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Abstract. Numerical climate models constitute the best 1 Introduction

available tools to tackle the problem of climate prediction

prever, their value is hampereq by the presence of b'%seéne of the principal aims of numerical climate models
with respect to present-day climate, which renders the

it i ¢ It bi T tonstl is to provide a reliable tool for the prediction of climate
interpretation of resufts ambiguous. TwWo assumpltionstie achange following pre-defined future forcing scenarios. The
the heart of a climate model suitability: (1) a climate attoa

. ; . ) . suitability of numerical climate models to study the climat
exists, and (2) the numerical climate model’s attractas lie

th tual climate attract if th del's di . Iis based on two assumptions. The first assumption is the
on the actual cimate attractor of, It the models dimension o stance of a climate attractor. There is no rigorous proof

is lower than that of the actual climate, on the project]’onthat this attractor exists (e.g. Lorenz, 1991). However
of the climate attractor on the model's phase space. Ir\he observations available on long-term records provide

this contribution, the Loren_z 63 system is us_ed bo_th as ome certainty about the validity of this assumption (e.g.
prototype system and as an imperfect model to investigate thEssex et al., 1987). The second assumption is that the

implications of the second assumption. The imperfect mgge olutions provided by a numerical climate model lie on

![i |n|t|a[{|ste d with Ferf,e ct tltmtla;l conhqlltlot?]s W'thf retsuetcé ¥ the actual climate attractor, or at least on the projection
€ prototype systems atiractor while the pertect model I1S,¢ e jnfinite-dimensional climate attractor on the moslel’

|n|t|aI|s<taddV\gthb|rT:r[])erfefct |tn|t|a(; _cond|tf|0nts. TZUT’ 'Ejhemtstf rﬁ}hase space. Only under this assumption, numerical climate
generated by both pertect and impertect models departirony, ,yq| sojutions can be used to study the properties of

prototype system's orbits starting from the same Inltm&.ss the climate under present-day conditions. In order to study

However, it is shown that there are fundamental dlfferencesclimate change, an additional assumption must be made: it

fmust be assumed that the model climate attractor responds

o o g . in the same way as the actual climate attractor does under
and nofc from sensitivity to initial conditions. _Identlf)gn changing forcing conditions. The last assumption has been
these.dlfferences WQUId. be useful to evaluat.e climate n?"Oﬁ(f?e'subject to extensive investigation through studies thae ha
but this is only possible if the perfect model is known, which shown that, rather than producing new patterns of vartgbili

'? obV|3u|s]y an u?re?hsug rletﬂuwet:rr]nentt{ It Its also sf:ommtg the effects of anthropogenic forcing project onto already
2 modetis a pertect modet then the atlractor, cons ruoge existing patterns of natural variability (e.g. Palmer, 389
sampling a sufficiently large collection of initialised rmedd Corti et al., 1999)

orbits (forecast orbits), will be invariant to forecast dea The presence of biases in climate models with respect

. . . . . . 65
time. This conclusion is strictly vahq only for the case of to observations and reanalysis datasets under present-
constant parameters. Nevertheless, in the absence otperfeday conditions (Randall et al., 2007) indicates that the

models, it has potential as a tool not only for understandinQFe(:tual climate attractor (as inferred from observationd an

moddefl erro:jsm:rceds_ but aI(sonf(E)r_ the as_?r? ss_mer|1_t Otf_ mode analysis datasets) and the attractors of available @ima
and for understanding model biases. The implicalions Ol ,qe|s are different even if just slightly, i.e. the second

. . .. . 7
us;ng;.mlpferf?ﬁt modelsllfort_the predg:yon of c(ljmtw)ate and t(heassumption is not fully satisfied. While climate models
potential for these applicalions are discussed by comparin, never pe perfect, we can make use of the limit posed

the ret_sultsl dra(\erll from the Lorenz ‘63 system and from by the second assumption to devise useful measures for
operational modets. the assessment of climate models. The relation between
75 errors in the parameterisation of fast physics processas an

model orbits. These differences arise purely from modekerr
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2 O. Martinez-Alvarado: Implications of model error for numerical climate prediction

