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Abstract. An effective boundary condition (EBC) is intro-
duced as a novel technique to predict tsunami wave run-
up along the coast and offshore wave reflections. Numeri-
cal modeling of tsunami propagation at the coastal zone has
been a daunting task since high accuracy is needed to capture5

aspects of wave propagation in the more shallow areas. For
example, there are complicated interactions between incom-
ing and reflected waves due to the bathymetry and intrinsi-
cally nonlinear phenomena of wave propagation. If a fixed
wall boundary condition is used at a certain shallow depth10

contour, the reflection properties can be unrealistic. To alle-
viate this, we explore a so-called effective boundary condi-
tion, developed here in one spatial dimension. From the deep
ocean to a seaward boundary, i.e., in the simulation area, we
model wave propagation numerically over real bathymetry15

using either the linear dispersive variational Boussinesq or
the shallow water equations. We measure the incoming wave
at this seaward boundary, and model the wave dynamics to-
wards the shoreline analytically, based on nonlinear shallow
water theory over sloping bathymetry. We calculate the run-20

up heights at the shore and the reflection caused by the slope.
The reflected wave is then influxed back into the simulation
area using the EBC. The coupling between the numerical and
analytic dynamics in the two areas is handled using varia-
tional principles, which leads to (approximate) conservation25

of the overall energy in both areas. We verify our approach
in a series of numerical test cases of increasing complexity,
including a case akin to tsunami propagation to the coastline
at Aceh, Sumatra, Indonesia.

30

1 Introduction

Shallow water equations are widely used in the modeling
of tsunamis since their wavelengths (typically 200km) are
far greater than the depth of the ocean (typically 2 to 3km).
Tsunamis also tend to have a small amplitude offshore, which35

is why they generally are less noticeable at sea. Therefore,
linear shallow water equations (LSWE) suffice as a sim-
ple model of tsunami propagation (Choi et al., 2011; Liu et
al., 2009; Kânoğlu and Synolakis, 1998). On the contrary,
it turns out that the lack of dispersion is a shortcoming of40

shallow water modeling when the tsunami reaches the shal-
lower coastal waters on the continental shelf, and thus disper-
sive models are often required (Madsen et al., 1991; Horrillo
et al., 2006). Numerical simulations based on these linear
models are desirable because they involve a short amount of45

computation. However, as the tsunami approaches the shore,
shoaling effects cause a decrease of the wavelength and an in-
crease of the amplitude. Here, the nonlinearity starts to play
a more important role and thus the nonlinear terms must be
included in the model. To capture these shoaling effects in50

more detail, a smaller grid size will be needed. Consequently,
longer computational times are required.

Some numerical models of tsunamis use nested methods
with different mesh resolution to preserve the accuracy of
the solution near the coast area (Titov et al., 2011; Wei et55

al., 2008). While other models employ an impenetrable ver-
tical wall at a certain depth contour as the boundary condi-
tion. Obviously, the reflection properties of such a boundary
condition can be unrealistic. We therefore wish to alleviate
this shortcoming by an investigation of a so-called effective60

boundary condition (EBC) (Kristina et al., 2012), and also
take into account the run-up case. In one horizontal spatial
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Fig. 1. At the seaward boundary x=B, we assign (η,u)-data, and
we want to find a solution of the NSWE on the sloping region near
the shoreline.

dimension, an outline of the desired mathematical modeling
is sketched in Fig. 1. In the deep ocean for x ∈ [B,L] with
horizontal coordinate x and seaward boundary point x=B,65

denoted as the simulation area, we model the wave propaga-
tion numerically using linear model. In the coastal zone for
x ∈ [xs(t),B] with shoreline position xs(t)<B, denoted as
the model area, we model the wave propagation analytically
using nonlinear model by approximating the bathymetry as a70

planar beach. We calculate the run-up heights at the shore and
the reflection caused by the slope. The reflected wave is then
influxed back into the simulation area using the EBC. The
coupling between the numerical and analytic dynamics in the
two areas is handled using variational principles, which leads75

to (approximate) conservation of the overall energy in both
areas. Following Kristina et al. (2012), an observation and in-
flux operator are defined at x=B to measure the incoming
wave signal and influx the reflected wave, respectively.

The shoreline position and wave reflection in the model80

area (sloping region) are determined using an analytical so-
lution of the nonlinear shallow water equations (NSWE) fol-
lowing the approach of Antuono and Brocchini (2010) for
unbroken waves. The decomposition of the incoming wave
signal and the reflected one is also described in Antuono and85

Brocchini (2007; 2010) for the calculation of the shoreline
and wave reflection. Nevertheless, the method in their paper
is applied by determining the incoming wave signal with the
solution of the Korteweg-de Vries (KdV) equation. The nov-
elty of our approach is the utilization of an observation op-90

erator at the boundary x=B to calculate the incoming wave
elevation towards the shore from the numerical solution of
the LSWE in the simulation area. For any given wave profile
and bathymetry in the simulation area, the numerical solu-
tion can be calculated and the signal arriving at x=B can95

be observed. Afterwards, the data are used to calculate the
analytical solution of the NSWE in the onshore region and
the reflected waves.

A rapid method to estimate tsunami run-up heights is also
suggested by Choi et al. (2011, 2012) by imposing a hard-100

wall boundary condition at x=B. Giving the water wave
oscillations at this hard wall at x=B, the maximum run-
up height of tsunami waves at the coast is subsequently cal-
culated in separation by employing a linear approach. It is
claimed that the linear and nonlinear theories predict the105

same maximal values for the run-up height if the incident
wave is determined far from the shore (Synolakis, 1987). In
contrast, Li and Raichlen (2001) shows that there is a differ-
ence in the maximum run-up prediction between linear and
nonlinear theory. In addition to calculating only the maxi-110

mum run-up height as in Choi’s method, our EBC also in-
cludes the calculation of reflected waves. Thus, the point-
wise wave height in the whole domain (offshore and onshore
area) is predicted accurately. For the inundation prediction,
we have verified that the method introduced by Choi et al.115

(2011; 2012) performs as well as our EBC method, while the
reflection wave comparisons show larger discrepancies due
to the usage of hard-wall boundary condition. The interac-
tion between incoming and reflected waves needs to be pre-
dicted accurately since subsequent waves may cause danger120

at later times. Stefanakis et al. (2011) discover that resonant
phenomena between the incident wavelength and the beach
slope are found to occur. The resonance happens due to in-
coming and reflected wave interactions, and the actual am-
plification ratio depends on the beach slope. It explains why125

in some cases it is not the first wave that results in the highest
run-up.

A determination of the location of the seaward boundary
point x=B is another issue that must be addressed. Choi
et al. (2011) put the impermeable boundary conditions at a130

5–10 m depth contour. In comparison, Didenkulova and Peli-
novsky (2008) show that their run-up formula for symmetric
waves gives optimal results when the incoming wave sig-
nal is measured at a depth that is two-thirds of the maxi-
mum wave height. We determine the location of this sea-135

ward boundary as the point before the nonlinearity effect
arises, and examine the dispersion effect at that point as well.
Considering the simple KdV equation (Mei, 1989), the mea-
sures of nonlinearity and dispersion are given by the ratios
ε=A/h and µ2 = (kh)2, for the wave amplitude A, water140

depth h , and wavenumber k. Provided with the information
of the initial wave profile, we can calculate the amplification
of the amplitude and the decrease of the wavelength in a lin-
ear approach, and thereafter estimate the location of the EBC
point.145

The EBC in this article will be derived in one spatial di-
mension for reasons of simplicity and clarity of exposure.
The numerical solution in the simulation area is based on a
variational finite element method (FEM). In order to verify
the EBC implementation that employs analytical solution, we150

also numerically simulate the NSWE in the model area using
a finite volume method (FVM). Both cases are coupled to
the simulation area to compare the results. We also validate
our approach against the laboratory experiment of Synolakis
(1987). In Sect. 2, we introduce the linear variational Boussi-155
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nesq model (LVBM) and shallow water equations (SWE),
both linear and nonlinear, from their variational principles.
The coupling conditions required at the seaward boundary
point are also derived here. The solution of the NSWE us-
ing a method of characteristics is shown in Sect. 3, which160

includes the solution of the shoreline position. In Sect. 4, the
effective boundary condition is derived required to pinpoint
the coupling conditions derived between the finite element
simulation area and the model area. Numerical validation and
verification are shown in Sect. 5, and we conclude in Sect. 6.165

2 Water wave models

Our primary goal is to model the water wave motion to the
shore analytically, instead of resolving the motion in these
shallow regions numerically. We therefore introduce an arti-
ficial, open boundary at some depth and wish to determine170

an effective boundary condition at this internal boundary. To
wit, for motion in a vertical plane normal to the shore with
one horizontal dimension, this artificial boundary is placed
at x=B while the real (time-dependent) boundary lies at
x= xs(t) with xs(t)<B. For example, land starts where the175

total water depth h= h(x,t) = 0 at x= 0. This water line is
time dependent as the wave can move up and down the beach.

