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Abstract. Numerical climate models constitute the best
available tools to tackle the problem of climate prediction.
However, their value is hampered by the presence of biases
with respect to present-day climate, which renders the
interpretation of results ambiguous. Two assumptions lie at5

the heart of a climate model suitability: (1) a climate attractor
exists, and (2) the numerical climate model’s attractor lies
on the actual climate attractor or, if the model’s dimension
is lower than that of the actual climate, on the projection
of the climate attractor on the model’s phase space. In10

this contribution, the Lorenz ’63 system is used both as a
prototype system and as an imperfect model to investigate the
implications of the second assumption. The imperfect model
is initialised with perfect initial conditions with respect to
the prototype system’s attractor while the perfect model is15

initialised with imperfect initial conditions. Thus, the orbits
generated by both perfect and imperfect models depart from
prototype system’s orbits starting from the same initial states.
However, it is shown that there are fundamental differences
in the behaviour at short lead times of perfect and imperfect20

model orbits. These differences arise purely from model error
and not from sensitivity to initial conditions. Identifying
these differences would be useful to evaluate climate models
but this is only possible if the perfect model is known, which
is obviously an unrealistic requirement. It is also shown that25

if a model is a perfect model then the attractor, constructedby
sampling a sufficiently large collection of initialised model
orbits (forecast orbits), will be invariant to forecast lead
time. This conclusion is strictly valid only for the case of
constant parameters. Nevertheless, in the absence of perfect30

models, it has potential as a tool not only for understanding
model error sources but also for the assessment of models
and for understanding model biases. The implications of
using imperfect models for the prediction of climate and the
potential for these applications are discussed by comparing35

the results drawn from the Lorenz ’63 system and from
operational models.

1 Introduction

One of the principal aims of numerical climate models40

is to provide a reliable tool for the prediction of climate
change following pre-defined future forcing scenarios. The
suitability of numerical climate models to study the climate
is based on two assumptions. The first assumption is the
existence of a climate attractor. There is no rigorous proof45

that this attractor exists (e.g. Lorenz, 1991). However,
the observations available on long-term records provide
some certainty about the validity of this assumption (e.g.
Essex et al., 1987). The second assumption is that the
solutions provided by a numerical climate model lie on50

the actual climate attractor, or at least on the projection
of the infinite-dimensional climate attractor on the model’s
phase space. Only under this assumption, numerical climate
model solutions can be used to study the properties of
the climate under present-day conditions. In order to study55

climate change, an additional assumption must be made: it
must be assumed that the model climate attractor responds
in the same way as the actual climate attractor does under
changing forcing conditions. The last assumption has been
subject to extensive investigation through studies that have60

shown that, rather than producing new patterns of variability,
the effects of anthropogenic forcing project onto already
existing patterns of natural variability (e.g. Palmer, 1993b;
Corti et al., 1999).

The presence of biases in climate models with respect65

to observations and reanalysis datasets under present-
day conditions (Randall et al., 2007) indicates that the
actual climate attractor (as inferred from observations and
reanalysis datasets) and the attractors of available climate
models are different even if just slightly, i.e. the second70

assumption is not fully satisfied. While climate models
will never be perfect, we can make use of the limit posed
by the second assumption to devise useful measures for
the assessment of climate models. The relation between
errors in the parameterisation of fast physics processes and75



2 O. Mart ı́nez-Alvarado: Implications of model error for numerical climate prediction

errors in long-term simulations has been investigated through
techniques such as “initial tendencies” (see Klocke and
Rodwell, 2013, and references therein). However, there is no
mathematically rigorous theory to explain the relationship
between phenomena developing in short timescales and80

observed long term trends. Such a theory would also help
to relate errors in weather prediction and biases in climate
projections. For example, it would help to explain why
climate models exhibit biases in the tilt of cyclone tracks
(Zappa et al., 2013) even though they are capable to simulate85

realistic extratropical cyclones (Catto et al., 2010).
The objective of this contribution is to show some

implications of the second assumption for long-term
integrations of a “simple” dynamical system in a three-
dimensional phase space: the Lorenz ’63 system (Lorenz,90