errors in long-term simulations has been investigatedigino  whereas our knowledge of the climate system relies on
techniques such as “initial tendencies” (see Klocke andobservations which are of limited temporal extent and
Rodwell, 2013, and references therein). However, there is n subject to observational error. Another important differe
mathematically rigorous theory to explain the relatiopshi is that the imperfect model for the Lorenz '63 system (as
between phenomena developing in short timescalesisandonstructed here) share its dimensionality with the pyptet
observed long term trends. Such a theory would also helpystem, whereas numerical weather and climate models
to relate errors in weather prediction and biases in climatehave necessarily a lower dimensionality than the climate
projections. For example, it would help to explain why system. Despite these and other differences, there areakeve
climate models exhibit biases in the tilt of cyclone tracks implications that can be transferred between both systems.
(Zappa et al., 2013) even though they are capable to simulat&€hese implications are discussed in Sect. 4. Finally, a
realistic extratropical cyclones (Catto et al., 2010). summary and concluding remarks are given in Sect. 5.

The objective of this contribution is to show some
implications of the second assumption for long-term
integrations of a “simple” dynamical system in a three-
dimensional phase space: the Lorenz '63 system (Lorenzrhe Lorenz
1963). The Lorenz '63 system has been used as an archety 63)
system in several previous studies of weather and climaté
(e.g. Palmer, 1993a,b; Mu et al., 2002). Palmer (1993a) yised — oy —x), (1)
the Lorenz '63 system (including several modified versions) .

. . : . . Yy=rr—y—az, (2)
to investigate extended-range predictability of nonlnea °
systems. Palmer (1993a) also introduces the concept ef stat © = #¥ — bz. @)

dependent predictability by showing that the predictapbili The variablesz, y and = define the phase space of the
of t_h? Lorenz '63 system strongly depends on the inftial system whiles, b and r» are constant parameters. For a
position on the Lorenz attractor. Paimer (1993b) showed ;e of these parameters the trajectories of the system
that the effects of climate change are expected to modify,,q asymptotically towards the well-known two-winged
already existing patterns of atmospheric variability. Male | j.anz attractor. The shape of the attractor depends on
(2002) investigates three problems on predictabilitytesla the values given to the parametersh, andr. Thus, two

to maximum prediction time, maximum prediction error and gy hoints (defined as the points in phase space for which
maximum admissible errors in initial values and parameter.

. T . t=0,y=0, 2=0) for r > 1 are located atzo,yo,20) =

values. Unlike those studies, in which the Lorenz '63 system o o
was used to infer properties of the climate or the propedies (i\/b(r — 1), £/b(r —1),r - 1)' A third fixed point is
climate models separately, in this contribution the Lorész located at the origin. The three fixed points are unstable for
system is used to investigate relationships between arsyste c+b+3
and an imperfect model (e.g. a model with a similar structurer > r. = o b1 (4)
to that of the system but with different parameters). Thig is 7
similar to the approach taken by Orrell et al. (2001), who In this region of the parameter space the system has no other
used system/model combinations to investigate shadoviing cattractors but a strange attractor.
target orbits in low- and high-dimensional systems. Irdtea  The standard values of these parameters (as used by
of trajectory shadowing, the focus in this study are thelorenz, 1963) are = 10, b = 8/3, andr = 28. In this work,
cumulative effects of model error for long-term integratiges the Lorenz '63 system characterized by these parameter
so that no orbit could be expected to shadow any targevalues will be regarded as the prototype system. The error-
trajectory. doubling times for this system have been determined to be

To avoid confusion, in this article the term “prototype between 0.15.u. and 8.u (Smith et al., 1999). To construct
system” refers to a system as part of a system/modefn imperfect model of the prototype system the values of
combination. Thus, a prototype system and its model arerhotir = 10 andb = 8/3 will be kept but the value: = 25 will
dynamical systems and in this work they will be instances ofbe used instead. By doing s, = 24.74 is valid for both
the Lorenz '63 system, differing only on the values of their the prototype system and the imperfect model. However, the
parameters. The methodology is fully described in Sect. 2position of the fixed points differs between the prototype
while the results for the Lorenz '63 system are discussed irsystem and the imperfect model. For the prototype system
Sect. 3. ws CPy = (w1,2,51,2,21,2)° = (£8.49,+8.49,27) while for the