We will restrict attention to the dynamics in a vertical
plane with horizontal and vertical coordinates x and z, re-
spectively. Nonlinear, potential flow water waves are suc-180

cinctly described by variational principles of Luke (1967)
and Miles (1977) as follows

0=δ

T∫
0

L [φ,Φ,η,xs]dt

=δ

T∫
0

L∫
xs

φ∂tη−1

2
g
(
(h+ b)2−b2

)
−

η∫
−hb

1

2
|∇Φ|2dz

dxdt

(1)185

with velocity potential Φ = Φ(x,z, t), surface potential
φ(x,t) = Φ(x,z = η,t), where η = h−hb is the wave el-
evation and h= h(x,t) the total water depth above the
bathymetry b=−hb(x) with hb(x) the rest depth. Time runs
from t ∈ [0,T ]; partial derivatives are denoted by ∂t et cetera,190

the gradient in the vertical plane as ∇= (∂x,∂z)
T and the

acceleration of gravity as g.
The approximation for the velocity potential Φ in Eq. (1)

can be of various kind, but all are based on the idea to re-
strict the class of wave motions to a class that contains the195

wave motions one is interested in (van Groesen, 2006; Cotter
and Bokhove, 2010; Gagarina et al., 2013). Following Klop-
man et al. (2010), we approximate the velocity potential as
follows

Φ(x,z, t) = φ(x,t) +F (z)ψ(x,t) (2)200

for a function F = F (z). Its suitability is determined by in-
sisting that F (η) = 0 such that φ is the potential at the loca-
tion z = η of the free surface and satisfies the slip flow con-
dition at the bottom boundary z+hb(x) = 0. The latter kine-
matic condition yields ∂zΦ + ∂xΦ∂xhb = 0 at z =−hb(x).205

For slowly varying bottom topography, this condition is ap-
proximated by

(∂zΦ)z=−hb(x)
= F ′ (−hb)ψ = 0 .

Substitution of Eq. (2) into Eq. (1) yields the variational210

principle for Boussinesq equations as follows (Klopman et
al., 2010)

0 =δ

T∫
0

L [φ,ψ,η,xs]dt

=δ

T∫
0

L∫
xs

(
φ∂tη−

1

2
g
(
(h+ b)2− b2

)
− 1

2
(η+hb) |∂xφ|2

− β̆∂xψ∂xφ−
1

2
ᾰ|∂xψ|2−

1

2
γ̆ψ2

)
dxdt , (3)215

where functions β̆(x), ᾰ(x), and γ̆(x) are given by

β̆(x) =

η∫
−hb

Fdz, ᾰ(x) =

η∫
−hb

F 2dz, γ̆(x) =

η∫
−hb

(F ′)2dz .

(4)

The shallow water equations (SWE) are derived with the as-220

sumption that the wavelengths of the waves are much larger
than the depth of the fluid layer so that the vertical variations
are small and will be ignored. In this case, there is no dis-
persive effect. The velocity potential is approximated over
depth by its value at the surface, such that F (z) = 0. Hence,225

when β̆ = ᾰ= γ̆ = 0 in Eq. (3), the nonlinear shallow water
equations are obtained as limiting system.

We a priori divide the domain into two intervals, x ∈
[B,L], where we model the wave propagation linearly, and
x ∈ [xs(t),B], where we keep the nonlinearity. To be pre-230

cise, in the simulation area from x ∈ [B,L], we linearize the
equations and thus the wave propagation in this domain is
modeled by linear shallow water shallow water equations and
a linear yet dispersive Boussinesq model. In the model area
x ∈ [xs(t),B], we only consider depth-averaged shallow wa-235

ter flow. Thus, a non-dispersive and nonlinear shallow water
equations are used to model the wave propagation in this re-
gion. Hereafter, we write φ̆ and η̆ for the linear variables and
also the definitions of β̆, ᾰ and γ̆ simplify accordingly. Con-
sequently, by applying the corresponding approximations to240

variational principle (3), the (approximated) variational prin-
ciple becomes
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0 = δ

T∫
0

L
[
φ̆, ψ̆, η̆,φ,η,xs

]
dt

= δ

T∫
0

[ L∫
B

(
φ̆∂tη̆−

1

2
gη̆2− 1

2
hb|∂xφ̆|2− β̆∂xψ̆∂xφ̆

− 1

2
ᾰ|∂xψ̆|2−

1

2
γ̆ψ̆2

)
dx (5a)245

+

B∫
xs

(
φ∂tη−

1

2
g
(
(h+ b)2− b2

)
− 1

2
(η+hb) |∂xφ|2

)
dx
]
dt .

(5b)

We choose a parabolic profile function F (z;hb) =
2z/hb + z2/h2b, in which the x dependence is considered to
be parametric when total water depth h is sufficiently slowly250

varying. The coefficients in (4) simplify to their linearized
counterparts in the simulation area where the linear Boussi-
nesq equation holds (while these coefficients disappear in the
model area where the nonlinear depth-averaged shallow wa-
ter equations hold).255

ᾰ= ᾰ(x) =

0∫
−hb

F 2dz =
8

15
hb ,

β̆ = β̆(x) =

0∫
−hb

Fdz =−2

3
hb ,

γ̆ = γ̆(x) =

0∫
−hb

(F ′)2dz =
4

3hb
. (6)

The variations in Eq. (5) yield260

0 = lim
ε→0

1

ε

T∫
0

L[φ̆+ εδφ̆, ψ̆+ εδψ̆, η̆+ εδη̆,φ+ εδφ,

η+ εδη,xs + εδxs]−L[φ̆, ψ̆, η̆,φ,η,xs]dt (7a)

=

T∫
0

[ L∫
B

((
∂tη̆+ ∂x(hb∂xφ̆) + ∂x(β̆∂xψ̆)

)
δφ̆− (∂tφ̆+ gη̆)δη̆

+ (∂x(ᾰ∂xψ̆) + ∂x(β̆∂xφ̆)− γ̆ψ̆)δψ̆
)

dx

+ (hb∂xφ̆+ β̆∂xψ̆)δφ̆|x=B + (ᾰ∂xψ̆+ β̆∂xφ̆)δψ̆|x=B265

+

B∫
xs

((
∂tη+ ∂x ((η+hb)∂xφ)

)
δφ− (∂tφ+ gη+

1

2
∂2
xφ)δη

)
dx

− (η+hb)∂xφδφ|x=B + (φδη)|x=xs
dxs
dt
− (φ∂tη)|x=xsδxs

]
dt,

(7b)

where we used endpoint conditions δη(0) = δη(T ) = 0, no-
normal through flow conditions at x= L and h(xs(t), t) = 0.270

Since the variations are arbitrary, the linear equations emerg-
ing from Eq. (7b) for x ∈ [B,L] are as follows

∂tφ̆+ gη̆ = 0, (8a)

∂tη̆+ ∂x(hb∂xφ̆) + ∂x(β̆∂xψ̆) = 0 (8b)

∂x(ᾰ∂xψ̆) + ∂x(β̆∂xφ̆)− γ̆ψ̆ = 0 (8c)275

and for x ∈ [xs(t),B], we get the nonlinear equations of mo-
tion

∂tφ+ gη+
1

2
∂2xφ= 0, (9a)

∂tη+ ∂x ((η+hb)∂xφ) = 0. (9b)280

The last two terms in Eq. (7b) are the boundary terms at x=
xs. They can be rewritten as follows

T∫
0

[
(φδη) |x=xs

dxs
dt
−(φ∂tη) |x=xsδxs

]
dt=

T∫
0

[(
−φ∂x (η+hb)

dxs
dt
−φ∂tη

)
δxs

]
x=xs

dt, (10)285

since the total depth h(xs, t) = η(xs, t) +hb(xs) = 0 at the
shoreline boundary. Therefore, we have the relation 0 =
δh(xs, t) = δh+∂xhδxs = δη+∂x (η+hb)δxs. Substituting
Eq. (9b) into (10), the boundary condition at the shoreline is290

dxs
dt

= ∂xφ at x= xs(t) , (11)

i.e., the velocity of the shoreline equals the horizontal ve-
locity of the fluid particle. The underlined terms in Eq. (7b)
apply at the seaward point, where we want to derive the cou-295

pling of effective boundary conditions. To derive the con-
dition for the linear model, the goal is to write these terms
using the variations δφ̆ and δψ̆. Because the depth-averaged
shallow water equations are considered, we have

φ(x,t) = Φ̄(x,t) =
1

hb

0∫
−hb

Φ(x,z, t)dz = φ̆+
β̆

hb
ψ̆ , (12)300

where the last equality arises from approximation (2) for the
velocity potential. Thus, the variation of δφ becomes

δφ= δφ̆+
β̆

hb
δψ̆ .

