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Abstract 16	  

Lightning measurements from the Geostationary Lightning Mapper (GLM) that 17	  

will be aboard the Goestationary Operational Environmental Satellite – R Series 18	  

will bring new information that can have the potential for improving the 19	  

initialization of numerical weather prediction models by assisting in the detection 20	  

of clouds and convection through data assimilation. In this study we focus on 21	  

investigating the utility of lightning observations in mesoscale and regional 22	  

applications suitable for current operational environments, in which convection 23	  

cannot be explicitly resolved. Therefore, we examine the impact of lightning 24	  

observations on storm environment. Preliminary steps in developing a lightning 25	  

data assimilation capability suitable for mesoscale modeling are presented in this 26	  

paper. World Wide Lightning Location Network (WWLLN) data was utilized as a 27	  

proxy for GLM measurements and was assimilated with the Maximum Likelihood 28	  

Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the 29	  

Weather Research and Forecasting system (WRF-NMM). In order to test this 30	  

methodology, regional data assimilation experiments were conducted. Results 31	  

indicate that lightning data assimilation had a positive impact on the following: 32	  

information content, influencing several dynamical variables in the model (e.g. 33	  

moisture, temperature, and winds), improving initial conditions during several 34	  
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data assimilation cycles. However, the 6 h forecast after assimilation, did not 35	  

show a clear improvement in terms of root mean square errors. 36	  

 37	  

1     Introduction 38	  

Thunderstorms are an important component of the climate system as they can 39	  

impact the atmospheric environment around them; they are capable of 40	  

redistributing moisture, heat, and wind patterns (Price, 2013). The assimilation of 41	  

lighting observations is a relatively new field. Several efforts to incorporate 42	  

lightning data into Numerical Weather Prediction (NWP) models have been made 43	  

recently (Alexander et al., 1999, Papadopoulos et al., 2005, Mansell et al., 2007, 44	  

Pessi and Bussinger, 2009, Fierro et al., 2012). In the vast majority of these 45	  

studies dynamical relaxation, or nudging techniques were applied. Even though 46	  

these studies highlighted the importance of utilizing lightning observations to 47	  

improve the representation of convection in models, they had less emphasis on 48	  

improving the environmental conditions.   49	  

Motivated by the initial success of nudging techniques in cloud-resolving 50	  

model applications, the objective of this study is to investigate if lightning 51	  

observations can be useful in mesoscale, regional, and global applications at a 52	  

coarse resolution, in which convection cannot be explicitly resolved. Therefore, 53	  

we would like to evaluate the impact of lightning observations on the environment 54	  

around storms, with potential implications to data assimilation, reanalysis, and 55	  

climate studies. As for any other observation, the information from lightning 56	  

observations can have impacts at several spatiotemporal scales. In the case of 57	  

lightning, one can assume that most of the information relates to cloud-resolving 58	  

processes. However, there should be also a fraction of lightning information that 59	  

can spread into larger scales (e.g., the storm environment). In this study we will 60	  

evaluate the large-scale component of information from lightning observations.  61	  

We anticipate that a myriad of applications can stem from monitoring 62	  

lightning activity. For instance, the lack of ground-based observations (e.g. 63	  

radiosondes, radars, etc.) over the open oceans can result in deficient 64	  

initialization of numerical weather and climate prediction models, especially if 65	  
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weather systems that develop in these regions subsequently travel to continental 66	  

landmasses. Satellite radiances are an important source of observations over the 67	  

oceans. However, processing satellite observations requires considerably more 68	  

computational time due to the use of radiative transfer models, rather than just 69	  

processing lightning observations, which is computationally less intensive. 70	  

Therefore, the incorporation of this new type of data can provide useful 71	  

information for model initialization.  72	  

In addition, lightning may have a significant impact on the Earth’s climate 73	  

by producing nitrogen oxides (NOx) in the upper troposphere. NOx is a precursor 74	  

of ozone, a major green house gas and pollutant (Price, 2013, Barthe et al., 75	  

2010). The predicted concentrations of lightning-NOx from NWP models coupled 76	  

with chemistry still contain large uncertainties. Incorporating geo-located lightning 77	  

data may assist these models in the simulation of convection, and consequently 78	  

NOx production.  79	  

Lightning might be useful in future climate change monitoring studies due 80	  

to the interplay between lightning and atmospheric parameters, such as, 81	  

temperature, upper tropospheric water vapor, and cloud cover (Price, 2013). 82	  

Since lightning can be easily monitored through surface networks and satellite 83	  

platforms it can be a useful tool for tracking changes in important climate 84	  

parameters in the future (Price, 2009). 85	  

Satellite instruments have been launched in the past with the objective of 86	  

studying storm dynamics, cloud characteristics, annual and inter-annual 87	  

variability of thunderstorms, etc. (Adamo et al., 2009). In 1997, the Lightning 88	  

Imaging Sensor (LIS) was launched aboard de joint National Aeronautics and 89	  

Space Administration (NASA) and the Japan Aerospace Exploration Agency 90	  

(JAXA) Tropical Rainfall Measuring Mission (TRMM). This instrument can detect 91	  

lightning activity continuously at a horizontal resolution of 4 km over the tropics 92	  

(http://trmm.gsfc.nasa.gov/overview_dir/lis.html).    93	  

In the near future, mapping of lightning from geostationary orbit at cloud 94	  

scale resolution will be possible, thus complementing established surface 95	  

detection networks (Adamo et al., 2009, Finke, 2009).  The launch of the 96	  



	   4	  

Geostationary Lightning Mapper (GLM) instrument that will be aboard the next 97	  

generation of the National Oceanic and Atmospheric Administration (NOAA) 98	  

geostationary satellites (i.e., GOES–R, http://www.goes-99	  

r.gov/spacesegment/glm.html) will allow continuous day and night monitoring of 100	  

total lightning activity over the Americas and adjacent ocean regions up to 52 101	  

degrees north. One of the advantages over previous lightning mapping 102	  

instruments is that it will be able to monitor weather affecting the adjacent ocean 103	  

regions of the continental United States and not just the tropics.  Some of the 104	  

mission objectives for the GLM instrument include: improvement in severe 105	  

thunderstorm lead times and false alarm reduction, advancements in the 106	  

initialization of NWP models through better identification of deep convection, 107	  

creation of lightning climatologies to track decadal changes in lightning activity, 108	  

among others (Adamo et al., 2008). 109	  

In this paper the possibility of assimilating lightning observations within a 110	  

hybrid variational-ensemble system in a mesoscale numerical weather prediction 111	  

model is explored, focusing on the typical resolution of operational weather 112	  

forecasting and climate models.  The methodologies presented herein represent 113	  

an initial stage towards developing a comprehensive, multivariate, multi-scale, 114	  

multi-sensor data assimilation system that prepares for the assimilation of 115	  

lightning data along with other types of observations. 116	  

Eventually, this data assimilation technique will be tested in different 117	  

applications at various time and length scales. In the mean time, we intend to 118	  

investigate if the assimilation of lightning data can (1) add information content 119	  

into a mesoscale modeling system that can resolve a convective environment, 120	  

rather than explicit convection, (2) positively impact the dynamical variables of 121	  

the model, and (3) improve analysis and prediction.  Note that a coarse 122	  

resolution is also typical of climate models, and thus assessing the utility of 123	  

lightning observations in data assimilation at these scales can be relevant for 124	  

climate studies as well. To our knowledge, lightning data have not been used in 125	  

operational weather prediction, in climate monitoring studies, or in reanalysis. By 126	  
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assimilating lightning data in a coarse resolution model we are taking first steps 127	  

toward extending their use to weather and climate applications.  128	  

As a proof of concept case we chose the mesoscale convective system 129	  

that spawned numerous tornados over the southeastern United States on 27-28 130	  

April 2011. Lightning data from the World Wide Lightning Location Network 131	  

(WWLLN, http://webflash.ess.washington.edu) was used as a proxy to test the 132	  

potential impact of the assimilation of lightning flash rates measured by the GLM.  133	  