1963). The Lorenz ’63 system has been used as an archetype
system in several previous studies of weather and climate
(e.g. Palmer, 1993a,b; Mu et al., 2002). Palmer (1993a) used
the Lorenz ’63 system (including several modified versions)
to investigate extended-range predictability of nonlinear95

systems. Palmer (1993a) also introduces the concept of state-
dependent predictability by showing that the predictability
of the Lorenz ’63 system strongly depends on the initial
position on the Lorenz attractor. Palmer (1993b) showed
that the effects of climate change are expected to modify100

already existing patterns of atmospheric variability. Mu et al.
(2002) investigates three problems on predictability related
to maximum prediction time, maximum prediction error and
maximum admissible errors in initial values and parameter
values. Unlike those studies, in which the Lorenz ’63 system105

was used to infer properties of the climate or the propertiesof
climate models separately, in this contribution the Lorenz’63
system is used to investigate relationships between a system
and an imperfect model (e.g. a model with a similar structure
to that of the system but with different parameters). This is110

similar to the approach taken by Orrell et al. (2001), who
used system/model combinations to investigate shadowing of
target orbits in low- and high-dimensional systems. Instead
of trajectory shadowing, the focus in this study are the
cumulative effects of model error for long-term integrations,115

so that no orbit could be expected to shadow any target
trajectory.

To avoid confusion, in this article the term “prototype
system” refers to a system as part of a system/model
combination. Thus, a prototype system and its model are both120

dynamical systems and in this work they will be instances of
the Lorenz ’63 system, differing only on the values of their
parameters. The methodology is fully described in Sect. 2
while the results for the Lorenz ’63 system are discussed in
Sect. 3.125

Clearly, there are several important differences between
the prototype system/imperfect model combination using
the Lorenz ’63 system and the combination formed by
the climate system and numerical climate models. For
example, the Lorenz ’63 system is perfectly known130

whereas our knowledge of the climate system relies on
observations which are of limited temporal extent and
subject to observational error. Another important difference
is that the imperfect model for the Lorenz ’63 system (as
constructed here) share its dimensionality with the prototype135

system, whereas numerical weather and climate models
have necessarily a lower dimensionality than the climate
system. Despite these and other differences, there are several
implications that can be transferred between both systems.
These implications are discussed in Sect. 4. Finally, a140

summary and concluding remarks are given in Sect. 5.

2 Methodology

The Lorenz ’63 system is defined by the equations (Lorenz,
1963)

ẋ = σ(y−x), (1)145

ẏ = rx− y−xz, (2)

ż = xy− bz. (3)

The variablesx, y and z define the phase space of the
system whileσ, b and r are constant parameters. For a150

range of these parameters the trajectories of the system
tend asymptotically towards the well-known two-winged
Lorenz attractor. The shape of the attractor depends on
the values given to the parametersσ, b, and r. Thus, two
fixed points (defined as the points in phase space for which155

ẋ = 0, ẏ = 0, ż = 0) for r > 1 are located at(x0,y0,z0) =
(

±
√

b(r− 1),±
√

b(r− 1), r− 1
)

. A third fixed point is

located at the origin. The three fixed points are unstable for

r > rc = σ
σ + b+3

σ− b− 1
. (4)

160

In this region of the parameter space the system has no other
attractors but a strange attractor.

The standard values of these parameters (as used by
Lorenz, 1963) areσ = 10, b = 8/3, andr = 28. In this work,
the Lorenz ’63 system characterized by these parameter165

values will be regarded as the prototype system. The error-
doubling times for this system have been determined to be
between 0.15t.u. and 8t.u (Smith et al., 1999). To construct
an imperfect model of the prototype system the values of
σ = 10 and b = 8/3 will be kept but the valuer = 25 will170

be used instead. By doing so,rc = 24.74 is valid for both
the prototype system and the imperfect model. However, the
position of the fixed points differs between the prototype
system and the imperfect model. For the prototype system
CS

1,2 = (x1,2,y1,2,z1,2)
S = (±8.49,±8.49,27) while for the175

imperfect modelCM
1,2 = (x1,2,y1,2,z1,2)

M = (±8,±8,24).
The prototype system and the imperfect model have been

initialised with the same random initial conditions drawn
from a uniform distribution between 0 and 1 for the three
phase-space variables. Then, the system and the imperfect180
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model have been integrated for10025 t.u. (1t.u. = 1 time
unit) with a sampling rate of∆t = 0.01 t.u. The first 25t.u.
have been discarded from both orbits to eliminate initial
transients. The remaining104 t.u. (i.e. 106 points) in each
integration are considered here as the attractors of the system185

and the imperfect model. Time zero is then defined as the
initial time of the104-t.u. integrations.

The separation between any two points in phase space is
measured throughout this work using the Euclidean distance
(which is referred to simply as distance). The distance190

between the given point and the attractor is defined here as
the minimum distance between a given point in phase space
and the points in an attractor.