305

Substituting this into Eq. (7b), we get the coupling condition
at x=B for the linear model as follows

hb∂xφ̆+ β̆∂xψ̆ = h∂xφ (13a)

ᾰ∂xψ̆+ β̆∂xφ̆=
β̆

hb
h∂xφ (13b)

310
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To derive the condition for the nonlinear shallow water
model, we use the approximation for the velocity potential
(2) again. Since F (z = η) = 0 at the surface we have φ= φ̆

and thus δφ= δφ̆. From Eq. (7b), the coupling condition for
nonlinear model is given by315

h∂xφ= hb∂xφ̆+ β̆∂xψ̆ . (14)

Note that the coupling conditions (13)–(14) are used
to transfer the information between the two domains. The
coupling conditions (13) gives the information of φ̆ and320

ψ̆ in simulation area, provided the information of φ from
model area. Meanwhile, the coupling condition (14) gives
the information of φ in model area, provided the information
of φ̆ and ψ̆ from simulation area.

325

3 Nonlinear Shallow Water Equations

3.1 Characteristic form

We will start with the NSWE in the shore region. Using η =
−hb +h and velocity u= ∂xφ, we may rewrite Eq. (9) as
follows (starred variables are used here for later convenience)330

∂t?h
? + ∂x? (h?u?) = 0 (15a)

∂t?u
? +u?∂x?u? =−g?∂x?(−h?b +h?). (15b)

The dimensionless form of Eq. (15) for a still water depth
hb∗= γ?x? (where γ? =tan θ is the beach slope) is obtained335

by using the scaling factors (Brocchini and Peregrine, 1996):

h=
h∗

h0
, u=

u∗

u0
, x=

x∗

l0
, t=

t∗

t0
, (16)

in which h0 is the still water depth at the seaward boundary
and u0, l0, and t0 are defined below as340

u0 =

√
g?h0
g

, l0 =
h0γ

γ?
, t0 =

γ

γ?

√
gh0
g?

, (17)

where g = 1 and γ = 1 are dimensionless gravity accelera-
tion and beach slope, respectively. The NSWE in dimension-
less form are then given by345

∂th+ ∂x (hu) = 0 (18a)
∂tu+u∂xu= gγ− g∂xh. (18b)

The asymptotic solution of this system of equations for350

wave propagation over sloping bathymetry has been given
for several initial-value problems using a hodograph trans-
formation (Carrier and Greenspan, 1957; Synolakis, 1987;
Pelinovsky and Mazova, 1992; Carrier et al., 2003; Kânoğlu
, 2004), also for the boundary-value problem (Antuono and355

Brocchini, 2007; Li and Raichlen, 2001; Madsen and Schaf-
fer, 2010) that will be the case in this article. Since the system
is hyperbolic, it has the following characteristic forms

dα

dt
= 0 on

dx

dt
= u− c (19a)

dβ

dt
= 0 on

dx

dt
= u+ c, (19b)360

in which c=
√
gh and

α= 2c−u+ gγt, β = 2c+u− gγt. (20)

Variables α and β are the so-called Riemann invariants365

since they do not change their value along the characteris-
tics curves in Eq. (19). Assuming the flow to be subcritical
(that is |u|< c), the first characteristics curves with u−c < 0
are called “incoming” since they propagate signals towards
the shore. The second ones with u+ c > 0 are called “out-370

going” since they move towards the deeper waters (carrying
information on the wave reflection at the shoreline).

3.2 A trivial solution of characteristic curve

In the trivial case of no motion (u= η ≡ 0) as well as the dy-
namic case presented later, we focus on the incoming char-375

acteristic curve. In the rest case, it is given by

dx

dt
=−√gγx. (21)

For x 6= 0, substituting y =
√
gγx results in the general solu-

tion for variable y as follows380

y =−1

2
gγt+C2,

with a constant C2. When the curve intersects x=B at
time τ , with h0 the depth at x=B, such that h0 = γB and
y(B) =

√
gγB = c0, the particular solution is given by385

y =
2c0− gγ(t− τ)

2
.

In case of no motion, the boundary data α= α0(τ) and β =
β0(τ) are as follows

α0 = 2c0 + gγτ , β0 = 2c0− gγτ. (22)390

Transforming back to the x variable, while using these ex-
pressions, we get the incoming characteristic curve

x=
1

4gγ
(gγt−α0)2 =

gγ(2ω− (t− τ))2

4
(23)

395

with ω = c0/(gγ). Along this characteristic curve, the Rie-
mann invariant is constant.

Figure 2 shows the characteristic curves of the dimension-
less NSWE over sloping bathymetry b(x) =−x for x ∈ [0,1]
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Fig. 2. Plot of the characteristic curves in case of no motion
(η = u= 0) for the dimensionless NSWE over sloping bathymetry
b(x) =−x for x ∈ [0,1] and LSWE over flat bathymetry h0 =
1,B = 1 for x ∈ [1,2]. The ”incoming” and ”outgoing” character-
istic curves are shown by solid and dashed lines, respectively. The
shoreline x= 0 can be seen as the envelope of the characteristic
curves themselves.

and LSWE over flat bathymetry h0 = 1, B = 1 for x ∈ [1,2].400

As in our previous paper (Kristina et al., 2012), the charac-
teristic curve of the LSWE are given by dx/dt=±c0. The
“incoming” and “outgoing” characteristic curves are shown
by the solid and dashed lines respectively.

For each characteristic curve (23), the location of the405

shoreline can be determined by looking for the τ = τs for
which the characteristic reaches the shoreline position, here
x= 0, at time t. It is given by the condition

∂x

∂τ
= 0 so that τs = t− 2ω. (24)

410

As displayed in Fig. 2, the incoming characteristic curves
that reach the shoreline at time t, intersect x=B = 1 at time
τ = t− 2 (ω = 1 in this case). Since u= 0 in the rest case,
the boundary condition (11) is of course satisfied.

3.3 Boundary Value Problem (BVP)415

Li and Raichlen (2001) and Synolakis (1987) combine linear
and nonlinear theory to reduce the difficulties in the assign-
ment of the boundary data for solving the BVP problem in
the NSWE. Later, it is shown that the proper way to solve
the assignment problem without using linear theory at all is420

not given in terms of η or u (both are shown to be ill posed;
Antuono and Brocchini, 2007) but in terms of the incom-
ing Riemann variable α. This article follows the approach
of Antuono and Brocchini (2010) which uses this incoming
Riemann variable as boundary data and solve the dimension-425

less NSWE by direct use of physical variables instead of us-
ing the hodograph transformation introduced by Carrier and
Greenspan (1957). We do, however, clarify the mathematics
of the boundary condition at the shoreline.