This data network has global coverage, including ocean regions. For North 134	  

America, this lightning detection network better approximates the coverage of the 135	  

upcoming GLM instrument compared to some surface networks that primarily 136	  

cover the continental United States.  137	  

The data assimilation system (DA) used in this study was the Maximum 138	  

Likelihood Ensemble Filter (MLEF – Zupanski, 2005; Zupanski et al., 2008), 139	  

which was interfaced with the non-hydrostatic core of the Weather and Research 140	  

Forecasting system (WRF-NMM - Janjić et al., 2010). The simplified 141	  

microphysics and low-resolution of the model defined the spatiotemporal scales 142	  

for data assimilation, as well as the options for the employed observation 143	  

operator. In this case, a 6-hour data assimilation window was chosen (±3 hours 144	  

from a central time), in which the lightning observations were averaged at a 145	  

horizontal resolution of 10 km closely matching that of the innermost domain of 146	  

WRF-NMM. 147	  

This paper is organized in the following manner: the methodology for 148	  

using lightning observations is described in Sect. 2, details on the experimental 149	  

design are provided in Sect. 3, followed by results in Sect. 4, and finally a 150	  

summary and future work are presented in Sect. 5.  151	  

 152	  

2     Methodology for utilizing lightning observations 153	  

 154	  

2.1     Data Assimilation System 155	  

 156	  



	   6	  

WRF-NMM was interfaced with MLEF, a hybrid ensemble-variational data 157	  

assimilation method developed at Colorado State University. The solution of the 158	  

analysis maximizes the likelihood of the posterior probability distribution, 159	  

obtained by a minimization of a cost function that includes a general nonlinear 160	  

observation operator. As in typical variational and ensemble data assimilation 161	  

methods, a cost function is derived using a Gaussian probability density function 162	  

framework. Like other ensemble data assimilation algorithms, MLEF produces an 163	  

estimate of the analysis uncertainty (e.g., analysis error covariance). In addition 164	  

to the common use of ensembles in calculations of the forecast error covariance, 165	  

the ensembles in MLEF are exploited to efficiently calculate the Hessian 166	  

preconditioning and the gradient of a cost function. The MLEF method is well 167	  

suited for use with highly nonlinear observation operators, for a small additional 168	  

computational cost of the minimization procedure. Relevant prognostic WRF-169	  

NMM variables were selected as control variables, as they can significantly 170	  

impact the initial conditions, which can, in turn, influence the forecast. This 171	  

selection includes the following variables: temperature (T), specific humidity (q), 172	  

hydrostatic pressure depth (PD), the U and V components of the wind, and Cloud 173	  

Water Mass (CWM – total cloud condensate in WRF-NMM) that combines all 174	  

cloud hydrometeors into a total sum. The goal is to minimize the following cost 175	  

function:  176	  

J(x) = 1
2
x ! x f"# $%

T
Pf

!1 x ! x f"# $% +
1
2
y ! h(x)[ ]T R!1 y ! h(x)[ ]                    (1) 177	  

 178	  

where x represents the above defined control variables with a forecast error 179	  

covariance Pf, the index f denotes the forecast guess,  y is the lightning flash rate 180	  

observations with an error covariance R, and h is the nonlinear lightning 181	  

observation operator that maps the control variables to the lightning flash rate 182	  

observations. The superscript T indicates the transpose of a matrix. 183	  

 184	  

2.2     Lightning flash rate observations  185	  

 186	  



	   7	  

Since the actual lightning measurements are lightning strikes, while the lightning 187	  

observation operator is commonly related to lightning flash rates, it was 188	  

necessary to transform lightning strikes into flash rates. In doing so, a subset 189	  

domain containing all lightning strikes was defined and subsequently partitioned 190	  

into a rectangular horizontal grid (different from the model grid), with a spacing of 191	  

0.1 degrees (~10 km) in order to be comparable with the horizontal grid spacing 192	  

of the smallest domain of our model configuration that will be discussed in Sect. 193	  

3.2. The choice of a regular grid that is not identical to the model grid is arbitrary. 194	  

In our case, it was motivated by a desire to keep the observation information 195	  

formally independent from the model, i.e. to not use any information about the 196	  

model when defining observations and observation errors. Lightning strikes 197	  

counted in each local area surrounding a grid point during a 6-hour time window 198	  

coinciding with the data assimilation interval were assigned to a particular grid 199	  

point, and then divided by a time interval to form lightning flash rates. Therefore, 200	  

the lightning flash rate observations are grid-point values that represent a 201	  

cumulative count of geo-located lightning strikes over the 6-hour assimilation 202	  

time window (±3 hours from a central time), rather than the instantaneous 203	  

measurements. Note that the observed lightning flash rates were assumed to be 204	  

greater than zero, i.e., the observation grid points without any lightning strikes 205	  

were not included in the observations pool. Observations of zero lightning can be 206	  

important in pointing the location of misplaced convection events. However, it is 207	  

not clear how this information would impact convection events that are not 208	  

characterized by strong lightning. It is likely that additional information would be 209	  

needed in order to selectively define zero lightning observations. Even though, 210	  

this information is important, it needs further investigation. The non-negative 211	  

character of lightning observations introduces a skewness that points out to a 212	  

need for a non-Gaussian PDF in lightning data assimilation (e.g., Fletcher and 213	  

Zupanski, 2007; Lien et al. 2013). This issue will be examined in the future since 214	  

it can potentially improve the utility of lightning data.  215	  

 216	  

2.3     Lightning flash rate observation operator  217	  
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 218	  

The lightning flash rate observation operator h (Eq. (1)) includes two operations: 219	  

a transformation (h2) and an interpolation (h1), i.e. h = h1h2. In this study the 220	  

forward lightning transformation operator (h2) was adopted by exploiting the 221	  

relationship between lightning and vertical velocity. This choice was influenced 222	  

by the properties of a bulk microphysics scheme used in the WRF-NMM model 223	  

(e.g., Ferrier, 2005), and by the coarse assimilation time window that effectively 224	  

restricts using the cloud-scale information about hydrometeors and their 225	  

interactions. A bi-linear interpolation technique was used to interpolate the guess 226	  

lightning flash rates to observation location (h1).  227	  

As seen in previous studies, lightning is related to updrafts that support a 228	  

deep layer of super-cooled water droplets and a mixed phase region where 229	  

charge separation occurs (Black and Hallet, 1999). Based on Price and Rind 230	  

(1992), an empirical relationship between maximum updraft velocity (wmax) and 231	  

lightning flash rate (f) given by: 232	  

h2 = f = cwmax
!             (2) 233	  

was used, under the assumption that updrafts are positively correlated to cloud 234	  

top height. c = 5x10-6 and β =4.5 are empirical parameters. β is a value derived 235	  

from satellite data climatologies for continental clouds as in Price and Rind 236	  

