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Abstract.  Solar disturbances, depending on the orientation of the interplanetary magnetic 

field, typically result in perturbations of the geomagnetic field as observed by magnetometers 

on the ground. Here, the geomagnetic field’s horizontal component, as measured by the 

ground-based observatory-standard magnetometer at Tromsø (70°N, 19°E) is examined for 10 

signatures of complexity. 25 year-long 10s resolution datasets are analysed, but for 

fluctuations with timescales less than 1 day. Quantile-quantile plots are employed first, 

revealing the fluctuations are better represented by Cauchy rather than Gaussian distributions. 

Thereafter, both spectral density and detrended fluctuation analysis methods are used to 

estimate values of the generalized Hurst exponent, α. The results are then compared with 15 

independent findings. Inspection and comparison of the spectral and detrended fluctuation 

analyses reveals that timescales between 1h and 1d are characterized by fractional Brownian 

motion with a generalized Hurst exponent of ~1.4 whereas including timescales as short as 1 

min suggests fractional Brownian motion with a generalized Hurst exponent of ~1.6.  
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1. Introduction and methodology 

Understanding the coupling mechanisms between various processes and phenomena in the 

solar-Terrestrial system remains a considerable challenge. An approach that has gained 

popularity in recent years involves examining the noise in a signal (or time-series), i.e. the 

stochastic rather than the deterministic component. The underlying idea is that a signature in 25 

the noise occurring in a driving mechanism may re-appear in the noise of another observable, 

thus linking the two. This approach is akin to fingerprinting a crime scene. Examination of 

time series for such fingerprints was pioneered by, inter alios, Hurst, [1951], Mandelbrot, 

[1983], Grassberger and Procaccia, [1983] and Koscielny-Bunde et al. [1998]. Work by 

Eichner et al. [2003] and Lennartz and Bunde [2009] and Kantelhardt et al. [2006], for 30 

example have refined the approach. Much attention has been given to oceanographic and 

meteorological observables including the recent study by Hall [2014], and more recently 

solar-related observables, e.g.  Scafetta and West [2003] and Rypdal and Rypdal [2011]. On 

the other hand, there has been relatively little focus on observables related to the terrestrial 

ionosphere and measured locally in order to examine the mapping of solar forcing to the 35 

Earth’s surface. Hall et al. [2011] examined complexity in the ionospheric E-region in the 

auroral zone: the altitude, strength and persistence of the E-region are of particular interest 

for radio communications and for studying the possible overall shrinking of the middle 

atmosphere due to climatic cooling [Roble and Dickinson, 1989; Rishbeth and Clilverd, 

1999]. In this particular study, the geomagnetic field characteristics represented by a local 40 

time series measured, on average, beneath the auroral oval at 70°N 19°E (geographic), will be 

examined. Stochastic variations appear as fluctuations driven by ionospheric currents and 

thus associated magnetic fields perturbing the background geomagnetic field. The time series 

employed will be described in more detail forthwith.  
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The approach to analysing the geomagnetic field data here is the same as that used by Hall 45 

[2014]: first the data are filtered using a boxcar to remove all periodicities less than one day 

and the result is then subtracted from the original time series, thus producing a residual 

excluding all pre-conceived (deterministic) periodicities. This is equivalent to 

“deseasonalization” commonly applied to neutral atmosphere data, for example. The 

reasoning for removing all fluctuations of period 1 day or larger will become apparent when 50 

the data are described in more detail. 

The majority of studies to obtain complexity signatures from time series aim at evaluating the 

Hurst exponent, H, as invented by Hurst, [1951] as a quantification of the scaling nature, or 

self-affinity of the stochastic component of the data. H, however lies in the interval {0,1} and 

alone cannot identify the process as fractional Gaussian noise (fGn) or fractional Brownian 55 

motion (fBm) as invented by Mandelbrot and van Ness [1968]. In the concept of fBm 

successive increments are correlated: the time series is non-stationary and with temporally 

varying variance fGn, on the other hand, is stationary and time-invariant in expectation value 

and variance. In these processes, positive correlation between successive increments indicates 

that preceding motion is likely to continue and negative correlation indicates that preceding 60 

motion is likely to be followed by a reversal, likelihoods commonly referred to as persistent 

and anti-persistent, respectively. Rather than derive H, therefore, the approach of Kantelhardt 

et al. [2006] is adopted here and the generalized Hurst exponent, α, is derived. The two 

exponents are related: for fGn, H = α and for fBm, H = α - 1. Thus,  α unambiguously 

characterizes as process as fBm (α > 1), persistent fGn (0.5 < α < 1) and anti-persistent fGn 65 