Given the data of η and u at the seaward boundary x=B,430

∀t ∈ R (see Fig. 1), we want to find a solution of the NSWE
in the sloping region to the shoreline including the reflected

waves traveling back into the deeper waters. In accordance to
the previous trivial case, the initial time where a characteris-
tic meets x=B is labeled as τ and we write x= χ(t,τ), so435

we have the data α= α0 ≡ 2c(B,τ)−u(B,τ) + gγτ along
the incoming characteristic curves and β = β0 ≡ 2c(B,τ) +
u(B,τ)−gγτ along the outgoing characteristic curves. Then
we can rewrite Eq. (19) as

α= α0 on curves such that χt = u− c=
β− 3α0

4
+ gγt

(25a)

440

β = β0 on curves such that χt = u+ c=
3β0−α

4
+ gγt,

(25b)

which means that the boundary values are carried by the in-
coming and outgoing characteristic curves. To be concise,
we write χt = ∂tχ and χτ = ∂τχ. Our aim is to obtain a445

closed equation for the dynamics and we focus on the incom-
ing characteristic by fixing α= α0. We can rewrite Eq. (25a)
as follows

β = 3α0 + 4(χt− gγt). (26)
450

Here β = β(χ,t) since we are moving along an incoming
characteristic curve. By taking the total t derivative of β, we
obtain

dβ

dt
= βt +βxχt = βt +

(
β− 3α0

4
+ gγt

)
βx = 4(χtt− gγ) ,

(27)455

in which the last equality comes from Eq. (26). In addition,
the τ -derivative of Eq. (26) gives

∂β

∂τ
= βxχτ = 3α̇0 + 4χtτ ⇒ βx =

3α̇0 + 4χtτ
χτ

. (28)

We still need an explicit expression for βt which can be ob-460

tained by rewriting Eq. (19b) in the following way

βt +

(
3β−α0

4
+ gγt

)
βx = 0 . (29)

Combining Eqs. (27)–(29), we get the following differen-
tial equation for the incoming characteristic curves:465

2χτ (χtt− gγ) = (4χtτ + 3α̇0)(gγt−α0−χt) for t > τ.
(30a)

with boundary conditions

χ|t=τ =B (30b)
χτ |τ=τs = 0 . (30c)470

The second boundary condition is the shoreline boundary
condition. We have 4c= α+β from Eq. (20), which implies
β =−α at the shoreline c= 0. Using Eq. (26), we note that
4c= α0 +β = 4(α0 +χt−gγt) = 0 at the shoreline. Hence,475

the right-hand-side of Eq. (30a) is zero, such that for con-
sistency χτ must be zero at the shoreline since generally
χtt 6= gγ.
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3.3.1 Perturbation expansion

Due to the nonlinearity in χ, we use a perturbation method to480

solve Eq. (30). We expand it in perturbation series around the
rest solution (23) with the assumption of small data at x=B.
Using the linearity ratio ε=A/h0 (A is the wave amplitude),
we say a wave is small if ε� 1 and expand as follows:

α0 =α0,0 + εα0,1 +O(ε2), (31a)485

χ=χ(0) + εχ(1) +O(ε2), (31b)

τs =τ0(t) + ετ1(t) +O(ε2). (31c)

in which α0,0 = 2c0+gγτ is the incoming Riemann invariant
in case of no motion, χ(0) is given by Eq. (23), and τ0 =490

t− 2ω. By substituting Eq. (31) into Eq. (30), we obtain at
first order in ε:

(2ω− t+ τ)(χ
(1)
tt + 2χ

(1)
tτ )− (χ(1)

τ −χ
(1)
t −α0,1)

+
3

2
(2ω− t+ τ) α̇0,1 =0, (32a)

χ
(1)
t=τ =0, (32b)495

χ(0)
ττ (t,τ0)τ1 +χ(1)

τ (t,τ0) =0. (32c)

By letting Υ(1) = χ(1)−(2ω−t+τ)α0,1/2, we can rewrite
Eq. (32a) as

(2ω− t+ τ)(Υ
(1)
tt + 2Υ

(1)
tτ )−Υ(1)

τ + Υ
(1)
t = 0 . (33)500

Then, we make the change of variables ν =−(2ω− t+ τ)
and ξ = τ , and Eq. (33) becomes

ν
(

2Υ
(1)
νξ −Υ(1)

νν

)
− 2Υ(1)

ν + Υ
(1)
ξ = 0 . (34)

505

Denote the Fourier transform F(·) with respect to ξ

ρ(1)(ν,s) = F
(

Υ(1)(ν,ξ)
)

(s) =

∞∫
−∞

Υ(ν,ξ)e−isξdξ , (35)

we obtain from Eq. (34) a differential equation related to a
Bessel equation:510

ν
(

2isρ(1)ν − ρ(1)νν
)
− 2ρ(1)ν + isρ(1) = 0 , (36)

which has general solution

ρ(1)(ν,s) = eisν
(
A1(s) [J0(sν)− iJ1(sν)]

+A2(s) [iY0(sν) +Y1(sν)]
)

(37)515

with J0,1 and Y0,1 the Bessel functions of the first and second
kind. To recover Υ(ν,ξ), we just need to take the inverse
Fourier transform of Eq. (37), and by using Υ(1) = χ(1) +
να0,1/2, we get520

χ(1) (ν,ξ) =
1

2π

∞∫
−∞

eis(ν+ξ)
(
A1(s) [J0(sν)− iJ1(sν)]

+A2(s) [iY0(sν) +Y1(sν)]
)

ds− ν

2
α0,1 (38)

with ξ = τ ≤ t.

3.3.2 Boundary value assignment525

In order to calculate the unknown function A1(s) and A2(s),
we need to assign the boundary conditions (30). In (ν,ξ)
space, t= τ corresponds to ν =−2ω, and by imposing the
first boundary condition, we get

−F (α0,1)ωe2isω =A1(s) [J0 (2sω) + iJ1 (2sω)]530

+A2(s) [iY0 (2sω)−Y1 (2sω)] . (39)

The second boundary condition is given by Eq. (32c) in
which

χ(1)
τ =−χ(1)

ν +χ
(1)
ξ535

=
i

2π

∞∫
−∞

eis(ν+ξ)
(
A1(s)

[
sJ0(sν)− isJ1(sν)− J1(sν)

ν

]
+A2(s)

[
isY0(sν) + sY1(sν) +

Y1(sν)

iν

])
ds+

α0,1

2
− να̇0,1

2
,

(40)

evaluated at τ = τ0, i.e., ν = 0 needs to be finite. Evaluating
Eq. (40) at ν = 0 gives us convergence when the coefficient540

A2(s) is zero, which avoids an unbounded result. Hence,
from the first boundary condition (32b), coefficient A1(s) is
given by

A1(s) =− F(α0,1)ωe2isω

J0(2sω) + iJ1(2sω)
. (41)

545

Thus, the solution of incoming characteristic curves at the
first order is given by

χ(1)(ν,ξ) =

− 1

2π

∞∫
−∞

eis(ν+ξ+2ω)ωF (α0,1)
J0(sν)− iJ1(sν)

J0(2sω) + iJ1(2sω)
ds− ν

2
α0,1 .

(42)
550

The shoreline position must satisfy χτ |τ=τs = 0, and in the
first order approximation it is given by

xs(t) = χ(0) (t,τ0) + ε
[
χ(0)
τ (t,τ0)τ1 +χ(1) (t,τ0)

]
+O

(
ε2
)
.

(43)

Since τ = τ0 corresponds with ν = 0 and ξ = t− 2ω, we555

get

xs(t) =−F−1
[
F (α0,1)

ω

J0 (2sω) + iJ1 (2sω)

]
. (44)

4 Effective Boundary Condition

4.1 Finite element implementation560

The region x ∈ [B,L] will be approximated using a classical
Galerkin finite element expansion. We use first order spline
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polynomials onN elements with j = 1, . . . ,N+1 nodes. The
variational structure is simply preserved by substituting the
expansions565

φ̆h(x,t) = φj(t)ϕj(x), ψ̆h(x,t) = ψj(t)ϕj(x) , and
η̆h(x,t) = ηj(t)ϕj(x) (45a)

into Eq. (5) for x ∈ [B,L] concerning N elements and (N +
1) basis functions ϕj . We used the Einstein summation con-570

vention for repeated indices.
To ensure continuity and a unique determination, we em-

ploy Eq. (12) and substitute

φ(x,t) =φ̃(x,t) +φ1(t)ϕ1(x) +
β̃

hb
ψ1(t)ϕ1(x) and

η(x,t) =η̃(x,t) + η1(t)ϕ1(x) (45b)575

with ϕ1 the basis function in element 0 for x ∈ [xs,B] and
with φ̃(B,t) = η̃(B,t) = 0. For linear polynomials, use of
Eq. (45) into Eq. (5) yields

0 =δ

T∫
0

[
Mklφkη̇l−

1

2
gMklηkηl−

1

2
Sklφkφl580

−Bklψkφl−
1

2
Aklψkψl−

1

2
Gklψkψl

+

B∫
xs

(
φ∂tη−

1

2
gη2− 1

2
h(∂xφ)2

)
dx
]
dt (46a)

=

T∫
0

[
(Mklη̇l−Sklφl−Bklψl)δφk−(Mklφ̇k+gMklηk)δηl

−(Aklψl+Bklφl +Gklψl)δψk

+

B∫
xs

((
∂tη+ ∂x(h∂xφ)