Clearly, there are several important differences betweermperfect modeC%’“2 = (z1.2,y1.2,21.2)M = (£8,48,24).
the prototype system/imperfect model combination using The prototype system and the imperfect model have been
the Lorenz '63 system and the combination formed byinitialised with the same random initial conditions drawn
the climate system and numerical climate models. Forfrom a uniform distribution between 0 and 1 for the three
example, the Lorenz '63 system is perfectly knawn phase-space variables. Then, the system and the imperfect

2 Methodology

'63 system is defined by the equations (Lorenz,
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model have been integrated fop025t.u. (1t.u. = 1 time  attractor (Fig. 3). The initialisation of the imperfect nebd
unit) with a sampling rate aA¢ = 0.01 t.u. The first 25.u. from a point on the prototype system’s attractor induces a
have been discarded from both orbits to eliminate initial transient period during which the orbit tends towards the
transients. The remainingp*t.u. (i.e. 10° points) in each  imperfect model's attractor. Second, sensitivity to aditi
integration are considered here as the attractors of therays conditions will pull the imperfect model orbit away from the
and the imperfect model. Time zero is then defined as therototype system orbit and into a different segment on the
initial time of the10*-t.u. integrations. imperfect model’s attractor. This effect is particulariydent
The separation between any two points in phase spage iwhen the initial conditions are close to the imperfect model
measured throughout this work using the Euclidean distancattractor, as occurs at= 85 t.u. in Fig. 2, for example.
(which is referred to simply as distance). The distance Figure 2a also shows the orbits of the imperfect model
between the given point and the attractor is defined here afor the forecast cycles during the interva < ¢ < 96 [t.u]
the minimum distance between a given point in phase spacprojected onto the subspace (red lines). These orbits appear
and the points in an attractor. 25 to closely follow the orbit of the system very well for
about 1t.u. immediately after each initialisation. However,
computing the distance between the prototype system’s orbi
3 Model error in the prototype system/imperfect model ~ and the imperfect model forecast orhit= d(t;,), reveals
combination that the forecast error is actually much larger than the
0 apparent distance im (red line, Fig. 2c). For comparison,
The attractors of the prototype system and the imperfect perfect model, given by a Lorenz '63 system with the
model are shown in Fig. 1. Figure 1a shows the attractorsame parameter values as the prototype system, was also
as orbits in phase space. For the sake of clarity only the firstised to forecast the state of the prototype system. Thegberfe
500t.u. have been plotted. Even at this relatively short time model was initialised with imperfect initial conditionsvgn
the characteristic features of both attractor have emergedy the observations randomly perturbed assuming that the
allowing comparison. The structures of both attractoreapp observational error in each variahley, andz is independent
similar, but the size of the imperfect model attractor appea and normally distributed with standard deviatiery =
smaller (Fig. 1a). Figure l1a shows the joint probability 0.11.u. (11.u. = 1length unit in phase space). The perfect
density functions (PDFs) for(z,z) characterising both model forecast orbits projected onto thesubspace are also
attractors. These PDFs have been constructed using. théhown in Fig. 2a (grey lines). Even though in this case
full length of the long integrations. The comparison showswe should expect the orbits to diverge from the prototype
again the similarity in the structure of the attractors andsystem’s orbit due to sensitivity to initial conditions,eth
the difference in location and size between them. Thusdivergence appears to be much slower than in the imperfect
the second assumption is not satisfied in this case, i.e. thenodel case. This effect becomes clearer when looking at the
attractor of the model does not lie on the attractor of.¢hedistance between the prototype system’s orbit and thegerfe
system. model forecast orbits (black lines in Fig. 2c): the perfect
Let us assume that we observe the prototype system anodel forecast orbits remain close to the prototype system’
regular intervals, e.g. everythi.. This observation rate orbit for about 2.u. immediately after each initialisation.
produces 2000 observations from th&t-t.u. integrations.  After this initial interval, sensitivity to initial condibns takes
Figure 2a shows these observations during the inté&al . over and the perfect model forecast orbits move away from
t <96 (t.u) on thex subspace as black points on top of the prototype system’s orbit.
the prototype system’s orbit (black line). Let us attempt to In order to show that these results are robust, similar
forecast the state of the prototype system using the imgterfe analyses were conducted for imperfect models with 26
model and those observations as initial conditions. Gikaht and r =27 and for initial conditions withco =0.21.u.,
the prototype system is perfectly known, the observatioassa oo = 0.51.u. andop = 1 L.u. Figure 4a shows the evolution
perfectly accurate apart from round-off error. Under theseof the PDFs, represented by median and interquartile range,
conditions, the forecast will tend to move away from the of the distance between the prototype system’s orbit and
prototype system attractor towards the imperfect model'sthe forecasts obtained with these models. For long lead