3 Model error in the prototype system/imperfect model
combination195

The attractors of the prototype system and the imperfect
model are shown in Fig. 1. Figure 1a shows the attractors
as orbits in phase space. For the sake of clarity only the first
500t.u. have been plotted. Even at this relatively short time
the characteristic features of both attractor have emerged,200

allowing comparison. The structures of both attractors appear
similar, but the size of the imperfect model attractor appears
smaller (Fig. 1a). Figure 1a shows the joint probability
density functions (PDFs) for(x,z) characterising both
attractors. These PDFs have been constructed using the205

full length of the long integrations. The comparison shows
again the similarity in the structure of the attractors and
the difference in location and size between them. Thus,
the second assumption is not satisfied in this case, i.e. the
attractor of the model does not lie on the attractor of the210

system.
Let us assume that we observe the prototype system at

regular intervals, e.g. every 5t.u.. This observation rate
produces 2000 observations from the104-t.u. integrations.
Figure 2a shows these observations during the interval79 <215

t < 96(t.u) on the x subspace as black points on top of
the prototype system’s orbit (black line). Let us attempt to
forecast the state of the prototype system using the imperfect
model and those observations as initial conditions. Given that
the prototype system is perfectly known, the observations are220

perfectly accurate apart from round-off error. Under these
conditions, the forecast will tend to move away from the
prototype system attractor towards the imperfect model’s
attractor due to two separate albeit related effects. First, the
accurate initialisation of the imperfect model with respect225

to the prototype system’s orbit moves the forecast trajectory
away from the imperfect model’s attractor. Figure 2b shows
that the distance between observations and the imperfect
model’s attractor during the interval shown is small but not
negligible. A more comprehensive view of this aspect of230

the imperfect model initialisation is given by the PDF of
the distance between observations and the imperfect model’s

attractor (Fig. 3). The initialisation of the imperfect model
from a point on the prototype system’s attractor induces a
transient period during which the orbit tends towards the235

imperfect model’s attractor. Second, sensitivity to initial
conditions will pull the imperfect model orbit away from the
prototype system orbit and into a different segment on the
imperfect model’s attractor. This effect is particularly evident
when the initial conditions are close to the imperfect model240

attractor, as occurs att = 85 t.u. in Fig. 2, for example.
Figure 2a also shows the orbits of the imperfect model

for the forecast cycles during the interval79 < t < 96[t.u]
projected onto thex subspace (red lines). These orbits appear
to closely follow the orbit of the system very well for245

about 1t.u. immediately after each initialisation. However,
computing the distance between the prototype system’s orbit
and the imperfect model forecast orbit,d = d(tL), reveals
that the forecast error is actually much larger than the
apparent distance inx (red line, Fig. 2c). For comparison,250

a perfect model, given by a Lorenz ’63 system with the
same parameter values as the prototype system, was also
used to forecast the state of the prototype system. The perfect
model was initialised with imperfect initial conditions given
by the observations randomly perturbed assuming that the255

observational error in each variablex, y, andz is independent
and normally distributed with standard deviationσO =
0.1 l.u. (1 l.u. = 1 length unit in phase space). The perfect
model forecast orbits projected onto thex subspace are also
shown in Fig. 2a (grey lines). Even though in this case260

we should expect the orbits to diverge from the prototype
system’s orbit due to sensitivity to initial conditions, the
divergence appears to be much slower than in the imperfect
model case. This effect becomes clearer when looking at the
distance between the prototype system’s orbit and the perfect265

model forecast orbits (black lines in Fig. 2c): the perfect
model forecast orbits remain close to the prototype system’s
orbit for about 2t.u. immediately after each initialisation.
After this initial interval, sensitivity to initial conditions takes
over and the perfect model forecast orbits move away from270

the prototype system’s orbit.
In order to show that these results are robust, similar

analyses were conducted for imperfect models withr = 26
and r = 27 and for initial conditions withσO = 0.2 l.u.,
σO = 0.5 l.u. andσO = 1 l.u. Figure 4a shows the evolution275

of the PDFs, represented by median and interquartile range,
of the distance between the prototype system’s orbit and
the forecasts obtained with these models. For long lead
times (i.e. tL = 5 t.u.) the effects of a relatively large
observational error (e.g.σO = 1 l.u.) and a relatively small280

model error (e.g.r = 27) are apparently similar (see Fig. 4a).
At shorter lead times, however, there are important behaviour
differences between models. The two imperfect models show
a short period of very fast divergence from the prototype
system’s orbit followed by a plateau and a second period of285