)
δφ̃− (∂tφ+ gη+

1

2
∂2
xφ)δη̃

)
dx585

+ (φδη) |x=xs
dxs
dt
− (φ∂tη) |x=xsδxs

+

B∫
xs

(
(∂tη+ ∂x(h∂xφ))ϕ1δφ1− (∂tφ+ gη+

1

2
∂2
xφ)ϕ1δη1

)
dx

−h∂xφ|x=Bδφ1−
β̃

hb
h∂xφ|x=Bδψ1

]
dt, (46b)

where we introduced mass and stiffness matrices Mkl, Skl,590

Akl, Bkl, Gkl, and used endpoint conditions δηk(0) =
δηk(T ) = 0, connection conditions δη̃(B,t) = δφ̃(B,t) =
δψ̃(B,t) = 0, and no-normal through flow conditions at x=

L. The matrices in Eq. (46) are defined as follows

Mkl =

L∫
B

ϕkϕldx, Skl =

L∫
B

h∂xϕk∂xϕldx,595

Akl =

L∫
B

ᾰ∂xϕk∂xϕldx, Bkl =

L∫
B

β̆∂xϕk∂xϕldx,

and Gkl =

L∫
B

γ̆ϕkϕldx. (47)

Provided we let the size of the zeroth element go to zero such
that the underline terms in Eq. (46b) vanish, the equations600

arising from Eq. (46) are

Mklη̇l−Sklφl−Bklψl− δk1 (h∂xφ) |x=B− = 0 (48a)

Mklφ̇k + gMklηk = 0 (48b)

Aklψl +Bklφl +Gklψl− δk1(
β̃

hb
h∂xφ)|x=B− = 0 (48c)

605

with Kronecker delta symbol δkl (one when k = l and zero
otherwise) and Eq. (9) for x ∈ [xs,B] with boundary condi-
tion (11). Taking this limit does not jeopardize the time step,
as this zeroth element lies in the continuum region, in which
the resolution is infinite. The time integration is solved using610

ode45 in MATLAB that uses its internal time step.
From Eq. (48), we note that we need the depth h and the

velocity u from the nonlinear model at x=B, whose val-
ues are given at time t= τ in the characteristic space. The
definitions (20), while using α= α0 and β in Eq. (26) with615

expansions up to first order, yield

h=c2/g =
1

16g
(α0 +β)

2

=
(
α0,0 +χ

(0)
t − gγt+ ε(α0,1 +χ

(1)
t )
)2
/g

=
(
α0,0 +

gγt−α0,0

2
− gγt+ ε(α0,1 +χ

(1)
t )
)2
/g

=
(
c0 +

1

2
gγ(τ − t) + ε(α0,1 +χ

(1)
t )
)2
/g (49a)620

u=gγt+
1

2
(β−α0) = ε(α0,1 + 2χ

(1)
t ) . (49b)

Note that for ε= 0, we indeed find the rest depth hb(x) =

γx. The function χ(1)
t follows from evaluation of Eq. (42)

and since t= τ is equivalent to ν =−2ω, we immediately625

obtain

χ
(1)
t |t=τ ≡ χ(1)

ν (−2ω,ξ)

=− i

4π

∞∫
−∞

eisξF (α0,1)
J1 (2sω)

J0 (2sω) + iJ1 (2sω)
ds− α0,1

2
.

(50)
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Thus, the solutions of h and u at t= τ are given as follows630

h(B,t) = hb + η

=
c20
g

+ ε
c0
g
F−1

[
F (α0,1)

J0 (2sω)

J0 (2sω) + iJ1(2sω)

]
(51a)

u(B,t) =−εF−1
[
F (α0,1)

iJ1 (2sω)

J0 (2sω) + iJ1 (2sω)

]
. (51b)

635

In order to calculate the solution for h and u at x=B and
the shoreline position, we need the data of incoming Rie-
mann invariants at the first order as follows

εα0,1 ≈ α−α0,0

= 2
(√

g(γB+ η̆)−
√
gγB

)
|x=B+ − ŭ|x=B+ , (52)640

that is obtained by disregarding higher order terms in
Eq. (31a). This expression is actually the incoming Riemann
invariant in LSWE (Kristina et al., 2012). Thus, in imposing
the effective boundary condition (EBC) and choosing the lo-645

cation x=B before the nonlinearity arises, actually we do
the perturbation expansion to solve the nonlinear area, but
we do not perturb the incoming wave data.

The values η̆h and ŭ in Eq. (52) are obtained from the sim-
ulation area [B,L]. In this region, we only have the values of650

η̆, φ̆, and ψ̆. The depth-averaged velocity u(B+, t) is deter-
mined by using the approximation (12) as follows

ŭ= ∂xφ̆+
β̆

hb
∂xψ̆ at x=B+ , (53)

which is the limit from the right at node 1.655

The solutions of η = h−hb and u in Eq. (51) account for
the reflected wave, so we may define

η = ηI + ηR and u= uI +uR (54)

for ηI and ηR are the wave elevations of incoming and re-660

flected wave respectively at x=B. This superposition is also
described in Antuono and Brocchini (2007; 2010) and actu-
ally in line with our EBC concept since the linearity holds
in the simulation area. To obtain the expression for the re-
flected wave, we need to know the incoming one. Using the665

knowledge of incoming and outgoing Riemann invariants in
the LSWE as derived in Kristina et al. (2012), the observation
operator is given by

O = hŭ+ cη̆ = 2cηI, (55)
670

which is calculated using approximation (53). Thus, we can
calculate the incoming wave elevation for any given wave
signal at x=B. Implementation of this observation operator
allows us to have any initial waveform at the point of tsunami
generation, and let it travel over the real bathymetry to the675

seaward boundary point x=B. From Eq. (51), the expres-
sions for the reflected wave are as follows

ηR =M(ηI) =
c0
g
F−1

[
F(εα0,1)

J0 (2sω)

J0 (2sω) + iJ1 (2sω)

]
− ηI

(56a)

uR =M(uI) =−F−1
[
F (εα0,1)

iJ1 (2sω)

J0 (2sω) + iJ1 (2sω)

]
−uI

(56b)
680

with the Fourier transform and its inverse for any incoming
wave signal is evaluated using the FFT and IFFT functions
in MATLAB.

The influxing operator is defined as the coupling condition
in Eq. (48) to send NSWE result to the simulation area. It is685

shown that we need the value of h∂xφ, and hence

I = h∂xφ= (hb + η)u. (57)

In order to verify the EBC implementation, we perform nu-
merical simulations with a code that couples the LSWE in the690

simulation area with the NSWE in the model area (Bokhove,
2005; Klaver, 2009). For numerical simulation of the LSWE,
we use a finite element method, while for the NSWE we use
a finite volume method. The implementation of the finite vol-
ume method is explained in Appendix A.695

5 Study Case

Three test cases are considered. The first one is a synthetic
one concerning a solitary wave, such that we can compare
with other results. Subsequently, we consider periodic wave
influx as the second case to test the robustness of the tech-700

nique when there is continuous interaction between the in-
coming and reflected wave. The third case is a more realis-
tic one concerning tsunami propagation and run-up based on
simplified bathymetry at the Aceh coastline.

The location of the EBC point is determined from the705

linearity condition ε=A0/h0� 1. From linear theory, the
wave amplification over depth is given by the ratio A0 =
A 4
√
h/h0, where A and h are the initial wave amplitude and

depth. Hence, the EBC point must be located at depth

h0� 5
√
A4h/ε4 . (58)710

Since a dispersive model is also used in the simulation
area, we will discuss the dispersion effect at this EBC point
as well. The non-dispersive condition is given by µ2 =
(k0h0)2� 1, with k0 = 2π/λ0 is the wavenumber and λ is715

the wavelength. In linear wave theory, the wavelength de-
creases with the square root of the depth when running in
shallower water, that is λ0 = λ

√
h0/h. Thus, using this re-

lation we can investigate the significance of the dispersion
given the information of the initial condition and bathymetry720

profile.
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5.1 Solitary wave

The run-up of a solitary wave is studied by means of the well-
known case of Synolakis (1987). A solitary wave centered at
x= x0 at t= 0 has the following surface profile:725

η(x,0) =A sech2κ(x−x0). (59)

We benchmark the EBC implementation and the coupling
of numerical solutions with experimental data of Synolakis
(1987) provided at NOAA Center for Tsunami Research730

(http://nctr.pmel.noaa.gov/benchmark/). Solitary wave run-
up over a canonical bathymetry is considered with the scaled
amplitude A= 0.0185 and κ=

√
3A/4 = 0.1178. The ini-

tial condition is centered at x0 = 37.35 over the bathymetry
with a constant slope γ = 1/19.85 for x < 19.85. The EBC735

point is located at x= 10 such that the domain is divided into
the model area for x ∈ [−5,10] and the simulation area for
x ∈ [10,80]. The spatial grid size is ∆x= 0.25 in the simula-
tion area and ∆x= 0.0125 in the model area for the numeri-
cal solution of NSWE. In all cases, several spatial resolutions740

have been applied to verify numerical convergence. For the
time integration, we use the fourth order ode45 solver that
uses its own time step in MATLAB.