attractor due to two separate albeit related effects.,Rhist  times (i.e. t;, =5t.u.) the effects of a relatively large
accurate initialisation of the imperfect model with regpec observational error (e.gio = 11.u.) and a relatively small
to the prototype system’s orbit moves the forecast trajgcto model error (e.gr = 27) are apparently similar (see Fig. 4a).
away from the imperfect model’s attractor. Figure 2b showsAt shorter lead times, however, there are important belavio
that the distance between observations and the imperfedifferences between models. The two imperfect models show
model’s attractor during the interval shown is small but nota short period of very fast divergence from the prototype
negligible. A more comprehensive view of this aspectsof system’s orbit followed by a plateau and a second period of
the imperfect model initialisation is given by the PDF of fast divergence. It is hypothesized that the first periodhsf f
the distance between observations and the imperfect nsodeldivergence is induced by the approach of the imperfect model
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forecast orbit to the imperfect model's attractor. Follogi Figure 4b provides a summary of the difference between
Nicolis et al. (2009), the mean of the square distance betweeimperfect models with perfect initial conditions and petfe
the prototype system’s orbit and the forecasts are given fomodels with imperfect initial conditions. At the beginning
the Lorenz '63 system by us  Of the forecast cycle, the imperfect models are charaetgris
(P(tn)) = 260 () (5) by a positive angl comparatively large rat'e of change in the
L median of the distance between the orbits of the prototype
where §r = r, — rmoa IS Model error (given as error in system and the model with respect to forecast lead time; on
model parameters);; is the value of the parameter in the other hand, the perfect models are characterised by a
the prototype systenr,,.q is the value of the parameterse negative and comparatively small rate of change of the same
in the model,z is the initial value ofz on the prototype variable.
system’s attractor and) indicate average over the ensemble  There are two drawbacks to this analysis that makes it
of forecasts. This expression is strictly valid only in thmit difficult to apply to real situations. The first such drawback
of small model error and short forecast lead times (Nicolisthat it can lead to erroneous conclusions about the diféeren
et al., 2009). However, it still provides a good approximatis between perfect and imperfect models. For example, one
for the cases under analysis here, characterised by ediativ might argue, by pointing at the gray and red lines in Fig. 4a,
large model error. Figure 5a shows a comparison betweethat having small model error & 27) or large observational
the obtained curves following Eq. (5) and those obtainederror (oo = 11.u.) leads to very similar model behaviour.
from the ensemble of forecasts. The agreement is indeeffollowing this line of thought, one could try to eliminate
very good, but only for very short forecast lead timgs € s the initial period of fast divergence in the imperfect model
0.1t.1.). Due to the nonlinearity of the underlying dynamics by following a suitable strategy to project “unbalanced”
mean and median do not follow each other as the PDFsnitial conditions onto the surface on which the attractbr o
rapidly become highly asymmetric as forecast lead timethe imperfect model evolves (e.g, the strategy suggested by
increases (see also Fig. 8 of Nicolis et al., 2009). Anderson, 1995). However, focusing on the distance between
In contrast to the forecasts produced by imperfect modelsprbits alone gives only a partial view of the situation: two
the forecasts produced by a perfect model with imperfectpoints could be at a similar distance from a third point,
initial conditions show periods of slow divergence from the and nevertheless be placed at very dissimilar locations. Th
prototype system’s for short lead times. In fact, Fig. 4b, second but most important drawback is that the analysis
which shows the rate of change of the median of therelies on a perfect knowledge of the prototype system, which
distance between the prototype system’s orbit and medeis, as indicated before, an unattainable requirement.
orbits with respect to forecast lead time, reveals that the Figure 6 highlights a different aspect of the comparison
perfect model runs undergo a short period during whichbetween perfect and imperfect models: the location of
the distance between model orbit and prototype system’she attractor in phase space. This aspect is fundamental
orbit tends to decrease. Indeed, this shrinking periodmsccu for climate prediction, in which we are not interested in
as a consequence of the prototype system’s orbit beingredicting the state of a system at a particular time, but in
part of the prototype system’s attractor and having initial the statistical properties of the system during a time vater
conditions with finite observational error. This is consigt ~ of a given duration at a particular starting time. Figure 6
with the theory of Nicolis et al. (2009) which shows that, shows the evolution of the PDF of represented by median
assuming unbiased and uncorrelated initial conditionrsyro and interquartile range and computed using forecasts, as
the square distance between the prototype system’s oubitranforecast lead time increases. For comparison, it also shows
the forecasts of a perfect model will reach a minimum at athese same quantities computed using the attractors of the
certain timet; > 0. Considering terms up t@(t3), t; is prototype system and the imperfect model shown in Fig. 1.