fast divergence. It is hypothesized that the first period of fast
divergence is induced by the approach of the imperfect model
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forecast orbit to the imperfect model’s attractor. Following
Nicolis et al. (2009), the mean of the square distance between
the prototype system’s orbit and the forecasts are given for290

the Lorenz ’63 system by

〈d2(tL)〉 = t2Lδr〈x̄2〉 (5)

where δr = rs − rmod is model error (given as error in
model parameters),rs is the value of the parameterr in295

the prototype system,rmod is the value of the parameterr
in the model,x̄ is the initial value ofx on the prototype
system’s attractor and〈·〉 indicate average over the ensemble
of forecasts. This expression is strictly valid only in the limit
of small model error and short forecast lead times (Nicolis300

et al., 2009). However, it still provides a good approximation
for the cases under analysis here, characterised by relatively
large model error. Figure 5a shows a comparison between
the obtained curves following Eq. (5) and those obtained
from the ensemble of forecasts. The agreement is indeed305

very good, but only for very short forecast lead times (tL <
0.1t.l.). Due to the nonlinearity of the underlying dynamics
mean and median do not follow each other as the PDFs
rapidly become highly asymmetric as forecast lead time
increases (see also Fig. 8 of Nicolis et al., 2009).310

In contrast to the forecasts produced by imperfect models,
the forecasts produced by a perfect model with imperfect
initial conditions show periods of slow divergence from the
prototype system’s for short lead times. In fact, Fig. 4b,
which shows the rate of change of the median of the315

distance between the prototype system’s orbit and model
orbits with respect to forecast lead time, reveals that the
perfect model runs undergo a short period during which
the distance between model orbit and prototype system’s
orbit tends to decrease. Indeed, this shrinking period occurs320

as a consequence of the prototype system’s orbit being
part of the prototype system’s attractor and having initial
conditions with finite observational error. This is consistent
with the theory of Nicolis et al. (2009) which shows that,
assuming unbiased and uncorrelated initial condition errors,325

the square distance between the prototype system’s orbit and
the forecasts of a perfect model will reach a minimum at a
certain timet∗L > 0. Considering terms up toO(t2L), t∗L is
given by (Nicolis et al., 2009)

t∗L = −
〈TrJ〉

〈Tr[(JT +J)J]〉
, (6)330

where J is the Jacobian matrix of the prototype system.
Equation (6) is strictly valid for short forecast lead times
and small initial condition errors. However, it still provides a
reasonably accurate estimate for the time of minimum〈d2〉335

in the cases considered here: Eq. (6) predictst∗
Lt

= 0.024;
the values found forσO = {0.1,0.2,0.5,1.0}(l.u.) aret∗

Le
=

{3,4,4,3}×10−2 (t.u.), respectively. Notice that while〈d2〉
attains minimum values at these times,median(d) shrinks
slightly further to attain minimum values att∗

Lmedian
=340

{7,7,7,8}× 10−2 (t.u.), respectively.

Figure 4b provides a summary of the difference between
imperfect models with perfect initial conditions and perfect
models with imperfect initial conditions. At the beginning
of the forecast cycle, the imperfect models are characterised345

by a positive and comparatively large rate of change in the
median of the distance between the orbits of the prototype
system and the model with respect to forecast lead time; on
the other hand, the perfect models are characterised by a
negative and comparatively small rate of change of the same350

variable.
There are two drawbacks to this analysis that makes it

difficult to apply to real situations. The first such drawbackis
that it can lead to erroneous conclusions about the difference
between perfect and imperfect models. For example, one355

might argue, by pointing at the gray and red lines in Fig. 4a,
that having small model error (r = 27) or large observational
error (σO = 1 l.u.) leads to very similar model behaviour.
Following this line of thought, one could try to eliminate
the initial period of fast divergence in the imperfect model360

by following a suitable strategy to project “unbalanced”
initial conditions onto the surface on which the attractor of
the imperfect model evolves (e.g, the strategy suggested by
Anderson, 1995). However, focusing on the distance between
orbits alone gives only a partial view of the situation: two365

points could be at a similar distance from a third point,
and nevertheless be placed at very dissimilar locations. The
second but most important drawback is that the analysis
relies on a perfect knowledge of the prototype system, which
is, as indicated before, an unattainable requirement.370