The simulations with the EBC implementation and the
coupling of numerical solutions are only presented for LSWE745

model in simulation area since the initial condition has long
wavelength and thus dispersion effect will not appear. Fig-
ure 3 shows the time evolution of this profile for scaled
time t= 30− 70 with 10 increments. It can be seen that the
EBC implementation and the coupling of numerical solu-750

tions agree well with the laboratory data. The comparison
of the shoreline movement between the simulation with EBC
implementation and the coupling of numerical solutions is
shown in Fig. 4. For the simulation until the scaled physical
time t= 100, the computational time for the coupled numer-755

ical solutions in both domains is 0.33 times the scaled physi-
cal time. While the computational time of simulation with the
EBC implementation only takes 0.06 times the scaled physi-
cal time. Hence, we notice that the simulation with the EBC
reduces the computational time significantly, up to approx-760

imately 82 %, compared with the computational time in the
whole domain.

In order to show the dispersion effect, we consider a
shorter wave with the profile given in Eq. (59) for κ= 0.04,
x0 = 150 m, and A= 0.1 m. The bathymetry is given by765

constant depth 10m for x > 50 m, continued by a constant
slope γ = 1/5 towards the shore. A uniform spatial grid
∆x= 1m is used in the simulation area and ∆x= 0.015 m
in the model area for the numerical solution of the NSWE.
Evaluating Eq. (58) for ε= 0.02� 1, the EBC point must be770

located at h0� 3.3 m. Accordingly, we choose this seaward
boundary point at h0 = 10 m at the toe of the slope, that is
at x=B = 50 m. Therefore, we divide the domain into the
simulation area for x ∈ [50,250] m and the model area for
x ∈ [−5,50] m.775
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Fig. 3. Run-up of a solitary waves over a canonical bathymetry at
times (a) t= 30, (b) t= 40, (c) t= 50, (d) t= 60, (d) t= 70. The
solid line is LSWE with EBC implementation at x= 10, the dashed
and dotted-dashed line are the coupling of LSWE and NSWE
model respectively, and the symbols are laboratory data of Syno-
lakis (1987).
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Fig. 4. The shoreline movement of a solitary wave introduced in
Synolakis (1987). The LSWE model coupled to the NSWE is shown
by the dashed line, while the solid one is the shoreline movement of
the LSWE model with an EBC implementation.
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Fig. 5. A solitary wave initial condition for the NSWE (dotted-
dashed line) coupled to the linear model (dashed line), and the linear
model with the EBC implementation (solid line) at x= 50 m. The
solid and dashed lines are on top of another.
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Fig. 6. Free-surface profiles of a solitary wave propagation are
shown for the coupled linear model (left: LSWE, right: LVBM)
with the NSWE (dashed and dotted-dashed lines), and for the linear
model with an EBC implementation (solid line), at times (a) t=
10 s, (b) t= 20 s, (c) t= 30 s, (d) t= 40 s. The solid and dashed
lines are on top of another at several plots.

In Fig. 5, we can see the initial profile of the solitary wave.
Comparisons between these two simulations at several time
steps can be seen in Fig. 6 (left: LSWE, right: LVBM). Com-
paring the left and right figures, we can see that the wave
is slightly dispersed in the LVBM. Because we have flat780

bathymethy in this case, the dispersion ratio at the simula-
tion area is constant and given by µ2 = 0.39< 1. Hence, it is
shown the long waves propagate faster than the shorter ones
in LVBM simulations. In Fig. 7, the shoreline position caused
by this solitary wave is shown. The paths of characteristic785

curves forming the shoreline are also presented in this figure.
We can see that the shoreline is formed by the envelope of
the characteristic curves. The result with the LVBM shows a
lower run-up but higher run-down with some oscillations at
later times.790

For simulation until physical time t= 40 s, the compu-
tational time for the coupled numerical solutions in both
domains is 3.3 times the physical time for the LSWE and
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Fig. 7. The shoreline movement of a solitary wave for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and the linear model with an EBC implementation (solid line). Paths
of the first-order characteristic curves are shown by the thin lines.

2.2 times for the LVBM. While the computational time of
simulation using an EBC only takes 0.12 times the physical795

time for the LSWE and 0.06 times for the LVBM. Hence, we
notice that the simulation with the EBC reduces the compu-
tational time significantly, up to approximately 97 %, com-
pared with the computational time in the whole domain. The
computational time for the LSWE with an EBC is slower800

than the one with LVBM and an EBC, because the inter-
nal time step of the ode45 time step routine in MATLAB
required a smaller time step dt (compared to the LVBM) to
preserve the stability.

The shoreline movement of our result compare well with805

the one of Choi et al. (2011). We can see the comparison in
Fig. 8. The solution of Choi et al. (2011) gives higher pre-
diction for the shoreline, but it cannot follow the subsequent
small positive wave. It may be caused by neglecting the re-
flection wave and nonlinear effects in their formulation. We810

also compare the free-surface profile for several time steps in
Fig. 9. The implementation of the hard-wall boundary con-
dition at x=B in the method of Choi et al. (2011) causes
that the point-wise wave height in the whole domain cannot
be predicted accurately. In this case, the effect of reflected815

waves for shoreline movement prediction is small, but it may
become important when a compound of waves arrives at the
coastline.
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Fig. 8. Comparison of the shoreline movement of Choi et al. (2011)
(dashed line) and LSWE with EBC simulation (solid line) for soli-
tary wave case.

(a) 0 50 100 150 200 250

−0.05

0

0.05

0.1

x [m]

η
(x

,t
) 

[m
]

(b) 0 50 100 150 200 250

0

0.1

0.2

x [m]

η
(x

,t
) 

[m
]

(c) 0 50 100 150 200 250
−0.05

0

0.05

0.1

x [m]

η
(x

,t
) 

[m
]

(d) 0 50 100 150 200 250
−0.05

0

0.05

0.1

x [m]

η
(x

,t
) 

[m
]

Fig. 9. Free-surface profiles of a solitary wave propagation are
shown for the coupled LSWE with the NSWE (dashed and dotted-
dashed lines), for the LSWE with an EBC implementation (solid
line), and for the LSWE with the method of Choi et al. (2011) (solid
line with ’o’ marker) at times (a) t= 10 s, (b) t= 20 s, (c) t= 30 s,
(d) t= 40 s. The solid and dashed lines are on top of another.

5.2 Periodic wave

Using the same bathymetry profile as the previous case, we820

influx a periodic wave at the right boundary (x= L) with the
profile:

η(L,t) =A sin(2πt/T ) (60)

in which A= 0.05 m is the amplitude and period T = 20 s.825

A smoothened characteristic function until t= 10 s is used
in influxing this periodic wave. We use uniform spatial grid
∆x= 1 m in the simulation area and ∆x= 0.015 m in the
model area for the numerical solution of the NSWE.

As the previous case, we also choose the seaward bound-830

ary point at h0 = 10 m at the toe of the slope, that is at x=
B = 50 m. Thus, the simulation area is for x ∈ [50,250] m
and the model area for x ∈ [−5,50] m. Comparisons be-
tween these two simulations at several time steps can be
seen in Fig. 10 (left: LSWE, right: LVBM). We can see in835

the comparison that the wave is slightly dispersed in the
LVBM. The dispersion ratio at the simulation area is given
by µ2 = 0.0986< 1, which is less dispersive than the previ-
ous case. In Fig. 11, the shoreline movement caused by the
periodic wave as well as the paths of characteristic curves840

forming the shoreline are shown. Observing the results of
this case, we can conclude that the EBC technique can deal
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Fig. 10. Free-surface profiles of periodic waves are shown for the
coupled linear model (left: LSWE, right: LVBM) with the NSWE
(dashed and dotted-dashed lines), and for the linear model with an
EBC implementation (solid line), at times (a) t= 20 s, (b) t= 40 s,
(c) t= 60 s, (d) t= 75 s. The solid and dashed lines are on top of
another at several plots.
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Fig. 11. The shoreline movement of periodic waves for the linear
model (a: LSWE, b: LVBM) coupled to the NSWE (dashed line)
and for the linear model with an EBC implementation (solid line).
Paths of the first-order characteristic curves are shown by the thin
lines.

robustly with consecutive interactions between incoming and
reflected wave.