(1992). Both c and β are dimensionless.  237	  

The procedure to develop the lightning observation operator started with 238	  

an approximate calculation of vertical velocity from WRF-NMM, through the use 239	  

of a reduced version from the nonhydrostatic continuity equation   240	  

                         
 
w ! 1

g
"#
"t

+ v•$%#+ !% "#
"t

&
'(

)
*+           (3) 241	  

where w is the vertical velocity, g is the gravity constant, Φ  is the geopotential, v 242	  

is the horizontal wind vector, and !
.

 is the vertical velocity in a sigma coordinate 243	  

(Janjić, 2005). An approximation was required because vertical velocity is not a 244	  

predictive, but rather a diagnostic variable in WRF-NMM. After an approximate 245	  

value of vertical velocity was obtained, the maximum vertical velocity was 246	  
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calculated for horizontal points according to the following procedure: values of 247	  

Cloud Water Mass (CWM - total cloud condensate in WRF-NMM) CWM ≥ 10-5 248	  

(kg kg-1) were searched for at each model grid point and surrounding neighboring 249	  

points along all vertical model levels. We defined a 5 x 10 grid point area 250	  

(approximately a square domain in Arakawa E-grid staggering used in WRF-251	  

NMM) surrounding the central point in order to introduce a smooth transition for 252	  

the calculation of wmax. This procedure was applied to avoid taking into account 253	  

values of wmax in regions without clouds. If the CWM threshold was reached, the 254	  

value of wmax was calculated at a grid point and surrounding points at all vertical 255	  

levels, otherwise wmax was set to zero. Once the value of wmax was calculated, it 256	  

was possible to calculate values of lightning flash rate from Eq. (2). Since the 257	  

calculation of w (e.g., Eq. (3)) and wmax includes prognostic model variables, all 258	  

control variables can impact lightning flash rates.  259	  

Since both a new observation type (lightning flash rate) and an untested 260	  

observation operator  (Eq. (2)) were introduced into the data assimilation system, 261	  

statistics of innovation vectors (observation minus guess) of lightning flash rates 262	  

needed to be examined first. Figure 1 shows the statistics of the normalized 263	  

innovation vectors R!1/2 y ! h(x f )"# $%  at several observation times.  A skewed 264	  

histogram of the Probability Distribution Function (PDF) innovation vectors (left) 265	  

can be readily seen, implicitly indicating that the observed values of lightning 266	  

flash rate were considerably larger than the guess. Therefore, it was necessary 267	  

to perform a correction. An option could have been to increase the value of 268	  

parameter c in Eq. (2) to reduce the skewness. However, trial experiments 269	  

indicated a large uncertainty of the parameter c from one observation time to 270	  

another, in occasions ranging over two orders of magnitude. In order to deal with 271	  

this error of the observation operator (Eq. (2)), an adjustable multiplicative 272	  

correction parameter (α >0) was included so that h2 would become αh2. At each 273	  

observation time an optimal parameter αopt was estimated by minimizing the 274	  

following cost function:  275	  

 276	  

 277	  
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J(! ) = 1

2
log(! )" log(! 0 )[ ]TW"1 log(! )" log(! 0 )[ ]

+ 1
2
log(y)" log(!h(x f ))#$ %&

T
RL

"1 log(y)" log(!h(x f ))#$ %&

  (4) 278	  

where RL is the observation error covariance associated with a logarithmic 279	  

transformation, ! 0   is a guess value, and W is the uncertainty matrix of the guess 280	  

value. The choice of a logarithmic transformation was influenced by the fact that 281	  

lightning flash rate is strictly positive definite and that such procedure could better 282	  

deal with the large uncertainty of the parameter α. As shown in the appendix 283	  

(Sect. 7), the solution of αopt, which minimizes the cost function, i.e., Eq. (4), is 284	  

given by:  285	  

! opt = exp

1
Nobs

log y
h(x)

"
#$

%
&' ii=1

Nobs

(

1+ r0
w0

)

*

+
+
+
+

,

-

.

.

.

.

.                       (5) 286	  

where Nobs is the number of observations, diag(W)=w0  and diag(RL)=r0. 287	  

Therefore the lightning observation transformation operator (Eq. (2)) was 288	  

substituted by 289	  

        h2 = f =! optcwmax
" .            (6) 290	  

The observation operator transformation (e.g., Eq. (6)) is defined over a 2-291	  

dimensional horizontal domain only since flash rate f is a horizontal field (e.g., 292	  

number of hits per area and time). This requires wmax to be 2-dimensional as well. 293	  

Therefore, wmax is defined for each horizontal grid point, as the maximum value of 294	  

vertical velocity (w) over all vertical levels. The flow diagram of the data 295	  

assimilation system and the lightning observation operator are illustrated in Fig. 296	  

2.  297	  

 298	  

2.4     Information content of lightning observations 299	  

 300	  

In general terms, the impact of observations can be quantified using an 301	  

uncertainty reduction after data assimilation. Since entropy measures the 302	  
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uncertainty, one can use the formalism of Shannon information theory (Shannon 303	  

and Weaver 1949) to define information content of observations as an entropy 304	  

difference before and after data assimilation. As shown in Rodgers (2000), the 305	  

entropy is considerably simplified with a Gaussian probability assumption and 306	  

information content can be conveniently expressed in terms of degrees of 307	  

freedom for signal (ds),  308	  

 ds = trace I! PaPf
!1"# $% , (7) 309	  

where trace is the trace function, I is the identity matrix, and Pa is the analysis 310	  

error covariance. This can be further reduced in terms of the eigenvalues of the 311	  

observation information matrix, given by:  312	  

 Pf
T /2HTR!1HPf

1/2 = U"UT   (8) 313	  

where Λ  and U are the eigenvalues and eigenvectors matrices, respectively, and 314	  

H is the Jacobian of the observation operator. The degrees of freedom for signal 315	  

are then 316	  

 ds =
!i
2

1+ !i
2

i
"   (9) 317	  

where λi are the eigenvalues. Zupanski et al. (2007) showed that this formula 318	  

could also be useful in reduced-rank, ensemble space calculations, in which the 319	  

summation is performed over the number of ensemble members. Since an 320	  

eigenvalue decomposition of the observation information matrix is a component 321	  

of the MLEF algorithm, additional cost of calculating ds is minimal.  By calculating 322	  

the degrees of freedom for signal we can quantify the impact of the lightning 323	  

observations in terms of an uncertainty reduction. Note that Eq. (9) has non-324	  

negative values between 0 and Nens, depending on the structure of the 325	  

observation information matrix. If there is a negligible impact of lightning 326	  

observations the number of degrees of freedom for signal will be close to zero, 327	  

i.e. much smaller than the number of ensemble members. 328	  
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3     Experimental Design  329	  

 330	  

3.1     General synoptic description of the case study 331	  

 332	  

As a proof of concept case for regional lightning data assimilation over a 333	  

continental area we selected the severe weather event that occurred on 27-28 334	  

April 2011, where an estimated 292 tornadoes hit the southeastern, mid-west 335	  

and northeast United States, according to the Storm Report Center (Fig. 3, top 336	  

panel). A figure of 500 hPa heights, with color contours of wind speed and 337	  

surface observations from the Forecast Systems Laboratory (Fig. 3, bottom 338	  

panel) shows that atmospheric conditions created a perfect scenario for severe 339	  

weather development. An upper-level low centered on Minnesota along with the 340	  

advance of a deep trough and its associated jet streak (wind speed exceeding 341	  

41.15 m sec-1) aloft led to rapid atmospheric destabilization in the afternoon of 27 342	  