Figure 6 highlights a different aspect of the comparison
between perfect and imperfect models: the location of
the attractor in phase space. This aspect is fundamental
for climate prediction, in which we are not interested in
predicting the state of a system at a particular time, but in375

the statistical properties of the system during a time interval
of a given duration at a particular starting time. Figure 6
shows the evolution of the PDF ofz, represented by median
and interquartile range and computed using forecasts, as
forecast lead time increases. For comparison, it also shows380

these same quantities computed using the attractors of the
prototype system and the imperfect model shown in Fig. 1.
At tL = 0 t.u., both perfect and imperfect models produce
very similar statistics to those produced by the prototype
system. The small difference between statistics attL = 0 t.u.385

is due to the difference in sample size between the prototype
system’s attractor and the forecasts. As forecast lead time
increases the differences between perfect and imperfect
model become more apparent. The imperfect model forecast
orbits tend to the imperfect model’s attractor so that in less390

than about 0.5t.u. the statistics produced by the imperfect
model for tL > 0.5 t.u. are closer to those produced by the
imperfect model’s attractor than to those produced by the
prototype system’s attractor. Moreover, the PDF appears
to oscillate around that of the imperfect model’s attractor.395

These features are also observed with imperfect models
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with rmod = 26 and rmod = 27 (not shown). In contrast,
the perfect model forecast orbits tend towards the prototype
system’s attractor. Therefore, the statistics produced bythe
perfect model forecasts remain around those produced by400

the prototype system throughout the whole forecasting cycle
even though this model was initialised with imperfect initial
conditions.

It has been pointed out earlier that looking into a single
variable in a multidimensional system can be misleading.405

This is unavoidable for many systems due to their large
dimensionality (i.e. the Earth’s climate system). This is not
the case here, where we are dealing with only three phase
space variables. To get a more comprehensive overview of
the situation we use the Hellinger distance, which can be410

interpreted as a measure of the similarity between two PDFs
and whose square is defined as (Arnold et al., 2013)

H2(f,g) =
1

2

∫

V

(

√

f(X)−
√

g(X)
)2

dX1 . . .dXn, (7)

wheref andg are two PDFs defined over then-dimensional
random variable spaceX = (X1, . . . ,Xn)T . Figure 7 shows415

the Hellinger distance between the prototype system PDF,
computed from the104-t.u. integration, and the PDFs
obtained from the perfect model forecasts at different
forecast lead times. Each curve in the figure corresponds to
a different level of observational error. Every curve shows420

fluctuations. However, these fluctuation are around a similar
value (H ≃ 0.11). The approach to the prototype system’s
attractor, corresponding to the shrinking periods discussed
with Fig. 4, is evident in the case with larger observational
error (σO = 1.0 l.u.).425

The situation is different in the case of imperfect models.
Figure 8 shows the Hellinger distance and the median of
the distance between the prototype system’s orbit and model
orbits for the imperfect model withrmod = 25. In this case
the Hellinger distance go through a period of fast growth430

until a maximum is reached (Fig. 8a). The time of the
maximum approximately coincides with the time of the
minimum in the mean ofz in Fig. 6. Furthermore, it coincides
with the time when the plateau in the median of the distance
between the prototype system’s orbit and model orbits begins435

(Fig. 8b). This supports the hypothesis put forward earlier
that the first period of fast divergence between prototype
system and model orbits is induced by the approach of
imperfect model forecast orbits to the imperfect model’s
attractor. A series of alternating minima and maxima follows,440

but it is more difficult to establish a link between these and
the behaviour of the distance between the prototype system’s
orbit and model orbits.

The imperfect model withrmod = 27 exhibits similar
qualitative behaviour to that found in the imperfect model445

with rmod = 25 (Fig. 9). Notice that in both cases the
Hellinger distance does not start at zero but atH ≃ 0.105, i.e.

at a similar level to that around which the Hellinger distance
oscillates in the perfect model case.

These results show a fundamental property of a perfect450

model: if a model is a perfect model, then the attractor,
reconstructed by sampling a collection of initialised model
orbits (forecast orbits), will be invariant to forecast lead time,
provided two conditions: (1) that the model is initialised
with good estimates of the system’s true state based on455

observations and (2) that the collection of forecast orbits
is a representative sample of the region in phase space
accessible to the system. Condition (1) is required to ensure
that the attractor described by the collection of initial
conditions is an accurate representation of the prototype460

system’s attractor. Otherwise, an initial period of adjustment
should be expected. Klocke and Rodwell (2013) refer to
this period as ‘initialisation shock’ in their discussion on
the initialisation of climate models in hindcast mode from
non-native analyses. Condition (2) is required to ensure that465

forecasts provide a full description of the prototype system’s
attractor in phase space.