given by (Nicolis et al., 2009) At ¢, = 0t.u., both perfect and imperfect models produce
(Tr3) very similar statistics to those produced by the prototype
] =—— (6)ss  system. The small difference between statistids at 0 t.u.

(T[T +3)31)° is due to the difference in sample size between the protot
ype
where J is the Jacobian matrix of the prototype system. system’s attractor and the forecasts. As forecast lead time
Equation (6) is strictly valid for short forecast lead times increases the differences between perfect and imperfect
and small initial condition errors. However, it still pradisa  model become more apparent. The imperfect model forecast
reasonably accurate estimate for the time of minimiai) s» orbits tend to the imperfect model’s attractor so that irs les
in the cases considered here: Eq. (6) predigfs= 0.024; than about 0.5.u. the statistics produced by the imperfect
the values found foso = {0.1,0.2,0.5,1.0} (L.u.) aretf, = model forty, > 0.5 t.u. are closer to those produced by the
{3,4,4,3} x 1072 (t.u.), respectively. Notice that whilgi?) imperfect model's attractor than to those produced by the
attains minimum values at these timasedian(d) shrinks  prototype system’s attractor. Moreover, the PDF appears
slightly further to attain minimum values &t ..., =z to oscillate around that of the imperfect model's attractor
{7,7,7,8} x 1072 (t.u.), respectively. These features are also observed with imperfect models
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with r0q4 =26 and ry,,q =27 (not shown). In contrast, at a similar level to that around which the Hellinger dis&nc
the perfect model forecast orbits tend towards the prototyp oscillates in the perfect model case.
system’s attractor. Therefore, the statistics producethbyo These results show a fundamental property of a perfect
perfect model forecasts remain around those produced bynodel: if a model is a perfect model, then the attractor,
the prototype system throughout the whole forecastingecycl reconstructed by sampling a collection of initialised mode
even though this model was initialised with imperfect liti ~ orbits (forecast orbits), will be invariant to forecastde¢ane,
conditions. provided two conditions: (1) that the model is initialised
It has been pointed out earlier that looking into a singlewith good estimates of the system’s true state based on
variable in a multidimensional system can be misleading.observations and (2) that the collection of forecast orbits
This is unavoidable for many systems due to their largeis a representative sample of the region in phase space
dimensionality (i.e. the Earth’s climate system). Thisa n accessible to the system. Condition (1) is required to ensur
the case here, where we are dealing with only three phasthat the attractor described by the collection of initial
space variables. To get a more comprehensive overview ofonditions is an accurate representation of the prototype
the situation we use the Hellinger distance, which can besystem'’s attractor. Otherwise, an initial period of acjusst
interpreted as a measure of the similarity between two PDFshould be expected. Klocke and Rodwell (2013) refer to
and whose square is defined as (Arnold et al., 2013) this period as ‘initialisation shock’ in their discussiom o
the initialisation of climate models in hindcast mode from
1 2 w5 hon-native analyses. Condition (2) is required to ensuae th
H?(f,9) = ) / (V f(X) = v g(X)) dXy...dX,, (7) forecasts provide a full description of the prototype sysse
v attractor in phase space.

The perfect model’s attractor invariance with forecast
wheref andg are two PDFs defined over thedimensional lead time marks a clear difference between perfect and
random variable spack = (X1,...,X,)T. Figure 7 showso imperfect models and provides an alternative means not only
the Hellinger distance between the prototype system PDHor understanding model error sources, but also for climate
computed from thel0*-t.u. integration, and the PDFs model evaluation. Potentially, it also provides a method
obtained from the perfect model forecasts at differentto understand and interpret climate model biases. It has
forecast lead times. Each curve in the figure corresponds tthe advantage over the distance between the orbits of the
a different level of observational error. Every curve shewsprototype system and the models that no prior knowledge
fluctuations. However, these fluctuation are around a similaof the prototype system’s orbit is required (apart from
value (H ~ 0.11). The approach to the prototype system’s initial states at suitable times). Moreover, it avoids taksé
attractor, corresponding to the shrinking periods disedss impression that a perfect model and an imperfect model
with Fig. 4, is evident in the case with larger observational exhibit similar behaviour.
error oo = 1.0 L.u.).