April. Surface moist-warm flow arrived from the Gulf of Mexico, with dew points 343	  

exceeding 21 °C and wind gusts over 7.72 m sec-1 at the Alabama coast. An 344	  

upper level disturbance sparked a broad area of showers and thunderstorms as it 345	  

moved across the frontal boundary on the previous evening.  The eastern edge 346	  

of this line of showers and storms continued to move eastward, in concert with 347	  

the upper-level disturbance, reaching the northwest Alabama border around 348	  

0700 UTC on the 27th.  Meanwhile, surface winds backed to the south-southeast 349	  

as the disturbance moved into the area, while winds at the 850 hPa level (around 350	  

1,500 m) increased to 26-28 m sec-1 and became more southerly. The 351	  

combination of high low-level moisture and increasing shear provided the setup 352	  

for damaging winds, large hail and brief tornadoes.  This line experienced further 353	  

intensification as it moved into northwest Alabama, especially after 0900 UTC. 354	  

This line of severe storms pushed into northwestern Alabama prompting a 355	  

tornado watch for all of northern Alabama and portions of southern middle 356	  

Tennessee until 1400 UTC.  A deep layer shear and moisture increased 357	  

dramatically later in the afternoon and evening of the 27th ahead of the strong 358	  

cold front. This combination of strong instability and high shear continued through 359	  
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the evening hours ahead of the cold front before it pushed east of the area into 360	  

Georgia. This produced the last and most violent round of severe weather, which 361	  

began around 2030 UTC for northern Alabama as supercells began to line up to 362	  

the southwest of the area.  During the early afternoon hours, the potential for 363	  

destructive tornadoes was highlighted by the Storm Prediction Center's upgrade 364	  

to a rare High Risk for severe weather around 1300 UTC.  This prompted a 365	  

Particularly Dangerous Situation (PDS) tornado watch, which was issued for 366	  

northern Alabama and portions of southern middle Tennessee at 1945 UTC.  The 367	  

potential really ramped up from noon through 2100 UTC.  During this period, 368	  

much of Alabama experienced numerous supercell thunderstorms producing 369	  

strong to violent tornadoes, including five EF-4 tornadoes and one EF.5 in the 370	  

Huntsville Forecast Area (NOAA Service Assessment, Hayes, 2011, 371	  

http://www.srh.noaa.gov/hun/?n=hunsur2011-04-27_setup). 372	  

 373	  

3.2     Model and domain configuration  374	  

 375	  

The WRF-NMM version 3 model from the Developmental Testbed Center 376	  

[http://www.dtcenter.org] was employed in this study. WRF-NMM was developed 377	  

by the NOAA/National Centers for Environmental Prediction (NCEP) (Janjić et 378	  

al., 2010). For simplicity, only some physics and dynamics choices are 379	  

mentioned. The microphysics option was Ferrier (Ferrier, 2005), which includes 380	  

prognostic mixed-phase processes. The longwave and shortwave radiation 381	  

options were the Geophysical Fluid Dynamics Laboratory (GFDL) schemes. The 382	  

GFDL longwave radiation scheme includes the transmission and absorption of 383	  

carbon dioxide, ozone, and water vapor in multiple spectral bands. Likewise, in 384	  

the GFDL shortwave scheme, ozone and water vapor are the main absorbers. 385	  

Both schemes include cloud microphysical effects (Falkovich et al., 2005). The 386	  

planetary boundary layer option was the Mellor-Yamada-Janjinc (Janjić, 1994). 387	  

The land surface option was the NOAH Land-Surface model (Ek et al., 2003) 388	  

with soil temperature and moisture in four layers, fractional snow cover and 389	  

frozen soil physics. For the cumulus parameterization, Betts-Miller-Janjić was 390	  
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selected. This scheme adjusts deep shallow convection with a relaxation towards 391	  

variable humidity and temperature profiles (BMJ-Janjić 1994, 2000).  392	  

The WRF-NMM simulations in this study were configured with two 393	  

domains. Domain 1 (D01) had a horizontal grid spacing of 27 km and a size of 394	  

1350 by 2592 km2 (50 x 96 grid points). This domain covered parts of the mid-395	  

west, the Gulf of Mexico, the Atlantic Ocean, and the eastern United States. 396	  

Domain 2 (D02), centered on Alabama, had a horizontal grid spacing of 9 km and 397	  

a size of 540 by 1170 km2 (60 x 130 grid points) (Fig. 4). Both domains had a 398	  

vertical extent of 27 vertical levels. 399	  

 400	  

3.3 Data sets and data assimilation system setup 401	  

 402	  

The ensemble boundary conditions are obtained from the NCEP Global Forecast 403	  

System (GFS) using the WRF preprocessing system (WPS). With the exception 404	  

of the initial ensemble preparation (i.e. cycle0 in our terminology), the initial 405	  

conditions for the ensemble members are obtained through the MLEF algorithm 406	  

by adding the analysis square root error covariance columns to the analysis. 407	  

Further information about the MLEF methodology can be found in Zupanski 408	  

(2005) and Zupanski et al. (2008).  The localization setting for the ensemble-409	  

based covariance includes a de-correlation length of 90 km. The data 410	  

assimilation period starts at 1800 UTC 26 April 2011, ending on 1200 UTC 28 411	  

April 2011. Note that there is no data assimilation at the initial time.  412	  

In the present study, WWLLN data were assimilated. The WWLLN is an 413	  

experimental lightning detection network that provides the location of cloud-to-414	  

ground (CG) and some intra-cloud lightning (IC) strikes in real-time, it has a 415	  

global coverage with 10 km location accuracy and flash detection accuracy 416	  

greater than 50% (Lay, 2004). WWLLN is for the most part; a time average of 417	  

geo-located CG lightning flashes that cannot address the cloud-resolving 418	  

characteristics of lightning. Nonetheless, for the purposes of evaluating the 419	  

impact of lightning observations on the storm environment, making a distinction 420	  

between CG and IC lightning is beyond the scope of this study. The ensemble 421	  
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size was set to 32 in order to match the number of processors per node, with a 422	  

data assimilation interval of 6 hours to match the frequency of the Global 423	  

Forecast System (GFS) input files. The 6-hourly averaged lightning flash rates 424	  

(±3 hours) were assimilated at each central time tn (n>0). An initial 6-hour 425	  

forecast was obtained at cycle0 from WRF-NMM with the GFS files (from tn-3h to 426	  

tn+3h) and it was used as a first guess to obtain the analysis solution for the next 427	  

cycle. The background state x f , or prior, is an estimate of the most likely 428	  

dynamical state; it is a deterministic forecast from the previous assimilation cycle. 429	  