The perfect model’s attractor invariance with forecast
lead time marks a clear difference between perfect and
imperfect models and provides an alternative means not only470

for understanding model error sources, but also for climate
model evaluation. Potentially, it also provides a method
to understand and interpret climate model biases. It has
the advantage over the distance between the orbits of the
prototype system and the models that no prior knowledge475

of the prototype system’s orbit is required (apart from
initial states at suitable times). Moreover, it avoids the false
impression that a perfect model and an imperfect model
exhibit similar behaviour.

4 Implications for climate prediction480

4.1 Attractor reconstruction

Reconstructing even part of the attractor of a system
is equivalent to knowing at least part of its climate. It
would be desirable to reconstruct the full climate attractor
in order to completely know the climate. However, this485

task is impossible given the very large dimensionality of
the climate system. In principle, it would be enough to
collect a sufficiently large number of observations to be
able to represent the system’s attractor in phase space
and infer its properties. However, if the only source of490

data available was the imperfect model, then the most
we could achieve would be to represent the imperfect
model’s attractor in model phase space. This is related to
the existence of biases in climate models when evaluated
against observations and reanalysis datasets (e.g. Kim et al.,495

2009; Matsueda et al., 2009; Zappa et al., 2013). As
discussed in Sect. 1, these biases are an expression of the
mismatch between the climate attractor and the attractors
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of climate models. Evidence of the existence of biases can
be found even using short-term forecasts by comparing two500

different times in a forecast cycle, analysis time (i.e. T +
0 d) and T + 15 d, in an analogous way to that used to
study the prototype system/imperfect model combination
based on the Lorenz ’63 system in Sect. 3. Figure 10
shows interquartile ranges of daily zonally-averaged 320-K505

potential vorticity (PV) for the period between December
2009 and February 2010 for these two lead times and for
three forecast datasets produced with three different models:
(1) the Met Office Global and Regional Ensemble Prediction
System (MOGREPS, Bowler et al., 2008), (2) the European510

Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Prediction System (EPS, Molteni et al., 1996)
and (3) the National Centers for Environmental Prediction
(NCEP) Global Ensemble Forecast System (GEFS, Toth and
Kalnay, 1997). These datasets have been archived by the515

THORPEX Interactive Grand Global Ensemble (TIGGE,
Park et al., 2008). Even though the source of these datasets
are operational ensemble prediction systems. only control
members are considered here, i.e. the analysis is effectively
made on a set of deterministic forecasts.520

As shown in Sect. 3, if the models were perfect, the
statistics between the forecasts at T + 0 d and T + 15 d would
be similar or, in the limit of infinitely large samples, the same.
However, the three datasets reveal clear statistical differences
between analyses and T + 15 d forecasts. It must be noted that525

even though the three ensemble prediction systems produce
different statistics at analysis time and at T + 15 d, the
deviation shown by the ECMWF EPS (Fig. 10b) seems
systematically smaller than that produced by MOGREPS
(Fig. 10a) or NCEP GEFS (Fig. 10c). This effect might occur530

as a result of the optimisation of the ECMWF model for
the specific purpose of medium-range weather prediction.
However, this is only one metric and more research would
be needed to give a complete comparison between these and
other TIGGE models.535

There are two potential caveats in these results. The
first potential caveat is that the results are shown only
for the season December–February (DJF) 2009–2010 in
the Northern Hemisphere, which was characterized by
exceptional conditions in terms of atmospheric circulation540

in the North-Atlantic European sector (e.g. Santos et al.,
2013). However, five other DJF periods have been analysed
(from 2006–2007 to 2011–2012) on both hemispheres and
all of them show the same qualitative results. Moreover,
Gray et al. (2014) have shown, analysing the same dataset,545

that the amplitude of Rossby waves and the sharpness of
the PV gradient across the tropopause tend to decrease with
increasing forecast lead time (see their Fig. 5). These finding
confirm the existence of systematic model error in the upper-
level Rossby wave structure in these models and its growth550

with forecast lead time.
The second potential caveat is that only the control

members (unperturbed analyses with no stochastic physics

included in the forecast model) in each ensemble prediction
systems have been considered in this analysis. However,555

the ensemble members tend to follow the behaviour of
the control member. For example, Fig. 11a shows the
2-PVU contours (1PVU = 10−6 m2 Kkg−1s−1) on the
320-K isentropic surface in the analysis and the control
members in five forecasts produced with MOGREPS for the560

same validation time (00:00 UTC, 25 November 2009) but
different lead times (T + 1 d to T + 5 d). Figure 11b shows
the 2-PVU contours on the 320-K isentropic surface in the
analysis and the ensemble members for the T + 4 d forecast
for the same validation time. There are two remarks to make565

regarding this figure. The first remark is that the apices of the
upper-level ridge (over Scandinavia in the analysis) in the
control members tend towards the southeast with increasing
lead time (Fig. 11a) (Sideri, 2013). The second remark is
that the ensemble at the lead time shown (Fig. 11b), and570

in fact any other between 1 d and 5 d, clusters around the
corresponding control member while failing to include the
analysis (Sideri, 2013).