The situation is different in the case of imperfect models.
Figure 8 shows the Hellinger distance and the mediag, of4 |mplications for climate prediction
the distance between the prototype system’s orbit and model
orbits for the imperfect model with,,,q = 25. In this case 4.1 Attractor reconstruction
the Hellinger distance go through a period of fast growth
until a maximum is reached (Fig. 8a). The time of the Reconstructing even part of the attractor of a system
maximum approximately coincides with the time of the is equivalent to knowing at least part of its climate. It
minimum in the mean of in Fig. 6. Furthermore, it coincides would be desirable to reconstruct the full climate attracto
with the time when the plateau in the median of the distaacan order to completely know the climate. However, this
between the prototype system’s orbit and model orbits Isegin task is impossible given the very large dimensionality of
(Fig. 8b). This supports the hypothesis put forward earlierthe climate system. In principle, it would be enough to
that the first period of fast divergence between prototypecollect a sufficiently large number of observations to be
system and model orbits is induced by the approach ofable to represent the system’s attractor in phase space
imperfect model forecast orbits to the imperfect model’s and infer its properties. However, if the only source of
attractor. A series of alternating minima and maxima folpw data available was the imperfect model, then the most
but it is more difficult to establish a link between these andwe could achieve would be to represent the imperfect
the behaviour of the distance between the prototype system’'model’s attractor in model phase space. This is related to
orbit and model orbits. the existence of biases in climate models when evaluated

The imperfect model withr,,,q =27 exhibits similars against observations and reanalysis datasets (e.g. Kim et a
gualitative behaviour to that found in the imperfect model 2009; Matsueda et al., 2009; Zappa et al., 2013). As
with 04 =25 (Fig. 9). Notice that in both cases the discussed in Sect. 1, these biases are an expression of the
Hellinger distance does not start at zero butfat 0.105, i.e. mismatch between the climate attractor and the attractors
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of climate models. Evidence of the existence of biases carncluded in the forecast model) in each ensemble prediction
be found even using short-term forecasts by comparingstwesystems have been considered in this analysis. However,
different times in a forecast cycle, analysis time (i.e. T +the ensemble members tend to follow the behaviour of
0d) and T + 15d, in an analogous way to that used tothe control member. For example, Fig. 1la shows the
study the prototype system/imperfect model combination2-PVU contours (PVU = 107°m?Kkg~'s™') on the
based on the Lorenz '63 system in Sect. 3. Figure 10320-K isentropic surface in the analysis and the control
shows interquartile ranges of daily zonally-averaged B2@- members in five forecasts produced with MOGREPS for the
potential vorticity (PV) for the period between December same validation time (00:00 UTC, 25 November 2009) but
2009 and February 2010 for these two lead times and fodifferent lead times (T + 1d to T + 5d). Figure 11b shows
three forecast datasets produced with three different fapnde the 2-PVU contours on the 320-K isentropic surface in the
(1) the Met Office Global and Regional Ensemble Predictionanalysis and the ensemble members for the T + 4 d forecast
System (MOGREPS, Bowler et al., 2008), (2) the Europeanfor the same validation time. There are two remarks to make
Centre for Medium-Range Weather Forecasts (ECMWF)regarding this figure. The first remark is that the apicesef th
Ensemble Prediction System (EPS, Molteni et al., 1996)upper-level ridge (over Scandinavia in the analysis) in the
and (3) the National Centers for Environmental Predictioncontrol members tend towards the southeast with increasing
(NCEP) Global Ensemble Forecast System (GEFS, Toth andkad time (Fig. 11a) (Sideri, 2013). The second remark is
Kalnay, 1997). These datasets have been archived by, thihat the ensemble at the lead time shown (Fig. 11b), and
THORPEX Interactive Grand Global Ensemble (TIGGE, in fact any other between 1d and 5d, clusters around the
Park et al., 2008). Even though the source of these datasetorresponding control member while failing to include the
are operational ensemble prediction systems. only controanalysis (Sideri, 2013).
members are considered here, i.e. the analysis is effictive
made on a set of deterministic forecasts. 4.2 Short-term forecast