The analysis solution was obtained as a maximum likelihood estimate from the 430	  

assimilation of observations at the central time tn (Zupanski, 2005). These steps 431	  

were repeated during each cycling period. Figure 5 shows the data assimilation 432	  

timeline. The observational error was assumed to be 0.10 hits km-2 h-1.  433	  

 434	  

 3.4     Description of the experiments 435	  

 436	  

Three simulations were performed to assess the impact of the assimilation of 437	  

lightning flash rates into a mesoscale NWP: 438	  

1. The first experiment was a single observation test (1-OBS), performed to 439	  

evaluate the impact of assimilating lightning flash rates at a single 440	  

WWLLN location (34.5°N, 89°W) on the analysis increment (analysis 441	  

minus background) of a subset of the control variables (q, T, U, and V) 442	  

mentioned in Sect. 2.1 and to implicitly illustrate the complex structure of 443	  

the flow-dependent forecast error covariance. The difference between the 444	  

initial observation and the guess was assumed to be one standard 445	  

deviation of the observation error covariance R, i.e., y = x f +! R  where 446	  

! R = 1 .   447	  

2. The second experiment was a control run, without the assimilation of 448	  

lightning data, referred to as no-data-assimilation (NODA). Note, however, 449	  

that lightning observations were still present in the simulation in order to 450	  

define the optimal regression parameter αopt.  451	  
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3. In addition to the two simulations mentioned before, an experiment that 452	  

included the assimilation of WWLLN lightning data (LIGHT) was 453	  

performed. LIGHT had the same set-up as the NODA simulation; the only 454	  

difference was the assimilation of lightning flash rates. 455	  

 456	  

4     Results 457	  

 458	  

In the following sections, we present an evaluation of the impact of the 459	  

assimilation of lightning data for the 27-28 April 2011 severe weather event 460	  

focusing on domain D02 (9km resolution). First, results of the (1-OBS) 461	  

experiment are shown, followed by an evaluation of the time-flow-dependent 462	  

forecast error covariance through the use of degrees of freedom for signal to 463	  

quantify the information added to the system by the assimilation of the lightning 464	  

observations. Then an evaluation of several synoptic fields from the LIGHT 465	  

simulation and validation of the DA system through comparisons with some 466	  

observations are presented. Thereafter, an assessment between the LIGHT and 467	  

NODA simulations through the calculation of Root Mean Square (RMS) errors of 468	  

the lightning observations is shown 469	  

 470	  

4.1     1-OBS experiment 471	  

 472	  

The difference between the analysis and the 6-hour forecast (background) was 473	  

evaluated. Figure 6a shows the 700 hPa analysis increments of specific humidity 474	  

(q) at 1800 UTC 27April 2011, or cycle 3 in the data assimilation period. This 475	  

time was chosen since tornados started developing over northern Alabama just a 476	  

couple of hours before. The black dot indicates the location of the single 477	  

observation being assimilated (34.5°N, 89°W).  A clear dipole of positive and 478	  

negative analysis increments in q, with a magnitude of ± 4 x 10-5 kg kg-1, is 479	  

observed at opposite sides of the location of the single observation. The analysis 480	  

increment of temperature (T) at 700 hPa (Fig. 6b) shows regions of positive and 481	  

negative analysis increments, with a magnitude of  ± 4 x 10-2 degrees K, over the 482	  
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same regions as q, but with opposite sign. The plot of wind speed at 700 hPa 483	  

(Fig. 6c) shows a positive analysis increment of 2.7 x 10-1 m sec-1 with maximum 484	  

values coinciding with the region of positive potential temperature increment. The 485	  

spatial extension of the impact of assimilating a single lightning strike on some of 486	  

the dynamical variables of the model in D02 (9 km resolution) was: (i) on specific 487	  

humidity the impact extends to approximately 12 grid points (~ 110 km), (ii) for 488	  

temperature to 20 grid points (~ 180 km), and (iii) for wind approximately 30 grid 489	  

points (~ 270 km).  490	  

The former Fig. (6a, 6b, and 6c) indicates that the assimilation of lightning 491	  

at a single location impacted the atmospheric environment at surrounding grid 492	  

points.  The magnitude of the analysis increments indicates non-negligible 493	  

adjustments on dynamical variables of the mesoscale model.  Most importantly, it 494	  

can be noted that the hybrid DA system was able to spatially spread the 495	  

information of a single lightning observation and influence the initial conditions of 496	  

specific humidity, temperature, the U and V components of the wind and other 497	  

control variable elements. These results are a manifestation of the complex 498	  

structure of the ensemble forecast error covariance matrix. This is important 499	  

since it indicates that the information from lightning observations can impact the 500	  

initial conditions and eventually the forecast of coarse resolution models.  501	  

 502	  

4.2     Evaluation of information content of the lightning observations 503	  

 504	  

In these experiments, the degrees of freedom for signal were computed in 505	  

ensemble subspace following Zupanski et al. (2007). The top-three plots in Fig. 7 506	  

show degrees of freedom for signal during three assimilation cycles (1, 2 and 3, 507	  

as an example) and observed GOES-IR and lightning flash rates at matching 508	  

times (bottom-three plots). The areas of highest density of WWLLN lightning 509	  

observations are in agreement with information content, implying that the time-510	  

flow-dependent forecast error covariance had a direct relationship to the 511	  

observations throughout the assimilation period. Maximum values of degrees of 512	  

freedom for signal of 12, 22, and 10 for cycles 1, 3, and 5, respectively can be 513	  
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observed in Fig. 7. These values indicate that the benefit of the observations is 514	  

important, otherwise these values would be close to zero, i.e. much smaller than 515	  

the number of ensemble members, 32 in this case.  On the other hand, if the 516	  

former values were to approach the number of ensemble members, this would be 517	  

an indicator of the introduction of noise to the DA system by the observations and 518	  

their possible benefit would be nullified. Note however, that the agreement in 519	  

cycle 3 was not very good. It is possible that ensemble perturbations where not 520	  

large enough over northeastern Alabama where another maximum was missing. 521	  

This lack of agreement can arise from the use of a reduced rank ensemble 522	  

approach and consequently not having enough spread in the ensembles. 523	  

However, the agreement improved in subsequent cycles (e.g., shown for cycle 524	  

5). 525	  

 526	  

4.3     Impacts on the environment during the severe weather event  527	  

 528	  

The following results correspond to 0000 UTC 28 April 2011, cycle 5 in the data 529	  

assimilation time line, at the time when an EF4 tornado affected Tuscaloosa and 530	  

Birmingham, Alabama. Fields of wind, absolute vorticity and Convective 531	  

Available Potential Energy (CAPE) from both experiments (LIGHT and NODA) 532	  

portray a distinctive scenario of an environment favorable for the strengthening of 533	  

deep convection, but with some differences. Figure 8a shows background 534	  

(forecast) winds at 850 hPa for the NODA experiment. Figure 8b shows 535	  

background winds at 850 hPa for the LIGHT experiment. A core of increased 536	  

wind speed over northern Alabama can be observed in both plots. However, the 537	  

core of maximum wind speed has a larger spatial coverage in the LIGHT 538	  

experiment and based on computed differences, stronger winds with a 539	  

magnitude, in the order of 4 to 6 m sec-1 were found in the LIGHT experiment. 540	  

