8a) show a

Gaussian distribution with a mean of 0.004836 and median of 0.004853. With the long but still finite40

time period and the very large number ICs, the first ensemble LE (eLE) with a small but positive

value may suggest the appearance of diverged trajectories.

The solutions in the 3D-NLM with r 6= 0 also give a small but positive eLE, as shown in Fig.

9. While diverged trajectories may appear in presence of a positive eLE (Fig. 9a), the system is

conservative because the summation of the three LEs is zero (Fig. 9d). In comparison between the45

first LEs of the ensemble runs from the 3D-NLM with r = 0 and r = 5, the first LEs with r = 5 are

larger, which may indicate the role of the heating term in destabilizing the solutions. Note that X-Y

section of the solutions with r = 5 display a comparable pattern to that of the solution in Fig 5 where

r = 25.

The impact of different ICs (i.e., Xo in Fig. 7) on the calculation of eLE is briefly discussed with50

the following analysis of the critical points in the X-Y section. As discussed in Fig. 5a, a solution

may move "around" the saddle point and the two stable critical points, and its trajectory defines the

big cycle. With a different initial condition, a solution may go around one of the non-trivial stable

points (±
√

2σr+X2

0
, 0) and its trajectory forms a small cycle. For example, Fig. 5d, displays results

with three different ICs, including X0 =
√
2σr,

√
2σr + 15 and

√
2σr + 30 in black, blue and red55

lines, respectively. Three vertical green lines show the locations of the corresponding stable critical
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points at Xc =
√

2σr+X2

0
. Solutions in Figures 5a and 5d suggest that the larger initial Xo is, the

further the trajectory is away from the saddle point. Thus, the ensemble LE obtained with different

ICs represents the average stability of solutions, some of which may have trajectories similar to that

in Fig. 5d (under small or no significant influence of the saddle point), and the others are close to60

those in Fig. 5a (under the influence of the saddle point). For the former, with an initial condition

away from the saddle point, the nonlinearity may become dominant, as compared to the (linear)

heating term. The corresponding solutions (e.g., the blue curve in Fig. 5d) become more symmetric

with respect to the green line that passes through the nontrivial stable critical point. For the latter,

two trajectories that move toward the saddle point may experience different growth rates. They may65

form a big or small cycle.

Numerical solutions of the 3D-NLM with r = 0 are analyzed to study the role of nonlinearity

(i.e., nonlinear feedback loop) in producing diverged trajectories, leading to a small but positive eLE

(over a long but finite time period). Using the initial conditions (ICs) of (X,Y,Z) = (0,Yic,0), we

consider the control run with Yic = 1 and the parallel run with Yic = 1+ ǫ, here ǫ indicates an initial70

perturbation. Therefore, Eq. (21) is generalized as:

Y 2 +

(

X2

2σ

)2

= Y 2

ic, (1)

which has the following solutions:

Y = Yic cos(φ), (2a)75

φ=

∫ ∫

Y dτ1τ2. (2b)

Yic and φ represent the amplitude and phase of the solution, respectively. For both of the control and

parallel runs, the solution in Eq. 27a suggests that the amplitude of the solution remains unchanged

during the entire period. While the instantaneous value of the solution at a given time step is80

determined by its phase (e.g., Eq. 27a), the phase is a function of the instantaneous value of the

solution at the previous time step (e.g., Eq. 27b). The mutual dependence between the instantaneous

value and phase, which is a result of the nonlinearity, may lead to the divergence of two trajectories

(over a long but finite-time period) between the control and parallel runs, illustrated below.

In general, the time change of the phase (dφ/dτ =X in Eq. 23a) is not a constant but is a function85

of the solution’s value. When ǫ is tiny, the amplitudes of the solutions for the control and parallel

runs are very close. However, as a result of the nonlinear characteristic (as shown with Eqs. 27a-b),

the tiny difference in the initial conditions for the two runs may lead to significant differences in their

phases. Figure 10 show the time evolution of the numerical solutions from the 3D-NLM with r = 0

for the control and parallel runs (with ǫ= 0.001) and their differences. A very large time period of90

τ = 6000 is used. The shift of the phases between the two runs is clearly shown in Figs. 10a-10b,

while the amplitudes of both solutions (i.e., maxima) remain unchanged during the integration. As

a result of the phase shift, the differences between the two solutions appear, growing initially and
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then decaying. The former leads to the divergence of two trajectories over a finite-time period (e.g,

Figs. 10c-d). The differences of two runs are oscillatory and have a period showing dependence on95

solutions (Y or Z) and initial conditions. The long period (e.g., ∼ 4,600 in Fig. 10c and ∼ 2,300 in

Fig. 10d), which cannot be determined in advance, makes it challenging to choose a total integration

time (or a sampling time interval) for the calculations of an global (or finite-time) eLE that can

accurately describe the global (local) stability of the 3D NLM. Therefore, although a fixed total time

of τ=1000 is sufficiently large to obtain the eLE in the original Lorenz model (e.g., Shen 2014a), it100

is still too short for the conservative 3D NLM. This may suggest that with no prior knowledge of

the period which may depend on the the fields and initial conditions, it is challenging to apply the

current method to calculate the eLE in a conservative system such as he 3D NLM.