(0 < α < 0.5), with α = 1.5 indicating the special case of Brownian motion. Furthermore, one 

can define the scaling exponent of the power spectrum of the signal (the negative of the 

spectral slope in log-log space) by β: 
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 ffS )(  (1) 

White noise is thus characterized by a flat spectrum and therefore β=0. “Pink noise” is when 

β=1, and the case where β=2 is referred to as “red noise” and corresponds to Brownian 70 

motion, e.g. Vasseur and Yodzis [2004]. Importantly, the generalized Hurst exponent, α and 

the power spectrum scaling exponent, β are related by 

   2/1   (2) 

as explained by, e.g., Hartmann et al. [2013], and Delignieres et al. [2006], and references 

therein. The relationship is conveniently summarized in Figure 1 of Hall [2014]. Moreover, 

the fractal or Hausdorff-Besicovich dimension, D = 2 – H, but assuming fBm. One can see, 75 

therefore, calculating D by, for example, the method of Grassberger and Procaccia, [1983], 

can potentially yield H but not unambiguously provide the same information as α. 

Following the sequence used by Hall [2014], rather than blindly launch into a determination 

of α which will almost inevitably yield some result, the data are examined first for indications 

of non-linearity by inspections of the probability density function (PDF) and quantile-80 

quantile (Q-Q) analyses [Wilk and Gnanadesikan, 1968]. A PDF can indicate qualitatively if 

the distribution is non-Gaussian. In Q-Q plots, quantiles of the distribution of the noise in the 

signal are plotted against those derived from a semi-empirical Gaussian distribution having 

the same mean and standard deviation; a straight line will result if the signal exhibits a 

Gaussian distribution. With a preconception of the nature of the PDF a number of approaches 85 

may be employed to obtain α. Some of the most used methods are described and compared by 

Delignieres et al. [2006], Hartmann et al. [2013] and Heneghan and McDarby [2000] (note, 

however, that these last authors use “α” as the spectral scaling exponent rather than β). Using 

experience gained from Hall [2014] α is obtained using both spectral analysis (SA) and 
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detrended fluctuation analysis (DFA); while most physicists will feel comfortable with the 90 

more intuitive SA, DFA [Peng et al. 1993] is arguably the preferred method in contemporary 

research when searching for long-term memory in data. For the purposes of SA, since 

experimental data are under consideration, the time series should be treated as irregularly 

sampled; data gaps are few, but even so must be assumed to exist. Lomb-Scargle 

periodogram analysis [Press and Rybicki, 1989] is more appropriate than a Fourier transform. 95 

Additionally, Fougère [1985] and Eke et al. [2000] have proposed preconditioning of the 

time series by applying a parabolic window, bridge detrending using the first and last points 

in the series, and finally frequency selection prior to attempting to obtain a spectral exponent. 

Applying frequency selection to the Lomb-Scargle periodogram is somewhat unpredictable 

as discovered by Hall [2014], so the entire spectrum is retained. Finally the spectrum S is 100 

plotted vs. f in log-log space to hopefully identify a regime exhibiting a scaling exponent β 

according to Eq.1. In DFA, the stochastic component of the original time series is first 

cumulatively summed (each new point is the sum of the preceding points in the original). 

This cumulative summation is then divided into sub-series of equal length (n). Each of these 

sub-series is then detrended either by subtracting the straight line between end-points (bridge 105 

detrending) or linear or polynomial fits (referred to as DFA(1), DFA(2) etc). Variances are 

calculated for each sub-series and the then averaged to obtain a mean F(n). After repeating 

for a range of sub-series lengths (usually all possible n), the function F(n). is plotted vs. n in 

log-log space (as was done in the spectral analysis case) to hopefully identify a regime 

exhibiting a scaling exponent α: 110 

 nnF )(  (3) 

wherein α is the generalized Hurst exponent.. Here, a simple linear detrending will be used 

and DFA will be used to refer to DFA(1). 
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2. Underlying data and analysis 

Analyses of geomagnetic time-series are few relative to for other observables such as surface 

air temperature (SAT) and, at the other end of the solar-terrestrial system, sunspot number 115 

(SSN). Downloadable datasets such as the auroral electrojet index (AE) have been examined, 

e.g. Rypdal and Rypdal [2011], but the AE index is really a synthesis of individual 

magnetometer measurements at a selection of observatories under or near the auroral oval. 