As shown in Sect. 3, if the models were perfect, the
statistics between the forecastsat T + 0d and T + 15 d wauldt has been shown that initialising the imperfect model with
be similar or, in the limit of infinitely large samples, thevsa perfect initial conditions with respect to the system can
However, the three datasets reveal clear statisticakdiffies  be viewed as initialising the model with initial conditions
between analyses and T + 15 d forecasts. It must be noted thatvay from its own attractor. This induces a transient
even though the three ensemble prediction systems produgeeriod during which the model approaches its own attractor.
different statistics at analysis time and at T + 15d,stheData assimilation blends information from the model and
deviation shown by the ECMWF EPS (Fig. 10b) seemsobservations in order to provide initial conditions for thext
systematically smaller than that produced by MOGREPSforecast. Using data assimilation to initialise a numerica
(Fig. 10a) or NCEP GEFS (Fig. 10c). This effect might occur prediction model has a similar effect to initialising the
as a result of the optimisation of the ECMWF model for imperfect model with perfect initial conditions by moving
the specific purpose of medium-range weather predictionthe initial model state away from the model's attractor.
However, this is only one metric and more research wouldThis induces a transient (spin-up) period until the nunagric
be needed to give a complete comparison between these amdodel reaches a new balance (Daley, 1991). The new balance
other TIGGE models. is achieved when the model’'s orbit is close to the model’s

There are two potential caveats in these results. Thaattractor.
first potential caveat is that the results are shown aenly The transient period and the subsequent evolution on the
for the season December—February (DJF) 2009-2010 imodel attractor imply divergence between the model’s orbit
the Northern Hemisphere, which was characterized byand the true system’s orbit. This divergence is not only
exceptional conditions in terms of atmospheric circulatio due to sensitivity to initial conditions. Instead, it is pyar
in the North-Atlantic European sector (e.g. Santos et al.,due to fundamental differences between the system and the
2013). However, five other DJF periods have been anakyseimperfect model. The forecast of the upper-level ridge on
(from 2006—-2007 to 2011-2012) on both hemispheres an@5 November 2009 introduced in Sect. 4.1 provides one
all of them show the same qualitative results. Moreover,example of this model-error related divergence (Fig. 1¥). A
Gray et al. (2014) have shown, analysing the same datasetentioned before, the apices in the forecasts tend towlaeds t
that the amplitude of Rossby waves and the sharpness cfoutheast as lead time increases (Fig. 11a), thus indicatin
the PV gradient across the tropopause tend to decreasedwithat the model is diverging from the system’s orbit. The
increasing forecast lead time (see their Fig. 5). Theserfindi fact that no member in the ensemble is close to the actual
confirm the existence of systematic model error in the upperbehaviour of the system (Fig. 11b) might be due to the
level Rossby wave structure in these models and its growttsame effect: in this particular event, an ensemble around
with forecast lead time. accurate initial conditions generates an ensemble farecas

