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We thank the anonymous reviewer for his/her very helpful and insightful comments 

that lead to significant improvement of the quality of this manuscript. We have tried 

our best to address all the comments. In the supplement, we use boldface to indicate 

the comments from the reviewer and italics for our responses. 

 

To reviewer 1 

Recommendation: Accept subject to Minor Revision 

The manuscript discusses two novel approximations to deal with nonlinear 

observation operators in the context of the ETKF. The problem has central 

relevance in geophysical data assimilation where Earth observations are often 

derived from nonlinear relation. The proposed approach leads to a new way to 

compute the inflation factor required to adjust the forecast error covariance 

matrix in most ensemble-based scheme. To the best of my knowledge the method 

introduced by the authors is new and it is well outlined in the context of 

state-of-the-art procedures against which it is compared numerically. 

The manuscript is quite well written and relatively easy to follow; it is somehow 

long in the mathematical derivation but the authors have rightly cut the 

formalism into appendices in order to make the read of the main text easier. 

My overall opinion is therefore positive and I think this study is worth to be 

published after minor modifications that I list below. 

Response: Thank you for your thorough review of our manuscript and we appreciate 

your encouraging comments. 



 

1. Page 545, line 19. Typos: Burgerss ) Burgers 

Response: We have corrected this typo. 

 

2. Page 545, lines 22 - 25. It is unclear why the linear approximation on   

should affect the error covariance evolution and not just the analysis step. 

Response: This is partly due to that inflation on error covariance matrix plays an 

important role in error covariance evolution. All existing estimations of inflation 

factors are related to the observation operator. If the tangent-linear operator is used 

to approximate a strongly nonlinear observation operator, the inflation factor can be 

incorrectly estimated. That can affect the estimation of error covariance evolution. 

 

3. Page 548, lines 5 - 10. I suggest the authors to improve notation. In fact while 

the number in the brackets for the state vector is time, it is the observation in h. 

Furthermore h is an operator which is applied to the state vector and using the 

notation h(1) is confusing. 

Response: The notation has been changed to  
T

1, 2, ,, ,
ii i i p iH h h h ,
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T

t t t t

1, 2, ,x , x ..., xi i i n ix ，  and  
T

o o o o

1, 2, ,y , y ,..., y
ii i i p iy . 

 

4. Page 554, lines 20 - 24. Along with model error, other factors may affect the 

consistency between F-RMSE and F-Spread, namely the nonlinearities and the 

sampling error. The authors mention them later in the text; I suggest them to do 

it at this point too. 

Response: Thanks for the comment. In the last paragraph of section 2.3, we have 

added the sentence “Beside model error, the nonlinearities and the sampling error 

may also affect the consistency between F-RMSE and F-Spread as it is discussed later 

in this paper.”. 

 

5. Page 556, Eq. (32). The authors state the observations are spatially correlated. 



From Eq. (32) this is not clear, since the observation at point k, only depends on 

the state vector at the same point. Does the spatial correlation of the observation 

error come from the state vector in (32) ?. Please clarify. 

Response: The spatial correlation of the observation errors come from Eq. (33). 

 

6. Page 557, line 4. I suggest the authors to include also the main equation 

characterizing the ETKF for consistency with the other listed methods. These 

equations should be Eq. (12) and (13) I guess. 

Response: Following this comment, the expression for ETKF is modified to 

“Traditional ETKF in linear approximation (Eq. (12)) and optimization (Eq. (10))”. 

 

7. Page 557, lines 4 - 9. The comparison would be more self-consistent if an 

algorithm having SS in the inflation and nonlinear in the optimization would be 

at hand. I suggest the authors to either add such an algorithm among those 

under comparison or at least discussing it in the text. 

Response: Following this comment, we investigated the second-order approximation 

method for estimating inflation factors while using the nonlinear optimization scheme. 

The corresponding A-RMSE is 2.20 for the forcing parameter F=12 and parameter of 

observation operator 0.1  , which is larger than that of method TN and smaller 

than that of method NN. We have added this discussion in the fourth paragraph of 

section 4.1 in the revised version. 

 

8. Figure 1 and 2. Please improve the quality of the figures by using colors or 

thicker lines. Also, I strongly suggest the authors to include a similar figure 

showing A-RMSE for the algorithms under comparison as a function of  . This 

will further fortify the result in Fig. 2 and the overall results in general. 