Note that this region is co-located with an area of high density of WWLLN 541	  

lightning observations (Fig. 8c).  Figures 9a and 9b correspond to the analysis 542	  

increment of the 850 hPa winds and absolute vorticity, respectively. Regions of 543	  

positive increments are found near the left-hand side in both plots (4 to 6 m sec-1 544	  
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in wind speed and 4 x 10-4 sec-1 in vorticity). Almost no analysis increments can 545	  

be found in the region where the densest lightning observations are located 546	  

(Alabama). Among possible reasons, we can mention the following: (i) the largest 547	  

forecast uncertainty (i.e. ensemble perturbations) typically occurs in the areas of 548	  

strongest dynamical instability, in this case, in the region where a dry line was 549	  

present over the states of Louisiana, Mississippi, Arkansas, and Missouri. Even 550	  

though, the dry line may not be characterized by the strongest lightning activity, 551	  

there were still some isolated lightning observations present over the domain as 552	  

seen in Fig. 8c, (ii) alternatively, it may be a consequence of using an ensemble-553	  

based forecast error covariance that was not able to produce sufficient 554	  

uncertainty in all relevant areas. 555	  

Similarly, by analyzing CAPE at the forecast step for both experiments 556	  

(Fig. 10a,b), a region of high CAPE gradient is observed on the left hand side of 557	  

the domain, indicating the presence of a well-defined dry line. However, no 558	  

significant differences were found between both experiments for this particular 559	  

assimilation cycle (cycle 5).  One possible reason is that there were no lightning 560	  

observations present at the core where the strongest CAPE was observed. 561	  

Therefore, lightning was not able to significantly impact CAPE. Further 562	  

investigation is required to see if the same behavior occurs for other cycles and 563	  

case studies. 564	  

Forecast CAPE was validated by comparing the model output with 565	  

observations from the Storm Prediction Center’s Surface Mesoanalysis at 40 km 566	  

resolution. Figure 10c shows observed CAPE. A well-defined dry-line can be 567	  

readily seen in the plot of background CAPE (Fig. 10a,b), which coincides with 568	  

the location of a strong CAPE gradient on the observations (Fig. 10c). The 569	  

formation of a dry line can often be a precursor for severe thunderstorm 570	  

formation with tornadogenesis potential (Grazulis, 2001). Note however, that the 571	  

model missed the location of the core of Maximum CAPE (~3500 J kg-1) by one 572	  

degree, latitude and longitude. The observed maximum CAPE was located over 573	  

the ocean, just off the Mississippi coast, while in the model output; the same core 574	  

was placed at the southern Mississippi-Louisiana border. Nonetheless, by 575	  
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assimilating lightning flash rates, the analysis increased, thus increasing the 576	  

magnitude of winds and absolute vorticity at 850 hPa. The analysis increment of 577	  

wind, suggests that absolute vorticity was advected into the region of strong 578	  

CAPE gradient (dry-line). 579	  

 580	  

4.4    Statistics: analysis and forecast Root Mean Square (RMS) errors with 581	  

respect to the lightning observations (LIGHT vs. NODA) 582	  

 583	  

A qualitative comparison of atmospheric fields between the data assimilation 584	  

(LIGHT) and the control (NODA) experiments with observations may lead to 585	  

subjective conclusions on determining which experiment outperformed the other. 586	  

Statistical evaluations on the other hand, can provide useful diagnostics when 587	  

morphological differences are not obvious.  588	  

Analysis and forecast RMS errors with respect to the lightning 589	  

observations were calculated from a domain containing the observed lightning 590	  

flash rates at 10 km resolution during the 6-hour assimilation time window, as 591	  

described in Sect. 2.2. From Fig. 11a, the LIGHT experiment achieves a better fit 592	  

in the analysis compared to the NODA experiment, but not for cycle 6. A possible 593	  

reason could be that the system was exiting the model domain at that time. Since 594	  

the strongest convection and cold front moved away from the domain, there was 595	  

no significant lightning activity over the region. Consequently, the number of 596	  

lightning observations available for data assimilation significantly decreased and 597	  

the impact of lightning data assimilation was reduced. The analysis result is not 598	  

well retained in the forecast (Fig. 11b). This issue definitely requires further 599	  

investigation. A possible reason may be that there are no other types of 600	  

observations being assimilated, such as conventional and satellite observations 601	  

that would additionally constrain the analysis and eventually create dynamical 602	  

balance, further improving the analysis and consequently the forecast. Note that 603	  

lightning is just an additional type of observation. All available observations have 604	  

to be in agreement with each other at the same location. Therefore, in regions 605	  

where lightning observations are not in agreement with other types of 606	  
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observations, the data assimilation algorithm will create the optimal observation 607	  

impact based on uncertainty of all observations in the region. In areas where 608	  

lightning observations are not available other measurements should help.  609	  

 610	  

5     Summary and future work  611	  

 612	  

In this study, the preliminary development and assessment of a methodology for 613	  

the assimilation of lightning observations through hybrid variational-ensemble 614	  

methods is presented. The aim of the study was to evaluate if lightning data 615	  

assimilation can be useful in mesoscale, regional, and global applications at a 616	  

coarse resolution in which convection cannot be explicitly resolved. The MLEF 617	  

system interfaced with WRF-NMM was utilized to investigate the impacts of 618	  

lightning data assimilation on a mesoscale NWP model. As a proof of concept, 619	  

this methodology was tested for the 27-28 April 2011 severe weather event in the 620	  

southeastern United States. Results indicate that lightning was capable of 621	  

spreading new information into the WRF-NMM model. Analysis increments of 622	  

750 hPa specific humidity, temperature, and winds indicate that the assimilation 623	  

of lightning flash rates could impact the initial conditions of a subset of model 624	  

variables (q, T, U and V) leading to dynamical balance as shown by the output 625	  

from the 1-OBS test.  The information content of lightning data was quantified 626	  

through the calculation of degrees of freedom for signal. Regions of high density 627	  

of observed lightning flash rates were in agreement with information content 628	  

theory indicating that the time-flow-dependent forecast error covariance was 629	  

directly related to observations during the assimilation period. 630	  

Evaluation of some atmospheric fields from the LIGHT experiment 631	  

indicated that the assimilation of lightning data influenced winds, absolute 632	  

vorticity and CAPE. A core of increased background wind speed at 850 hPa 633	  

coincides with the location of the region of high density in lightning observations 634	  

for the same assimilation cycle, indicating that the assimilation of lightning data 635	  

had an impact on the increase of wind speed. Analysis increments of the 850 636	  

hPa wind, absolute vorticity and background CAPE indicated that vorticity was 637	  
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advected into the region of strong CAPE gradient where a dry-line formed. All 638	  

these changes suggest the development of an environment favorable for 639	  

strengthening of deep convection.  640	  

Analyses and forecast RMS errors with respect to the lightning 641	  

observations from the LIGHT and NODA experiments indicated that LIGHT 642	  

achieved a better fit at the analysis step compared to the NODA experiment. 643	  

However, the 6-hour forecast after assimilation did not show any clear 644	  

improvements in terms of the RMS errors. This requires further investigation. 645	  

The methodology presented in this study represents an initial step towards 646	  

developing a comprehensive multivariate, multi-scale, multi-sensor operational 647	  

data assimilation system that prepares for the assimilation of lightning along with 648	  

different types of operational observations and for multiple applications. As a first 649	  

step, we intended to verify if the data assimilation techniques described here 650	  

could be accomplished and that lightning data could add information content to a 651	  

modeling system with a coarse resolution similar to the ones used in operations. 652	  

Further studies are planned where this methodology will be tested for different 653	  

applications (e.g. different case studies, different models, and choice of 654	  

observation operators). Operational conventional and satellite observations will 655	  

be assimilated alongside lightning flash rates to further constrain the fit in the 656	  

analysis.   657	  
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7    Appendix.  Lightning flash rate observation operator correction: Weak 675	  