The index is the width of the envelope of north-south geomagnetic field perturbations 

obtained from typically > 10 stations [e.g. Davis and Sugiura1966]. Wanliss and Reynolds 120 

[2003] have determined β for a number of low latitude records although references therein 

accentuate the preceding focus on global indices. Hamid et al. [2009] similarly examine data 

from specific sites. The nature of the data used in this study is somewhat different to those 

used by Wanliss and Reynolds [2003] and Hamid et al. [2009], however. The geomagnetic 

field is usually (but not exclusively) defined by three components: declination, D (°), 125 

horizontal, H (nT), and vertical, Z (nT). When constructing geomagnetic indices as indicators 

of activity, for example the k-index [Bartels et al., 1939], the horizontal component is 

preferred because an approximately zonally aligned current system induces a maximum 

perturbation in the horizontal component of the background field immediately below it. The 

vertical component, on the other hand induces a zero crossing in the perturbation. The 130 

magnetometer at Tromsø (70°N, 19°E) is operated as an observatory-standard instrument and 

as such calibrated accurately at regular intervals (the details of which are superfluous here); 

this means, however that the time series is long and reliable. This study uses values of H with 

10s time resolution in the interval 1988-2013 inclusive. In contrast to the studies by Wanliss 

and Reynolds [2003] and Hamid et al. [2009], here entire years are analysed. Another 135 

important difference is the geographical location: at high latitude, most geomagnetic 
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disturbances occur in the evening sector and the fluctuations in H reflect the rotation of the 

Earth underneath the auroral oval’s typically zonally-aligned current systems which move 

meridionally backwards and forwards in a sporadic fashion over the magnetometer site. 

Activity can be expected to repeat at timescales of 1 day, and of course over solar rotation 140 

(Carrington rotation) [e.g. Bartels, 1934] and longer periods such as the 11-year solar cycle. 

In order to eliminate these deterministic features from the dataset to be studied a boxcar filter 

is applied to remove fluctuations less than 24h; the smoothed time-series is then subtracted 

from the original to arrive at a set of residuals representing the stochastic component. A 

corresponding method was employed by Hall [2014] and discussed and tested by Hall et al. 145 

[2011]. As will be shown, an advantage of spectral analysis is that individual periodicities 

remaining in the (supposedly) stochastic residual show up as narrow spikes and in practice 

have an insignificant influence on determination of the slope of the spectrum. On the 

contrary, in DFA such periodicities are in general not distinguishable.  

An example of the input data, in this case for 2001 – in the middle of the overall time interval 150 

- is shown in Figure 1. The top panel shows the original data in black and with a 1-day 

smoothing superimposed. The bottom panel zooms in  on 1st June 2001 and shows the result 

of subtracting the smoothed time series from the original to obtain a residual representing the 

stochastic component. In addition, the smoothed data are shown with mean subtracted 

corresponding to the upper panel. As will be demonstrated forthwith, the removal of the 1-155 

day running mean did not affect the non-stationarity of the signal at shorter timescales. Other 

years are similar. In Figure 2., the top panels show the distribution of the stochastic 

component with linear (left) and logarithmic (right) ordinates, again from 2001. In a 

somewhat unsophisticated approach, although adequate to the purpose, the maximum of the 

distribution and its width at half-maximum are determined. The mean is assumed to be zero 160 
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as a result of the subtraction of the deterministic component as illustrated in Figure 1. 

Corresponding Gaussian and Cauchy distributions are determined and these are also shown in 

the figure. A characteristic of the distributions (for all years) is that they are skewed; this is 

because the current in the overlying ionosphere tends to have a preferred orientation and 

perturbations of the horizontal geomagnetic field tend to be negative on average. 165 

Qualitatively the Cauchy distribution is a better description of that of the data than the 

Gaussian. Again all years are similar, although for less skewed distributions the suitability of 

the Cauchy model is even more evident. Furthermore, in contrast to the Gaussian model the 

data exhibit heavy tails. The bottom panels of Figure 2. show the quantile-quantile (Q-Q) 

portrayals – left: vs. Gaussian and right: vs. Cauchy. The departures from linearity (i.e. in the 170 

central regions of the respective plots) are indicative of long tails at both ends of the 

distribution relative to the model. See Chambers et al. [1963] for diagnostics of Q-Q plots. 

The Cauchy distribution reproduces the tails in the data distribution rather better than the 

Gaussian. Recall, however that in this simple approach, the half-maximum full-width values 

have been matched and comparisons might have been improved by choosing 1/e or another 175 

arbitrary value. Nonetheless, a Cauchy distribution would always represent the tails in the 

data distribution better than a Gaussian. It is important to note at this point that a Cauchy 

process can be defined as a Brownian motion subordinated to a process associated with a 

Lévy distribution [Sato, 1999]. Again, it should be noted that analyses for all 25 years exhibit 

similar characteristics, and thus that the results hitherto justify the further investigation that 180 

follows. 