For simulation until physical time t= 80 s, the computa-845

tional time for the coupled numerical solutions in both do-
mains is 1.83 times the physical time for the LSWE and
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2.01 times for the LVBM. While the computational time of
simulation using an EBC only takes 0.07 times the physical
time for the LSWE and 0.06 times for the LVBM. Obviously,850

we notice that the simulation with the EBC reduces the com-
putational time up to approximately 97 %, compared with the
computational time for whole domain simulation.

Fig. 12. The three piece-wise bathymetry profile.
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Fig. 13. The run-up height of periodic waves with initial amplitude
A= 1m and frequency ω = 0.0009rad/s. The solid line is the run-
up height calculated by employing the LSWE model in the simu-
lation area with EBC implementation. The dashed one is the result
of coupling the NSWE model in model area with LSWE model in
simulation area.

As it has been mentioned in the Introduction, the reso-
nance phenomena was discovered by Stefanakis et al. (2011)855

for monochromatic waves on a plane beach. Subsequently,
Ezersky et al. (2013) used three piece-wise profiles of unper-
turbed depths (see Fig. 12) that are typical for a real ocean
bottom to find the analytical run-up amplification due to the
resonance effect. We follow this bathymetry profile with tan860

α= 0.0036, tan β = 0.0414, h0 = 2500m, and h1 = 200m.
These choices are roughly characterizing the Indian coast
bathymetry (Neetu et al., 2011). The EBC point is located at
the edge of the last beach slope. We influx periodic wave (60)
with amplitude A= 1 m and ω = 2π/T = 0.0009 rad/s. As865

a result, we get 10.67 times amplification as shown in the run-
up height R(t) in Fig. 13, while the result of Ezersky et al.
(2013) gives about 12 times amplification. It should be noted
that they use linear approximation to calculate the amplifica-
tion of periodic waves. In our result, the NSWE model is em-870

ployed in the last beach slope region. The period of this wave

is approximately 2 hours and it coincides with the observed
tsunami in Makran coast according to Neetu et al. (2011). In
nature, one would not expect a tsunami of monochromatic
wave train. The investigation of Stefanakis et al. (2011) for875

the October 25, 2010 Mentawai Islands tsunami showed that
the period of the dominant mode of the incident wave is
within the resonant regime, and it explained the fact that the
highest run-up is not driven by the leading and highest wave.

5.3 Simulation using simplified Aceh bathymetry880

The bathymetry near Aceh, Indonesia, is displayed in Fig. 14.
Figure 14a concerns bathymetry data from GEBCO, with
zero value for the land. Figure 14b concerns the cross section
at (95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N) shown
by the solid line. The 2004 Indian Ocean tsunami was oc-885

curred with a magnitude of Mw 9.1 at the epicenter point
95.854◦ E, 3.316◦ N, that is shown by the symbol in Fig-
ure 14a. Presently, we consider the initial N -wave profile as
follows

η(x,0) =Af(x)/S with f(x) =
d

dx
exp

(
−(x−x0)2/w0

2
)

890

and S = max(f(x)) (61)

and the initial velocity potential is zero. We take A= 0.4 m,
the position of the wave profile x0 = 107.4 km, and the width
w0 = 35 km.895

(a)

(b)

Fig. 14. Bathymetry near Aceh (a) and the cross section (b) at
(95.0278◦ E, 3.2335◦ N)–(96.6583◦ E, 3.6959◦ N). The solid line
concerns the bathymetry data and the dashed line concerns the ap-
proximation used in the simulations.

The location of the EBC point is also determined from
Eq. (58). For ε= 0.02� 1, the linear model is valid for
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Fig. 15. The initial condition of Aceh case is shown for the linear
model coupled to the NSWE (dashed and dotted-dashed lines) for
the linear model with an EBC implementation (solid line). The solid
and dashed lines are on top of another.

h0� 25.1 m. Hence, we choose the EBC point at depth h0 =
41.4 m, which is located at x=B = 12.4 km. Thus, the sim-
ulation area is for x ∈ [12.4,162.4] km, where we follow the900

real bathymetry of Aceh to calculate the wave propagation.
It is coupled with the model area for x ∈ [−8.6,12.4] km,
where a uniform slope with gradient γ = 1/300 is used to
calculate the reflection and shoreline position. We use an ir-
regular grid according to the depth with ratio

√
h0/h as the905

decrease of the wavelength when traveling from a deep re-
gion with depth h and a shallower region with depth h0 in lin-
ear wave theory. The grid size used in the simulation area is
∆x= 305 m at the shallowest area near x=B. This choice
of spatial resolution is fairly close to tsunami numerical sim-910

ulation (Horrillo et al., 2006 use ∆x= 100 m offshore and
∆x= 10 m onshore in one dimensional simulations). For nu-
merical solution of the NSWE in the model area, a uniform
grid ∆x= 3 m is used.

In Fig. 15, we show the initial profile. Comparisons be-915

tween these two simulations at several time steps can be seen
in Fig. 16. In this case, the wave elevation measured at B
has been deformed from its initial condition due to the re-
flection from the bathymetry before entering the model area,
see Fig. 16a and b. We hardly see any differences between920

the LSWE and LVBM simulations because the wavelength is
much larger than the depth. The dispersion ratio at the ini-
tial condition is given by µ2 = 0.002� 1, and at the EBC
point is approximately µ2 = 7.5× 10−5� 1. Therefore, the
dispersion effect is not significant in this case. In Fig. 17, the925

shoreline position is displayed. From this plot, it is shown
that the wave runs up 1 km in the horizontal direction in ap-
proximately 10 min, roughly in the time interval from 50 to
60 min. For the given slope, it corresponds with 3.3 m run-up
height.930

For simulation until physical time t= 120 min, the com-
putational time for the coupled numerical solutions in both
domains is 0.03 times the physical time for the LSWE and
0.03 times for the LVBM. While the computational time of
simulation using an EBC only takes 0.003 times the physical935

time for the LSWE and 0.004 times for the LVBM. We again
notice that the simulations using the EBC reduce the compu-
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Fig. 16. Free-surface profiles of Aceh simulations with the linear
model (left: LSWE, right: LVBM) coupled to the NSWE are shown
by the dashed and dotted-dashed lines, and of simulation for a linear
model with an EBC implementations are shown by the solid line
at times (a) t= 800 s, (b) 1600 s, (c) 2700 s, (d) 3200 s, (e) 4000 s,
(f) 5400 s. The solid and dashed lines are on top of another at several
plots.
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Fig. 17. Shoreline movement in Aceh case for the linear model (a:
LSWE, b: LVBM) coupled to NSWE (dashed line) and for the linear
model with EBC implementation (solid line). Paths of the first order
characteristic curves are shown by thin lines.
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Fig. 18. Shoreline movement (a) and an inset (b) of a breaking
wave simulation. The linear model coupled to NSWE is shown by
dashed line, while the solid one is the shoreline movement of linear
model simulation with EBC implementation. Paths of the first or-
der characteristic curves are shown by thin lines. A breaking occurs
when two incoming characteristic curves intersect before reaching
the shoreline.

tational times up to approximately 92 % of the computational
times with the coupled model in the entire domain. In this
case, the simulation with the LSWE is faster, as expected,940

since the LVBM involves more calculations within the same
time step.

For the case when breaking occurs, we use the same pro-
file with twice higher amplitude (A= 0.8 m). In Fig. 18, the
shoreline position is presented. Compared to the numerical945

NSWE solution, it can be seen that the shoreline movement is
well represented by the characteristic curves while the shore-
line position xs(t) given by Eq. (44) gives a less accurate
result. A breaking occurs when two incoming characteris-
tic curves intersect before reaching the shoreline. As can be950

seen in the right figure, the first breaking is approximately at
t= 45 min. The corresponding free-surface profiles for sev-
eral times before and after the breaking are shown in Fig. 19.