The second potential caveat is that only the conrtrolwith every member tending towards the model’s attractor
members (unperturbed analyses with no stochastic physicand away from the true future state of the system. This
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occurs even though MOGREPS incorporates a representatigperfect model: if a model is a perfect model, then the
of model error variability in the ensemble (Bowler et al., attractor, reconstructed by sampling a collection of atigied
2008). Furthermore, increasing the representation of inodemodel orbits (forecast orbits), will be invariant to foreta
error variability to increase forecast spread could make th lead time, provided two conditions: (1) that the model
analysis fall into the envelope of the forecast ensembleis initialised with good estimates of the system’s true
members but it would not fix the fact that the attractors state based on observations and (2) that the collection of
of true system and model are essentially different. Thereforecast orbits is a representative sample of the region in
are many other examples of this type of behaviour in otherphase space accessible to the system. Deviations from this
models (e.g. Rodwell et al., 2013). One might argue thatcondition would constitute an alternative measure for the
even though analysis and forecasts diverge from each othesuitability of a climate model. This was shown for the
they could still be part of the same attractor. However, Lorenz '63 system (Fig. 6) and for the control members
the evidence presented (Fig. 10 and subsequent discussionj three operational ensemble prediction systems (Fig. 10)
strongly suggests that indeed model and system hav&tochastic parameterisation schemes have been shown to
different attractors. reduce model biases (Arnold et al., 2013). Therefore, it
would be very interesting to extend the analysis to invastig
the effects of the full ensembles on the stochastic model's
5 Summary and concluding remarks e7s attractor. However, this remains as future work.
These results provide the basis for a framework for the
It has been shown that, in the prototype system/imperfecinterpretation of output from numerical climate modelshwit
model combination based on the Lorenz '63 system,implications for two widely recognized needs in climate
imperfections in the model translated into differences inscience: (1) the need for climate model improvement (e.g.
attractor structure (fixed points and apparent size) betwee Stevens and Bony, 2013) and (2) the need for new methods
the system and the imperfect model (Fig. 1). As a result,for the interpretation of current available climate models
the second assumption for the suitability of a model (i.e. th when contrasted against observations (e.g. Brands et al.,
assumption that the solutions provided by a model lie on the2012). There are projects tackling the first need although
system'’s attractor, or at least on the projection of theesy®  these focus primarily on errors arising in the short term in
attractor on the model’s phase space) was not satisfied rdnd®rder to minimise the interaction between parameterigatio
these circumstances, even a perfectly accurate initimisa (e.g. Klocke and Rodwell, 2013, and references therein).
of the system induces a transient period during which theThis is an important aspect for the improvement of
model orbit diverges from the system’s orbit and approachesnodels. However, it is equally important to understand
the model attractor (Fig. 2). Thus, the orbit of the model andsuch parameterisation interactions and therefore it would
the actual system’s orbit become essentially differentseih be valuable to extend that research to these situations. The
difference is purely due to model error and not to sensjtivit approach proposed here provides a link between the fields of
to initial conditions. This was shown through a comparisonweather and climate prediction as it relies on the avaitsbil
of two imperfect models initialised with perfect initial of forecast orbits produced by climate models.
conditions and a perfect model initialised with imperfect The results presented in this contribution are consistent
initial conditions subject to four levels of observatioralorsss with the discussions by Judd and Smith (2001, 2004). They
(Fig. 4). It was shown that, even though at long lead timeshave shown that, given a set of imperfect observations
small model error and large observational error producedn a perfect models scenario, it is possible to find a set
apparently similar results (Fig. 4a), there were noticeabl of indistinguishable states consistent with the obsenati
differences at very short lead times: while imperfect model(Judd and Smith, 2001). In contrast, in an imperfect model
forecast orbits tend to quickly diverge from the prototype scenario, almost certainly no trajectory of the imperfect
system’s orbit, perfect model forecast orbits tend to upder model is consistent with any set of observations (Judd and
a short period at the beginning of the forecast cycle duringSmith, 2004). Judd and Smith (2004) also introduce the
which they approach the prototype system’s orbit (Fig. 4b).concept of pseudo-orbits that intrinsically take into agto
However, these methods require the prior knowledge of thehe existence of model error. Although the discussion in
actual state of the system and its evolution, which issanJudd and Smith (2001, 2004) do require the availability
unaffordable luxury for climate scientists, who are boumd t of observations, the concept of pseudo-orbits might prove
deal with a system of very large dimensionality. useful for the interpretation of climate projections; hoee
It has been shown that climate model biases can bd can only speculate at this point, leaving this for future
interpreted as an expression of a mismatch between thawvestigation.
climate system attractor and the numerical climate model
attractor. Furthermore, it has been shown that such a
mismatch can be detected even in short-term foregastdcknowledgements. The author thanks Jeffrey Chagnon, Tri-
by relying on the following fundamental property of a antafyllia Sideri, Sue Gray, John Methven, Ross Bannister and
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Fig. 2. (a) Prototype system orbit (black) and perfect observations
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Fig. 1. (a) Prototype system attractor (black) and imperfect model
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x) and for the imperfect model (red Xb) Joint probability density
function for (x,z) resulting from long integrations((* t.u.) of the
prototype system (colour shading) and the imperfect model (line
contours). The contour values are the same in both cases.

2
Ixg=al
s “m

Fig. 3. Probability density function of the distance between perfect
initial conditions and the imperfect model attractor.
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Fig. 4. (a) Median (solid lines) and interquartile range (delimited
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