This phenomenon, which is associated with the dependence of phases on the amplitude, may be

simply illustrated in Fig. 11 by observing the the different "phase" speeds of short and long hands105

of "clock," which conceptually represent the solutions of the control and parallel runs, respectively.

Initially, both hands are at the same position (i.e., the same phase in dashed lines with arrows in Fig.

11), but gradually depart as a result of different moving speeds (in solid lines with arrows in Fig.

11). Note that the moving speed for each hand of the clock is a constant but not a function of time,

which is fundamentally different from the (nonlinear) solutions of the 3D-NLM.110

In a brief summary, for trajectories near a stable critical point, e.g., (X,Y ) = (0,0) for r = 0 or

(X,Y ) = (
√

2σr+X2

0
, 0) for r 6= 0 and a large Xo, the nonlinearity may act as a forcing term in

producing diverged trajectories, because nonlinearity alone may continuously change the phase of

the solution. When the heating term becomes important to change the amplitude of the solution, its

interaction with the nonlinearity can also lead to diverged trajectories.115
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Appendix A: Derivations of Eq. (3)

In this section, we describe the procedures to derive Eq. (3). As discussed in Shen (2014a), the

nonlinear advection term in Eq. (1) does not appear explicitly in the Lorenz model. Therefore, Eq.

(1) can be written as follows:
∂

∂t
∇2ψ = gα

∂θ

∂x
. (A1)
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With the M1 −M3 of Shen (2014a), ψ and θ can be represented as

ψ = C1XM1, (A2)

θ = C2 (YM2 −ZM3) . (A3)

Here, C1 and C2 are defined in Eq. (9) of Shen (2014a). Next, we express the left- and right-hand

side terms of Eq. A1 using M1 −M3, respectively, as follows:

∂

∂t
∇2ψ =−C1

(

l2 +m2
) dX

dt
M1, (A4)

gα
∂θ

∂x
= C2Y gα(−

√
2)lsin(lx)sin(mz) =−C2Y gαlM1. (A5)

Here l and m, defined in Shen (2014a), represent the horizontal and vertical wavenumbers,

respectively. Substituting Eqs. A4 and A5 into Eq. A1, we have:

dX

dt
=

gαl

l2 +m2

C2

C1

Y. (A6)

We define a time scale (To) as

To = (1+ a2)
π2

H2
, (A7)

and obtain

l2 +m2 = (1+ a2)
π2

H2
= To. (A8)

Here, the term H is the domain height, and a is a ratio of the vertical scale of the convection cell

to its horizontal scale, (i.e., a= l/m). With Eq (9) in Shen (2014a), the right-hand side of Eq. A6

becomes

gαl

l2 +m2

C2

C1

Y =
H2

π2(1+ a2)

gαπa

H

a

κ(1+ a2)

∆T

π

Rc

Ra

Y = ν(1+ a2)
π2

H2
= νToY. (A9)

With Eq. A9, Eq. A6 becomes
dX

dt
= νToY. (A10)

The above equation turns into Eq. (3), dX/dτ = σY, when τ = κTot is assumed.

Appendix B: A closed-form solution using elliptic functions125

Nonlinear dynamics have been widely studied using the solutions to the nonlinear Duffing equation.

The Duffing equation that governs certain damped and driven (i.e., dissipative and forced) oscillatory

motions (Bender and Orszag, 1978; Wikipedia) is given by

d2X

dτ2
+ δ

dX

dτ
+αX +βX3 = γcos(ωτ), (B1)

here δ, α, β, γ, and ω are constants. When δ = γ = 0 and α=−σr and β = 1/2, Eq. B1

appears in the form of the 3D-NLM (Eq. 15). While an exact solution to the general form of the
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Duffing equation may not been found, closed-form, approximated or numerical solutions have been

documented in the literature. In this section, we discuss how a closed-form solutions to the special

case of the non-dissipative and unforced Duffing equation (i.e., δ = α= γ = 0 and β = 1/2) can be130

obtained and expressed in terms of elliptic functions (Davis, 1960).