6 Conclusions

We have formulated a so-called effective boundary condi-955

tion (EBC), which is used as an internal boundary condi-
tion within a domain divided into simulation and model ar-
eas. The simulation area from the deep ocean up to a certain
depth at a seaward boundary point at x=B is solved nu-
merically using the linear shallow water equations (LSWE)960

and the linear variational Boussinesq model (LVBM). The
nonlinear shallow water equations (NSWE) are solved ana-
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Fig. 19. Free-surface profiles of a breaking wave simulation for the
linear model coupled to the NSWE (dashed and dotted-dashed lines)
and for the linear model with an EBC implementation (solid line) at
t= 40–70 min. The solid and dashed lines are on top of another.

lytically in the model area from this boundary point towards
the coastline over a simplified sloping bathymetry. The wave
elevation at the seaward boundary point is decomposed into965

the incoming signal and the reflected one, as described in An-
tuono and Brocchini (2007; 2010). The advantages of using
this EBC are the ability to measure the incoming wave signal
at the boundary point x=B for various shapes of incom-
ing waves, and thereafter to calculate the wave run-up and970

reflection from these measured data. To solve the tsunami
wave run-up in nearshore area analytically, we employ the
asymptotic technique for solving the NSWE over sloping
bathymetry derived by Antuono and Brocchini (2010), ap-
plied to any given wave signal at x=B.975

The EBC implementation has been verified in several test
cases by comparing simulations in the whole domain (using
numerical solutions of the LSWE/ LVBM in the simulation
area coupled to the NSWE in the model area) with ones us-
ing the EBC. We also have validated our approach with the980

laboratory experiment of Synolakis (1987) for the run-up of
solitary wave over a plane beach. The location of the bound-
ary point x=B is considered before the nonlinearity plays
an important role in the wave propagation. The comparisons
between both simulations show that the EBC method give a985

good prediction of the wave run-up as well as the wave re-
flection, based only on the information of the wave signal at
this seaward boundary point. It is also shown the EBC tech-
nique can capture the resonance effect that occurs due to the
incoming and reflected wave interactions. The computational990
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times needed in simulations using the EBC implementation
show a large reduction compared to times required for cor-
responding full numerical simulations. Hence, without los-
ing the accuracy of the results, we could compress the time
needed to simulate wave dynamics in the nearshore area.995

An extension of this EBC technique to the case when the
NSWE model is used both in the simulation and model area
follows directly from the variational methodology. The ana-
lytical benchmark for this case is provided by Carrier et al.
(2003) and Kânoğlu (2004). The two dimensions (2-D) ex-1000

tension of this technique can also be done in a direct way by
using the approach of Ryrie (1983). For waves incident at a
small angle to the beach normal, the onshore problem can be
calculated using the analytical 1-D run-up theory of the non-
linear model, and independently the longshore velocity can1005

be computed asymptotically. By using a 2-D linear model in
the open sea towards the seaward boundary line (i.e., in the
simulation area) and employing this approach in the model
area, we can in principle apply the EBC method for this 2-D
case as well. This will be approximately valid for 2-D flow1010

with slow variations along the EBC line. The EBC formu-
lation for the case when the shoreline is fronted by a verti-
cal wall as presented by Kânoğlu and Synolakis (1998) can
be obtained by requiring the normal velocity at the shoreline
wall boundary is zero. Another characteristics for the outgo-1015

ing or reflected waves must be derived (either for the LSWE
or NSWE model), but the coupling between the numerical
and analytical model remains the same as has been derived
in this article.

Appendix A1020

Finite volume implementation

The conservative form of NSWE are given by

∂u

∂t
+
∂f(u)

∂x
= s (A1)

with1025

u =

(
hu
h

)
f(u) =

(
hu2 + 1

2gh
2

hu

)
, (A2)

and the topographic term s

s =

(
−gh db/dx

0

)
. (A3)

1030

The system (A1) is discretized using a Godunov finite
volume scheme. First the domain [A,B], with some fixed
A< xs(t) is partitioned into N grid cells with grid cell k
occupying xk− 1

2
< x < xk+ 1

2
. The Godunov finite volume

scheme is derived by defining a space-time mesh with ele-1035

ment xk− 1
2
< x < xk+ 1

2
and tn < t < tn+1 and integrating

Eqs. (A1) over this space-time element
x
k+1

2∫
x
k− 1

2

u(x,tn+1)dx−

x
k+1

2∫
x
k− 1

2

u(x,tn)dx=

tn+1∫
tn

f(u(xk− 1
2
, t))dt−

tn+1∫
tn

f(u(xk+ 1
2
, t))dt+

tn+1∫
tn

x
k+1

2∫
x
k− 1

2

s dxdt.

(A4)1040

In the grid cells, we define the mean cell average Uk =
Uk(t) as

Uk(t) :=
1

hk

x
k+1

2∫
x
k− 1

2

u(x,t)dx, (A5)

with cell length hk = xk+ 1
2
−xk− 1

2
. The function Uk is1045

piecewise constant in each cell. A numerical flux F is de-
fined to approximate the flux f

F
(
Un
k ,U

n
k+1

)
≈ 1

∆t

tn+1∫
tn

f(u(xk+ 1
2
, t))dt. (A6)

By using Eqs. (A5)–(A6), expression (A4) then becomes1050

Un+1
k =Un

k −
∆t

hk

(
F
(
Un
k ,U

n
k+1

)
−F

(
Un
k−1,U

n
k

))
+

1

hk

tn+1∫
tn

x
k+1

2∫
x
k− 1

2

s dxdt. (A7)

which is a forward Euler explicit method.
To ensure that the depth is non-negative and that the steady1055

state of a fluid at rest is preserving, the approach of Audusse
(2004) is used. The numerical flux F is then defined as

F
(
Un
k ,U

n
k+1

)
= Fk+ 1

2

(
Un

(k+ 1
2 )

− ,Un

(k+ 1
2 )

+

)
(A8)

where the interface values are given by1060

Un

(k+ 1
2 )− =

(
h(k+ 1

2 )−uk

h(k+ 1
2 )−

)
and

Un

(k+ 1
2 )+ =

(
h(k+ 1

2 )+uk+1

h(k+ 1
2 )+

)
. (A9)

The topographic term s is discretized as

tn+1∫
tn

x
k+1

2∫
x
k− 1

2

s dxdt≈ Sk = ∆t

(
1
2gh

2
(k+ 1

2 )
− − 1

2gh
2
(k− 1

2 )
+

0

)
,

(A10)

1065
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with the waterdepths h(k+ 1
2 )

− and h(k+ 1
2 )

+ are chosen as
follows to ensure non-negativity of these depths

h(k+ 1
2 )

− = max
(
hk + bk − bk+ 1

2
,0
)
,

h(k+ 1
2 )

+ = max
(
hk+1 + bk+1− bk+ 1

2
,0
)
, (A11)1070

and

bk+ 1
2

= max(bk, bk+1). (A12)

The discretization of the shallow water equations thus1075

reads

Un+1
k = Un

k−
∆t

hk

(
Fk+ 1

2

(
Un

(k+ 1
2 )

− ,Un

(k+ 1
2 )

+

)
−Fk− 1

2

(
Un

(k− 1
2 )

− ,Un

(k− 1
2 )

+

))
+

∆t

hk
Sk.

(A13)

The HLL flux (Harten et al., 1983; Toro et al., 1994) is used1080

as the numerical flux. It is given by

FHLL
k+ 1

2
=


FL if 0< SL
SRFL−SLFR+SLSR(UR−UL)

SR−SL
if SL ≤ 0≤ SR

FR if 0> SR

(A14)

The wave speed SL and SR are approximated as the smallest
and largest eigenvalue at the corresponding node. To ensure1085

the stability of this explicit scheme, a Courant–Friedrichs–
Lewy (CFL) stability condition per cell is used for all eigen-
values λp at each Un

k∣∣∣∣∆thk λp (Un
k )

∣∣∣∣≤ 1. (A15)
1090

Appendix B

Coupled model

The finite element implementation of LSWE or LVBM uses
linear polynomial for solving φ, ψ, and η. While the finite
volume implementation for NSWE approximates h and u1095

with a constant value. Since u= ∂xφ, the velocity of the
two models are approximated with the same order of poly-
nomials. By coupling both models, in simulation area we can
rewrite Eq. (48) as

Mklη̇l−Sklφl−Bklψl− δk1(hu)|x=B− = 0 (B1a)1100

Mklφ̇k + gMklηk = 0 (B1b)

Aklψl +Bklφl +Gklψl− δk1(
β̃

hb
hu)|x=B− = 0. (B1c)

In finite volume implementation, the boundary is inserted
through the numerical flux at x=B by using coupling con-1105

dition (14) as follows(
hu
h

)
=

(
hb∂xφ̆+ β̆∂xψ̆

hb + η̆

)
. (B2)
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