Response: Thanks for your suggestion. We have used colors in Figure1 and thicker 

lines in Figure 2. Also, A-RMSE as a function of   for the different schemes is 

shown in the Figure 1b of the revised version. It shows that all the schemes have the 

same A-RMSE with 0   (i.e. the observation operator is linear), indicating that 



there is no difference among them. For each scheme, the A-RMSE increases as the 

parameter   increases from 0 to 0.1. The magnitude relation of all schemes is 

basically consistent with that in Figure 1a. The larger the parameter   is, the 

bigger difference the different schemes have. 

 

9. Page 557, lines 23 - 28. The authors should include some hints on the physical 

interpretation of L in terms of the state-estimation accuracy. This will help to 

fully interpret the results in Table 1. 

Response: The interpretation “The function represents the second-order distance of 

the squared innovation statistic ( T

i id d ) to its expectation. Generally speaking, for a 

more accurate assimilation scheme, the realization of T

i id d  should be closer to its 

expectation and therefore the value of the objective function should be smaller.” is 

added in the corresponding paragraph. 

 

10. Page 558, lines 1 - 2. It is not strictly true that a smaller error corresponds to 

a smaller value of the objective function L: see SS. 

Response: We have changed the expression to “In the majority of the cases”. 

 

11. Page 560, line 6. I would change”... may be more appropriate ...” into”... may 

also be appropriate ...”. Moreover inflation of the background is also useful 

when the system is highly chaotic and the ensemble size too small. Multiplicative 

inflation of the background in fact does not change the range of the matrix which 

can be desirable if the ensemble members have correctly catch the dynamics 

instabilities. 

Response: Thanks for your suggestion. We have changed the expression. 

 

12. Page 560, lines 9 - 12. I understand that everything is based on the equality: 

            , where d is the innovation vector, P the forecast error 

covariance matrix and < . > the expectation operator. If my understanding is 



correct, I suggest the authors to include this in the text. A good place might be 

when the objective function is introduced. 

Response: In the cases of nonlinear observation operator, the mean value of T

i id d  is  

           
T

T 1/2 o t 1/2 t f 1/2 o t 1/2 t f( ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i i i i i i i i i i i iE E H H H H H H          
  

d d R y x R x x R y x R x x . (A2) 

Especially, if the observation operator is a linear matrix (
iH ), Eq. (A2) can be 

simplified to 

  T 1/2 T 1/2

i i i i i i iE   d d R H PH R I , (A3) 

where I  is the i ip p  identity matrix. We have added this in Appendix A in the 

revised version. 

 

13. Page 561, lines 1 - 8. This paragraph is important but not clearly written. 

Please rephrase the description of the experiments with a fixed-tuned inflation. 

Response: Following this comment, the paragraph is modified to “In many practical 

experiments, the inflation factor is constant in time and is chosen by trial and error to 

give the assimilation with the most favourable statistics (e.g. Anderson and Anderson 

1999). For testing the fixed-tuned inflation method, suppose a ( )i x  and 
f ( )i x  are 

the analysis sate and forecast state using time invariant inflation factor  . Then the 

statistics 
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respectively. When Eq (10) is minimized to estimate the weights of perturbed analysis 

states, the corresponding A-RMSEs of the two fixed-tuned methods are estimated as 

2.97 and 2.85 respectively which are larger than that of method SS (2.29). The ratios 

of F-RMSE to F-Spread are estimated as 3.14 and 3.45 respectively which are also 

larger than 1.80 of method SS (see Table 2 ). All these facts indicate than the 

empirical estimation method for the inflation factor is not as good as method SS.” 

 

14. Page 578, Table 1. I suggest the authors to include the ratio between F-RMSE 



over A-RMSE. This will help quantifying the relative improvement gained at the 

analysis and the average error growth during the forecast. For instance, these 

ratios would reveal the large error reduction obtained by TN at the analysis. 

Response: Thanks for your suggestion. We have added the ratios between F-RMSEs 

over A-RMSEs to Table1, which can be considered as a measurement of the 

improvement gained at the analysis step. All the ratios are larger than 1, which 

indicate that the analysis state is better than the forecast state. Among all methods, 

the ratio is largest for the method TN, which indicates the largest error reduction at 

the analysis step. 

 