The incomplete elliptic integral of the first kind, F (φ,k), is written as

u= F (φ,k) =

φ
∫

0

dθ√
1− k2sin2θ

. 0< k2 < 1. (B2)

The elliptic functions of Jacobi are defined as inverse of the elliptic integral as follows:

sn(u,k) = sinφ, cn(u,k) = cosφ. (B3)

The elliptic functions have the following properties

sn(0) = 0, cn(0) = 1, sn2u+ cn2 = 1, (B4)

and their derivatives can be obtained as follows:

d2

du2
sn(u) = 2k2sn3(u)− (1+ k2)sn(u), (B5)

and
d2

du2
cn(u) = (2k2 − 1)cn(u)− 2k2cn3(u). (B6)

Equations B4 and B5 can help obtain the solution to the equation d2X/dτ2 +X3/2 = 0 (i.e., Eq.

18). With Eq. B5 and k2 =−1, the solution can be written as

X =D1sn(
D1

2
τ + θ1,k

2 =−1). (B7)

With Eq. B6 and k2 = 1/2, the solution becomes

X =D2cn(
D2√
2
τ + θ2,k

2 = 1/2). (B8)

Here, D1, D2, θ1 or θ2 are constants and determined by the initial conditions. θ1 or θ2 can be

expressed in terms of the complete elliptic integrals of the first kind K(k) = F (π/2,k2 = 1/2)∼
1.8541, which is calculated with Matlab (http://www.mathworks.com/help/matlab/ref/ellipke.html).

In addition, as a result of the definition of the elliptic integral (e.g., Eq. B2) and/or the validity of the

numerical algorithms for the elliptic functions, k2 may not be equal to −1. Therefore, only Eq. B8

is discussed below. In this study, the IC with X(0) = 0 and Y (0) = 1 (i.e., d
dτ
X(0) = σ)) leads to

the following solution with θ2 = 3K and D2 =
√
2σ:

X =
√
2σcn(

√
στ +3K,k2 = 1/2). (B9)

Figure B1 displays the solutions from Eqs. 22a (Fig. B1-a) and Eq. B9 (Fig. B1-b) and their

differences (Fig. B1-d), showing very close results. This comparison confirms the validity of
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the method for obtaining the closed-form solutions to the 3D-NLM with r = 0 using elementary

trigonometric functions (Fig. 2), which are used to illustrate the impact of nonlinearity on the135

changes of the solution’s phase in section 3.4. For the case withα 6= 0 (i.e., r 6= 0), similar procedures

can be applied using Eq. B5 or B6 to obtain closed-form solutions, which is beyond the scope of this

study.
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Figure B1: A comparison of the solutions in Eqs. (22a) and (B9), which are expressed using an elementary

trigonometric function and an elliptic function, respectively. (a) the solution of Eq. (22a) in red. (b) the

solution of Eq. (B9) in blue. (c) both of the solutions in (a) and (b). (d) differences of the two solutions.
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Figure 5. Solutions from the 3D-NLM (Eqs. 3–5). (a) X–Y plot. (b) X–Z plot. (c) X-APE plot. The black, red,

and blue lines show normalized −KE, APEY and APEZ , respectively. Green lines are plotted at X =±Xt =

±
√
2σr where Y 2 = Z2. (d) X-Y plot with different initial conditions, (X,Y,Z) = (X0,0,0). The black, red

and blue curves represent results with X0 =
√
2σr,

√
2σr +15 and

√
2σr + 30, respectively. Three green lines

pass through the corresponding critical points at (Xc,Yc) = (
√

2σr+X2
0 , 0).
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Figure 7. 10,000 initial conditions for the calculation of the ensemble Lyapunov exponent. (a) The distribution

of X as a function of the ensemble members. (b) The distributions of X and Y. (c) The distributions of X and Z.
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Figure 8. The Lyapunov exponents and their summation for the 3D-NLM with r = 0. Panels a-c show the

histograms of the first, second, and third LEs from the ensemble runs, respectively. (d) Summation of the three

LEs.
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Figure 9. As in Figure 8, but for r = 5.
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Figure 10. Time evolution of numerical results for the control run (black) and parallel run (red) using the 3D-

NLM with r = 0. A tiny initial perturbation (ǫ= 0.001) is used. (a) Y plot. (b) Z plot. (c-d) Differences of Y

and Z between the control and parallel runs.
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Figure 11. A X-Y plot for the control run (black) and parallel run (red). The initial conditions, (X,Y,Z) =

(0,Yic,0), include Yic = 1 for the control run and Yic = 1+ ǫ for the parallel run. A large ǫ (= 0.2) is used

for better illustration. [In Fig. 10, ǫ= 0.001 is used.] At a given time, the position in each of the trajectories is

indicated by the location of an arrow. As a result of the nonlinearity and the initial perturbation, the arrows of

the two runs move at different speeds, leading to the divergence of two trajectories.
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