Constrain 676	  

Assume a multiplicative correction to the observation operator  (i.e. correction in 677	  

magnitude, not in the direction of the vector) 678	  

 679	  

h(x)!"h(x) ,           (A1) 680	  

 681	  

where ! > 0  is the unknown multiplication parameter.  682	  

 683	  

Consider a logarithmic function of vectors since all vectors (i.e. y and h(x)) are 684	  

positive definite and define a cost function with the adjustable parameter ! : 685	  

 
J(! ) = 1

2
log(! )" log(! 0 )[ ]TW"1 log(! )" log(! 0 )[ ]

+ 1
2
log(y)" log(!h(x f ))#$ %&

T
RL

"1 log(y)" log(!h(x f ))#$ %&

  (A2) 686	  

where RL is the observation error covariance associated with a logarithmic 687	  

transformation, α0 is a guess value, and W is the uncertainty matrix of the guess 688	  

value. The optimal parameter αopt > 0 that minimizes the cost function (A2) is 689	  

searched for. Following a standard procedure of function minimization to solve: 690	  

 691	  
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#
$%

&
'("opt

= 0 .                (A3) 692	  

 693	  

Note that in order to differentiate with respect to a it may be more convenient to 694	  

redefine the cost function (A2) in the following manner:  695	  

 696	  
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 698	  
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 699	  

The Jacobian of (A4) is 700	  

 701	  

!J(" )
!"

= 1
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1[ ]T W #1 log(" )# log(" 0 )[ ]# 1" 1[ ]T RL

#1 log y
h(x)

$
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'
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# log(" )

*

+
,

-

.
/ ,   (A5) 702	  

 703	  

where 1[ ] is a vector with all components equal to one.  After employing (A3)  704	  

 705	  
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 707	  

After multiplying (A6) by α  (where α > 0) (A6) can be rewritten as 708	  

 709	  
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 711	  

From  (A7):  712	  

 713	  
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 715	  

Finally, the optimal multiplicative parameter is given by: 716	  

 717	  
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After employing a common assumption that the uncertainty matrix W and the 720	  

observation error matrix RL are diagonal, with diag(W) = w0  and diag(RL ) = r0 , 721	  

respectively,  722	  

 723	  

1[ ]T W !1 1[ ] = Nobsw0
!1                  (A10) 724	  

 725	  
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 729	  

where Nobs is the number of observations. By substituting (A10), (A11), and (A12) 730	  

in (A9) gives: 731	  

 732	  
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 734	  

Without additional knowledge, a typical guess value is α0 = 1, which further 735	  

simplifies the solution (A13) to 736	  

 737	  
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 739	  

 740	  

The above expression can be easily calculated in the observation operator and 741	  

provide an adjustable correction factor.  742	  
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Figures 858	  

 859	  

 860	  
 861	  

Fig. 1. Statistics of normalized innovation vectors   R-1/2 [y - h(xf)], or PDF 862	  
innovations for cycles 1-5 for both domains (D01 and D02) before (left-blue) and 863	  
after (right-red) correction. The skewed histograms on the left implicitly indicate 864	  
that the values of observed lightning flash rate are considerably larger than the 865	  
guess, a situation that required a correction. 866	  
 867	  

 868	  

 869	  

 870	  

 871	  

 872	  

 873	  
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 874	  

 875	  

 876	  

 877	  
 878	  

Fig. 2. Flow chart of the data assimilation system, the left section is the MLEF 879	  
system with all its components. The lightning observation operator algorithm is 880	  
shown on the right-hand side of the flow chart.  881	  
 882	  

 883	  

 884	  

 885	  
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 911	  

Fig. 3. Valid at 0000 UTC 28 April 2011. Storm Prediction Center daily storm 912	  
reports showing a total of 292 reported tornados (top). Forecast Systems 913	  
Laboratory, 500 hPa geopotential heights and color contoured wind, and surface 914	  
observations (bottom), showing an upper level low over Minnesota, a deep 915	  
trough with an associated jet streak over the northeastern corner of Alabama, 916	  
indicative of a region of positive vorticity adevection (bottom, Courtesy of Daniel 917	  
Bikos). 918	  
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 919	  
 920	  

Fig. 4. Domain configuration. D01 is the mother domain with a size of 1350 by 921	  
2952 km2 (50 x 96 grid points) at 27 km resolution. D02, the inner nest has a size 922	  
of 540 by 1170 km2 (60 x 130 grid points) at 9 km resolution. 923	  
 924	  

 925	  
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 928	  

 929	  
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 936	  

 937	  
Fig. 5.  Data assimilation timeline, the data assimilation frequency for the 938	  
lightning observation is 6 hours (±3 hours) from a central time tn>0. The initial 939	  
cycle (Cycle 0) is just the model (WRF-NMM) output fields from the GFS files, at 940	  
tn, the forecast, or background state (xb) is obtained from tn-3h to tn+3h. The 941	  
forecast is used as a guess to obtain the analysis solution for the next cycle.  942	  
 943	  
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Fig. 6.  Analysis increments of (a) specific humidity, (b) temperature and (c) wind 944	  
at 700 hPa. The black dot shows the location of the single observation (35.01°N, 945	  
87.60°W). Dipoles of positive and negative analysis increments can be observed 946	  
at either end of the single observation in the specific humidity and temperature 947	  
plots, but with opposite signs. 700 hPa winds show a positive analysis increment 948	  
with maximum values coinciding with the region of positive temperature 949	  
increment and anti-cyclonic circulation can be observed around the location of 950	  
the single observation. 951	  
 952	  
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(c) 
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2011_04_27-00:00:00 
Cycle 1 

2011_04_27-12:00:00 
Cycle 3 

2011_04_28-00:00:00 
Cycle 5 

GOES IR and WWLLN! GOES IR and WWLLN! GOES IR and WWLLN!

Degrees of freedom for signal! Degrees of freedom for signal! Degrees of freedom for signal!

 953	  
 954	  

Fig. 7. Degrees of freedom for signal (top-three plots) of assimilated lightning 955	  
data and observed GOES IR and WWLLN lightning flash rates (bottom-three 956	  
plots, courtesy of Gregory DeMaria and Jack Dostalek) for cycles 1, 3, and 5. 957	  
The areas of highest density of lightning observations are in general agreement 958	  
with information content, implying that the flow-dependent ensemble forecast 959	  
error covariance geographically coincides with throughout most of the 960	  
assimilation period. Note, however, that the agreement for cycle 3 is not very 961	  
good, implicitly confirming that ensemble forecast uncertainty is not always 962	  
sufficient to represent the true forecast uncertainty. 963	  
 964	  
 965	  
 966	  
 967	  
 968	  
 969	  
 970	  
 971	  
 972	  
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Fig. 8. (a) Background (forecast) winds at 850 hPa at 0000 UTC 28April 2011 (cycle 5) 973	  
from the experiment without lightning (NODA), (b) background (forecast) winds at 850 974	  
hPa at 0000 UTC 28April 2011 (cycle 5) from the lightning data assimilation experiment 975	  
(LIGHT) and (c) GOES IR and observed 6-hour WWLLN lightning flash rates at the 976	  
same time (Courtesy of Gregory DeMaria and Jack Dostalek). The core of strong wind 977	  
speed matches the region of high lightning flash rate density in the observations, but 978	  
note that the core of maximum wind speed has a larger spatial coverage in the LIGHT 979	  
experiment (b) and based on computed differences, stronger winds in the order of 4 m 980	  
sec-1 were found in the LIGHT experiment. 981	  
 982	  

