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Thank you for the review given by Anonymous Referee #1. The suggestions and de-
tailed comments by the Anonymous Referee #1 are answered as follows.

1. We already have reference to Brocchini and Peregrine (1996) on page 328.

2. On page 320, line 4-15, the paragraph will be revised as follows:
The shoreline position and wave reflection in the model area (sloping region) are
determined using an analytical solution of the nonlinear shallow water equations
(NSWE) following the approach of Antuono and Brocchini (2010) for unbroken
waves. The decomposition of the incoming wave signal and the reflected one
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is also described in Antuono and Brocchini (2007,2010) for the calculation of
the shoreline and wave reflection. Nevertheless, the method in their paper
is applied by determining the incoming wave signal with the solution of the
Korteweg-de Vries (KdV) equation. The novelty of our approach is the utilization
of an observation operator at the boundary x = B to calculate the incoming
wave elevation towards the shore from the numerical solution of the LSWE in
the simulation area. For any given wave profile and bathymetry in the simulation
area, the numerical solution can be calculated and the signal arriving at x = B
can be observed. Afterwards, the data are used to calculate the analytical
solution of the NSWE in the onshore region and the reflected waves.

We also have fixed the typo in the citations.

3. Equation (1) is Miles’ variational principle (Miles, 1977) that can be rewritten in
terms of velocity potential Φ and wave elevation η as follows

0= δ
∫ T
0 L[Φ, η]dt = δ

∫ T
0

∫ L
xs

∫ η
−hb

(
∂tΦ + gz + 1

2 |∇Φ|2
)
dzdxdt

Arbitrary variations of the functional with respect to η gives result

∂tΦ + gη + 1
2 |∇Φ|2 = 0 at z = η.

This is Bernoulli equation which states that the pressure at the surface of the
water should vanish (it is the assumed pressure condition for the variational
formulation of full surface wave problem).

We do not fully understand the remark from Anonymous Referee #1. In the full
water wave problem, there is no depth-averaged flow. From Eq. (1), we derive
a Boussinesq version with a simplified vertical structure (Eq. (2)). There is no
arbitrary constrant, as the surface potential φ is specified by the initial condition.

C196



Without such an initial condition, of course, φ only appears under space or
time gradients. Hence, also the numerical implementation is fine, because
it requires an initial condition for φ (and not its gradient). Of course, if one
specifies the initial velocity u, this initial condition for φ is indeed specified up to a
constant, but once φ is specified that initial constant is automatically fixed as well.

4. In the linear wave theory, it is assumed that the bottom variations and surface
elevations are small compared to other dimensions. Equation (3) arises from
Miles’ variational principles (Miles, 1977) in Eq. (1) as follows

0= δ
∫ T
0 L[φ,Φ, η, xs]dt

= δ
∫ T
0

∫ L
xs

(
φ∂tη − 1

2g((h+ b)2 − b2)−
∫ η
−hb

1
2 |∇Φ|2dz

)
dxdt

with velocity potential Φ = Φ(x, z, t), surface potential φ(x, t) = Φ(x, z = η, t),
where η = h − hb is the wave elevation and h = h(x, t) the total water depth
above the bathymetry b = −hb(x) with hb(x) the rest depth. Time runs from
t ∈ [0, T ]; partial derivatives are denoted by ∂t et cetera, the gradient in the
vertical plane as ∇ = (∂x, ∂z)T and the acceleration of gravity as g.
The second term in the equation above is the potential energy and the third term
is the kinetic one. We follow Klopman, et al. (2010) for approximating the velocity
potential Φ and thus we get Eq. (3) with the functions β̆(x), ᾰ(x), and γ̆(x) are
given by Eq. (4).

The linear model is obtained by assuming that the the bottom variations and
surface elevations are small, thus the kinetic energy in the equation above are
obtained by integration in the vertical z-axis from z = −hb to z = 0 in x ∈ [B,L]
as follows

0= δ
∫ T
0 L[φ,Φ, η, xs]dt

= δ
∫ T
0

∫ L
B

(
φ∂tη − 1

2g((h+ b)2 − b2)−
∫ 0
−hb

1
2 |∇Φ|2dz

)
dxdt
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By replacing the approximation for the velocity potential and rewriting φ and η
as φ̆ and η̆, we get Eq. (5a) with the functions β̆(x), ᾰ(x), and γ̆(x) are given by
Eq. (6). The linear variables mentioned in the article refer to the variables in the
linear model.