4.2 Short-term forecast

It has been shown that initialising the imperfect model with575

perfect initial conditions with respect to the system can
be viewed as initialising the model with initial conditions
away from its own attractor. This induces a transient
period during which the model approaches its own attractor.
Data assimilation blends information from the model and580

observations in order to provide initial conditions for thenext
forecast. Using data assimilation to initialise a numerical
prediction model has a similar effect to initialising the
imperfect model with perfect initial conditions by moving
the initial model state away from the model’s attractor.585

This induces a transient (spin-up) period until the numerical
model reaches a new balance (Daley, 1991). The new balance
is achieved when the model’s orbit is close to the model’s
attractor.

The transient period and the subsequent evolution on the590

model attractor imply divergence between the model’s orbit
and the true system’s orbit. This divergence is not only
due to sensitivity to initial conditions. Instead, it is partly
due to fundamental differences between the system and the
imperfect model. The forecast of the upper-level ridge on595

25 November 2009 introduced in Sect. 4.1 provides one
example of this model-error related divergence (Fig. 11). As
mentioned before, the apices in the forecasts tend towards the
southeast as lead time increases (Fig. 11a), thus indicating
that the model is diverging from the system’s orbit. The600

fact that no member in the ensemble is close to the actual
behaviour of the system (Fig. 11b) might be due to the
same effect: in this particular event, an ensemble around
accurate initial conditions generates an ensemble forecast
with every member tending towards the model’s attractor605

and away from the true future state of the system. This
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occurs even though MOGREPS incorporates a representation
of model error variability in the ensemble (Bowler et al.,
2008). Furthermore, increasing the representation of model
error variability to increase forecast spread could make the610

analysis fall into the envelope of the forecast ensemble
members but it would not fix the fact that the attractors
of true system and model are essentially different. There
are many other examples of this type of behaviour in other
models (e.g. Rodwell et al., 2013). One might argue that615

even though analysis and forecasts diverge from each other,
they could still be part of the same attractor. However,
the evidence presented (Fig. 10 and subsequent discussion)
strongly suggests that indeed model and system have
different attractors.620

5 Summary and concluding remarks

It has been shown that, in the prototype system/imperfect
model combination based on the Lorenz ’63 system,
imperfections in the model translated into differences in
attractor structure (fixed points and apparent size) between625

the system and the imperfect model (Fig. 1). As a result,
the second assumption for the suitability of a model (i.e. the
assumption that the solutions provided by a model lie on the
system’s attractor, or at least on the projection of the system’s
attractor on the model’s phase space) was not satisfied. Under630

these circumstances, even a perfectly accurate initialisation
of the system induces a transient period during which the
model orbit diverges from the system’s orbit and approaches
the model attractor (Fig. 2). Thus, the orbit of the model and
the actual system’s orbit become essentially different. This635

difference is purely due to model error and not to sensitivity
to initial conditions. This was shown through a comparison
of two imperfect models initialised with perfect initial
conditions and a perfect model initialised with imperfect
initial conditions subject to four levels of observationalerror640

(Fig. 4). It was shown that, even though at long lead times
small model error and large observational error produced
apparently similar results (Fig. 4a), there were noticeable
differences at very short lead times: while imperfect model
forecast orbits tend to quickly diverge from the prototype645

system’s orbit, perfect model forecast orbits tend to undergo
a short period at the beginning of the forecast cycle during
which they approach the prototype system’s orbit (Fig. 4b).
However, these methods require the prior knowledge of the
actual state of the system and its evolution, which is an650

unaffordable luxury for climate scientists, who are bound to
deal with a system of very large dimensionality.