(a) (b) 

(c) 
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 983	  

Fig. 9. Analysis increments at 850 hPa of (a) wind and (b) absolute vorticity at 984	  
0000 UTC 28 April 2011. Regions of positive increments are found in the upper 985	  
left-hand side in both plots indicated by the ellipses. Winds are being advected 986	  
into the region of strong CAPE seen in Fig. 10a. 987	  
 988	  
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 1035	  
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 1037	  
 1038	  
 1039	  
 1040	  
 1041	  
 1042	  
Fig. 10. Background CAPE for (a) NODA and (b) LIGHT experiments, and (c) 1043	  
observed CAPE from the Storm Prediction Center’s Surface Mesoanalysis at 1044	  
0000 UTC 28 April 2011 (cycle5). A region of high CAPE gradient is observed in 1045	  
the upper-left hand side of the domain, indicating the presence of a well-defined 1046	  
dry line, in agreement with observations, but there are no significant differences 1047	  
between both experiments. One reason is that there are no lightning 1048	  
observations in the region where the strongest CAPE was observed. Lightning 1049	  
data was not able to impact CAPE.  1050	  

(b) (a) 

(c) 
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Analysis RMS Errors with respect to Lightning Observations 

(a) 

6-hour Forecast RMS Errors with respect to Lightning Observations 
 (b) 
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Fig. 11. Root mean square (RMS) errors with respect to lightning flash rate 1077	  
observations during six assimilation cycles at 6 h intervals: (a) Analysis RMS 1078	  
error. The RMS error reduction was achieved during the first 5 cycles of the 1079	  
assimilation period, while there is deterioration in the last cycle, possibly due to 1080	  
the fact that the system was exiting the model domain. (b) 6 h forecast RMS 1081	  
error. There is no clear improvement in the forecast, suggesting that additional 1082	  
development of the assimilation system might be required, such as an 1083	  



	   42	  

improvement of the observation operator, adding new observations, and possibly 1084	  
improving the forecast uncertainty estimation. 1085	  
 1086	  
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innovations for cycles 1-5 for both domains (D01 and D02) before (left-blue) and 1090	  
after (right-red) correction. The skewed histograms on the left implicitly indicate 1091	  
that the values of observed lightning flash rate are considerably larger than the 1092	  
guess, a situation that required a correction. 1093	  
 1094	  
Fig. 2. Flow chart of the data assimilation system, the left section is the MLEF 1095	  
system with all its components. The lightning observation operator algorithm is 1096	  
shown on the right-hand side of the flow chart.  1097	  
 1098	  
Fig. 3. Valid at 0000 UTC 28 April 2011. Storm Prediction Center daily storm 1099	  
reports showing a total of 292 reported tornados (top). Forecast Systems 1100	  
Laboratory, 500 hPa geopotential heights and color contoured wind, and surface 1101	  
observations (bottom), showing an upper level low over Minnesota, a deep 1102	  
trough with an associated jet streak over the northeastern corner of Alabama, 1103	  
indicative of a region of positive vorticity adevection (bottom, Courtesy of Daniel 1104	  
Bikos). 1105	  
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Fig. 4. Domain configuration. D01 is the mother domain with a size of 1350 by 1107	  
2952 km2 (50X96 grid points) at 27 km resolution. D02, the inner nest has a size 1108	  
of 540 by 1170 km2 (60X130 grid points) at 9 km resolution. 1109	  
 1110	  
Fig. 5.  Data assimilation timeline, the data assimilation frequency for the 1111	  
lightning observation is 6 hours (±3 hours) from a central time tn>0. The initial 1112	  
cycle (Cycle 0) is simply the model (WRF-NMM) output fields from the GFS files, 1113	  
at tn, the forecast, or background state (xb) is obtained from tn-3h to tn+3h. The 1114	  
forecast is used as a guess to obtain the analysis solution for the next cycle.  1115	  
 1116	  
Fig. 6. Analysis increments of (a) specific humidity, (b) temperature and (c) wind 1117	  
at 700 hPa. The black dot shows the location of the single observation (35.01°N, 1118	  
87.60°W). Dipoles of positive and negative analysis increments can be observed 1119	  
at either end of the single observation in the specific humidity and temperature 1120	  
plots, but with opposite signs. 700 hPa winds show a positive analysis increment 1121	  
with maximum values coinciding with the region of positive temperature 1122	  
increment and anti-cyclonic circulation can be observed around the location of 1123	  
the single observation. 1124	  
 1125	  
Fig. 7. Degrees of freedom for signal (top-three plots) of assimilated lightning 1126	  
data and observed GOES IR and WWLLN lightning flash rates (bottom-three 1127	  
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plots, courtesy of Gregory DeMaria and Jack Dostalek) for cycles 1, 3, and 5. 1128	  
The areas of highest density of lightning observations are in general agreement 1129	  
with information content, implying that the flow-dependent ensemble forecast 1130	  
error covariance geographically coincides with throughout most of the 1131	  
assimilation period. Note, however, that the agreement for cycle 3 is not very 1132	  
good, implicitly confirming that ensemble forecast uncertainty is not always 1133	  
sufficient to represent the true forecast uncertainty. 1134	  
 1135	  
Fig. 8. (a) Background (forecast) winds at 850 hPa at 0000 UTC 28April 2011 1136	  
(cycle 5) from the experiment without lightning (NODA), (b) background 1137	  
(forecast) winds at 850 hPa at 0000 UTC 28April 2011 (cycle 5) from the 1138	  
lightning data assimilation experiment (LIGHT) and (c) GOES IR and observed 6-1139	  
hour WWLLN lightning flash rates at the same time (Courtesy of Gregory 1140	  
DeMaria and Jack Dostalek). The core of strong wind speed matches the region 1141	  
of high lightning flash rate density in the observations, but note that the core of 1142	  
maximum wind speed has a larger spatial coverage in the LIGHT experiment (b) 1143	  
and based on computed differences, stronger winds in the order of 4 m sec-1 1144	  
were found in the LIGHT experiment. 1145	  
 1146	  
Fig. 9. Analysis increments at 850 hPa of (a) winds and (b) absolute vorticity at 1147	  
0000 UTC 28 April 2011. Regions of positive increments are found in the upper 1148	  
left-hand side in both plots. Winds are being advected to the region of strong 1149	  
CAPE seen in Fig. 10a. 1150	  
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 1152	  
Fig. 11. Root mean square (RMS) errors with respect to lightning flash rate 1153	  
observations during six assimilation cycles at 6 h intervals: (a) Analysis RMS 1154	  
error. The RMS error reduction was achieved during the first 5 cycles of the 1155	  
assimilation period, while there is deterioration in the last cycle, possibly due to 1156	  
the fact that the system was exiting the model domain. (b) 6 h forecast RMS 1157	  
error. There is no clear improvement in the forecast, suggesting that additional 1158	  
development of the assimilation system might be required, such as an 1159	  
improvement of the observation operator, adding new observations, and possibly 1160	  
improving the forecast uncertainty estimation. 1161	  
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