We will revise the last paragraph on page 323 and state as follows:
We a priori divide the domain into two intervals, x ∈ [B,L], where we model the
wave propagation linearly, and x ∈ [xs(t), B], where we keep the nonlinearity.
To be precise, in the simulation area from x ∈ [B,L], we linearize the equations
and thus the wave propagation in this domain is modeled by linear shallow
water shallow water equations and a linear yet dispersive Boussinesq model. In
the model area x ∈ [xs(t), B], we only consider depth-averaged shallow water
flow. Thus, a non-dispersive and nonlinear shallow water equations are used
to model the wave propagation in this region. Hereafter, we write φ̆ and η̆ for
the linear variables and also the definitions of β̆, ᾰ and γ̆ simplify accordingly.
Consequently, by applying the corresponding approximations to variational
principle (3), the (approximated) variational principle becomes . . . .

On page 324 line 9, we will add explanation as follows:
Hence, the coefficients in Eq. (4) simplify to their linearized counterparts in
the simulation area where the linear Boussinesq equation holds (while these
coefficients disappear in the model area where the nonlinear depth-averaged
shallow water equations hold).

5. Equations (13a) and (14) are only identical for the coupling between linear
(Boussinesq and shallow water) model with the nonlinear shallow water model.
In the linear domain (where we have φ̆ and ψ̆), Eqs. (13a) and (13b) together
must be applied to transfer the information from the nonlinear domain (where we
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only have φ) to the linear domain. While in the nonlinear domain, the coupling
condition is only given by Eq. (14).
In general, the coupling conditions in both domains will not be identical. For
example, the coupling conditions between linear potential flow and shallow water
model are derived by Klaver (2009).

We will revise the paragraph on page 327 line 11-15 as follows:
Note that the coupling conditions (13)-(14) are used to transfer the information
between the two domains. The coupling conditions (13) gives the information
of φ̆ and ψ̆ in simulation area, provided the information of φ from model area.
Meanwhile, the coupling condition (14) gives the information of φ in model area,
provided the information of φ̆ and ψ̆ from simulation area.

6. We will revise page 330 line 25 and state as follows:
This article follows the approach of Antuono and Brocchini (2010) which uses
this incoming Riemann variable as boundary data and solve the dimensionless
NSWE by direct use of physical variables instead of using the hodograph
transformation introduced by Carrier and Greenspan (1958). We do, however,
clarify the mathematics of the boundary condition at the shoreline.

7. We will revise page 339 lines 21 and state as follows:
This superposition is also described in Antuono and Brocchini (2007, 2010) and
actually in line with our EBC concept since the linearity holds in the simulation
area.

8. Page 340, lines 2-5 will be deleted. The citation to Antuono and Brocchini (2007,
2010) has been done on the previous page (comment 7).
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9. Yes, the linearity ratio δ is in agreement with the definition of ε on page 332, line
20. For consistency, the parameter δ will be replaced with ε in the whole article.

Page 332, line 20, we will revise as follows:
We expand it in perturbation series around the rest solution (23) with the
assumption of small data at x = B. Using the linearity ratio ε = A/h0 (A is the
wave amplitude), we say a wave is small if ε� 1 and expand as follows:

Equation (58) is used to determine the location of the seaward boundary
condition. In the subsequent study cases, we choose the value of δ � 1 to
calculate the value of h0.

10. Page 346, the first paragraph of the conclusions will be revised as follows:
We have formulated a so-called effective boundary condition (EBC), which is
used as an internal boundary condition within a domain divided into simulation
and model areas. The simulation area from the deep ocean up to a certain
depth at a seaward boundary point at x = B is solved numerically using the
linear shallow water equations (LSWE) and the linear variational Boussinesq
model (LVBM). The nonlinear shallow water equations (NSWE) are solved
analytically in the model area from this boundary point towards the coastline over
a simplified sloping bathymetry. The wave elevation at the seaward boundary
point is decomposed into the incoming signal and the reflected one, as described
in Antuono and Brocchini (2007,2010). The advantages of using this EBC are
the ability to measure the incoming wave signal at the boundary point x = B for
various shapes of incoming waves, and thereafter to calculate the wave run-up
and reflection from these measured data. To solve the tsunami wave run-up
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in nearshore area analytically, we employ the asymptotic technique for solving
the NSWE over sloping bathymetry derived by Antuono and Brocchini (2010),
applied to any given wave signal at x = B.

11. Ryrie’s model decouples the longshore problem from the onshore one. By doing
this, we neglect any effect on the onshore motion of interaction between onshore
and longshore motion. It is justifiable for waves incident at a small angle to
the beach. Ryrie (1983) numerically solves the 2D shallow water equations
for motion on a sloping beach generated by a single bore and by a periodic
succession of bores, both incident at small angles. Brocchini and Peregrine
(1996) use Ryrie’s approach to get 2D analytical solution of shallow water
equations for periodic unbroken waves (extending the solution of Carrier and
Greenspan (1958)).
We still think that the extension of the EBC method in 2D can be done by using
Ryrie’s approach. The onshore problem is solved using the same approach
of Antuono and Brocchini (2010), and the solution of the decoupled longshore
problem is left for further study.
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