It has been shown that climate model biases can be
interpreted as an expression of a mismatch between the
climate system attractor and the numerical climate model655

attractor. Furthermore, it has been shown that such a
mismatch can be detected even in short-term forecasts
by relying on the following fundamental property of a

perfect model: if a model is a perfect model, then the
attractor, reconstructed by sampling a collection of initialised660

model orbits (forecast orbits), will be invariant to forecast
lead time, provided two conditions: (1) that the model
is initialised with good estimates of the system’s true
state based on observations and (2) that the collection of
forecast orbits is a representative sample of the region in665

phase space accessible to the system. Deviations from this
condition would constitute an alternative measure for the
suitability of a climate model. This was shown for the
Lorenz ’63 system (Fig. 6) and for the control members
of three operational ensemble prediction systems (Fig. 10).670

Stochastic parameterisation schemes have been shown to
reduce model biases (Arnold et al., 2013). Therefore, it
would be very interesting to extend the analysis to investigate
the effects of the full ensembles on the stochastic model’s
attractor. However, this remains as future work.675

These results provide the basis for a framework for the
interpretation of output from numerical climate models with
implications for two widely recognized needs in climate
science: (1) the need for climate model improvement (e.g.
Stevens and Bony, 2013) and (2) the need for new methods680

for the interpretation of current available climate models
when contrasted against observations (e.g. Brands et al.,
2012). There are projects tackling the first need although
these focus primarily on errors arising in the short term in
order to minimise the interaction between parameterisations685

(e.g. Klocke and Rodwell, 2013, and references therein).
This is an important aspect for the improvement of
models. However, it is equally important to understand
such parameterisation interactions and therefore it would
be valuable to extend that research to these situations. The690

approach proposed here provides a link between the fields of
weather and climate prediction as it relies on the availability
of forecast orbits produced by climate models.

The results presented in this contribution are consistent
with the discussions by Judd and Smith (2001, 2004). They695

have shown that, given a set of imperfect observations
in a perfect models scenario, it is possible to find a set
of indistinguishable states consistent with the observations
(Judd and Smith, 2001). In contrast, in an imperfect model
scenario, almost certainly no trajectory of the imperfect700

model is consistent with any set of observations (Judd and
Smith, 2004). Judd and Smith (2004) also introduce the
concept of pseudo-orbits that intrinsically take into account
the existence of model error. Although the discussion in
Judd and Smith (2001, 2004) do require the availability705

of observations, the concept of pseudo-orbits might prove
useful for the interpretation of climate projections; however,
I can only speculate at this point, leaving this for future
investigation.
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Fig. 1. (a)Prototype system attractor (black) and imperfect model
attractor (red). Also shown are the fixed points for the system (black
x) and for the imperfect model (red x).(b) Joint probability density
function for (x,z) resulting from long integrations (104 t.u.) of the
prototype system (colour shading) and the imperfect model (line
contours). The contour values are the same in both cases.
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Fig. 2. (a)Prototype system orbit (black) and perfect observations
on the prototype system orbit (black dots). Also shown are (1)
orbits of the imperfect model with perfect initial conditions (red
lines) and corresponding forecasts (red crosses), and (2) orbits of
the perfect model with imperfect initial conditions (grey lines) and
corresponding forecasts (black crosses). Observations and forecasts
are shown at regular intervals of 5t.u. (b) Distance between perfect
initial conditions (black dots in (a)) and the imperfect model
attractor at observation times during the interval shown.(c) Error
between the prototype system orbit and those from the imperfect
model with perfect initial conditions (red) and the perfect model
with imperfect initial conditions (black).

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

|x
s
 − a

m
|

pd
f
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initial conditions and the imperfect model attractor.
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orbit and model orbits as functions of forecast lead time.(b) Rate
of change of the median of the distance between the prototype
system’s orbit and model orbits with respect to forecast lead time.
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0.15(t.u.) (solid lines) for three different values ofrmod. Also
shown are the corresponding theoretical curves according to Eq. (5)
(dashed lines).
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Fig. 7. Hellinger distance between the prototype system’s PDF and
the perfect model’s PDFs with different levels of error in the initial
conditions. The lines have been smoothed by applying a 5-point-
average filter 14 times.
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orbits. In both panels, vertical dashed (dotted) lines mark the
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Fig. 9. As in Fig. 8, but for an imperfect model withrmod = 27.
Notice that the vertical scales are different to those in Fig. 8.
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Fig. 10. First and third quartiles of daily zonally averaged 320-K
PV in analyses (T + 0, black) and T + 15 d forecasts (red) for(a)
MOGREPS-15,(b) ECMWF EPS,(c) NCEP GEFS for the season
from December 2009 to February 2010.
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Fig. 11. 2-PVU contours on the 320-K isentropic surface valid at
00:00 UTC 25 November 2009 in MOGREPS showing(a) control
members for forecasts with different lead times and(b) analysis,
control member and ensemble members for the T + 4 d forecast
(After Sideri, 2013).