The next step is to determine the power spectral density and its scaling with respect to 

frequency. A stated earlier it is incorrect to presuppose there are no data breaks and therefore 

a Lomb-Scargle periodogram is derived, rather than the more traditional Fourier transform, 
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but having first preconditioned the time series by applying a parabolic window and bridge 185 

detrending using the first and last points. The result (again for 2001) is shown in the left panel 

of Figure 3. At periods greater than one day fluctuations have been effectively removed by 

the subtraction of the deterministic component, and, as predicted, discrete peaks at one-day 

and (approximately) 12h remain demonstrating the method not to be perfect. Vertical dotted 

and dashed lines indicate familiar timescales. Convincing scaling is evident from 1 day down 190 

to approximately 5 min; there is a suggestion of a subrange between 5 and 1-minute scales 

and then a tendency to flattening. The scaling exponent β has therefore been obtained over 

two subranges, day-minute and 12h-1h indicated on the plot by red (β = 2.014 ± 0.001) and 

cyan (β = 1.811 ± 0.012) lines respectively. The annotation gives the result of the overall day-

minute scaling (the red line) expressed as the generalized Hurst exponent α (1.51), whereas 195 

the 12h-1h scaling yields α = 1.41. The DFA(1) analysis of the same data is shown in the 

right hand panel of Figure 3. The interval for the linear fit is chosen as a result of examination 

of the spectrum and with an a priori knowledge of the behaviour of the geomagnetic 

component. Again familiar timescales are indicated in the plot, and linearity over 

approximately 2 orders of magnitude yields β = 1.474 ± 0.002. This linearity starts around 10 200 

minutes (from inspection of the figure), however the density of points is low at the small-

timescale region (the plot being logarithmic) such that the fitting of the straight line is 

essentially unaffected by including points between 1 and ~10 min. The linearity weakens 

after about 12 hours when the curve begins to flatten (as could be anticipated from inspection 

of the spectrum). Departure from the fitted line is easy to identify at longer timescales, but 205 

not at shorter timescales, as opposed to as seen in the SA approach. On the other hand, DFA 

results in a much “cleaner” plot that in turn is conducive to deceptively reliable linear fitting. 

Had timescales > 1h been excluded from the fit in the DFA, α from the overall SA and α from 

the DFA would have been similar. It can be argued that SA is easier to interpret because a 
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physicist would normally have some preconception of the processes characterized by 210 

different timescales, hidden to some degree when using only DFA. The SA method is 

preferred here because of closer contact with any underlying physics and reliability of 

identification of different subranges for linear fitting. At this point the method used here 

departs somewhat from that used by Hall [2014], in which surrogate data were generated and 

then compared with the original [Theiler et al. 1992]. For the purposes of this study, at least, 215 

generation of, for example 100 surrogate data sets corresponding to 1-year long 10s 

resolution  (i.e. over 3 million points) followed by DFA analyses is not practicable for 

computational reasons. Inspection of the probability distribution functions combined with 

visual comparison with known distributions and subsequently Q-Q analyses is deemed to 

confirm the complex nature of the stochastic process in the data. Again, only one year’s 220 

results are shown here; all 25 years exhibit similar values of α when for each of DFA and the 

two SA subranges.  

The results of analysing all 25 years from 1988 to 2013 inclusive as described and illustrated 

for 2001 above are shown in Figure 4. From top to bottom the panels show: DFA(1), SA (1d–

1min) and SA (12h-1h). The final panel shows yearly mean sunspot numbers from the Solar 225 

Influence Data Analysis Center (SIDC) [Clette, 2011]. For each year (small) vertical bars 

indicate the 1-σ uncertainty in the individual linear fits. It is evident (by comparing axes) that 

by taking all scales between 1d and 1min in the SA, α is always > 1.5. DFA and SA (12h-1h) 

the αs are similar and always < 1.5. There are considerable year-to-year variations 

irrespective of method, but no obvious periodicity that could be attributable to the two solar 230 

cycles the data set spans. On the other hand, linear regressions reveal trends, which are also 

indicated in the figure together with 95% confidence limits according to the method of 

Working and Hotelling [1929]. The trends are small but worth mentioning here to give the 

http://www.sciencedirect.com/science/article/pii/S0273117714000647#b0020


Page 12 of 25 

 

possibility for comparison with other studies in future. For DFA the trend is 0.04 ± 0.05 

century-1; for SA (1d-1min), 0. 2 ± 0.2 century-1; for SA (12-1h), 0.01 ± 0.1 century-1. Since 235 

in all 3 cases, the uncertainties are approximately equal to the trends themselves, none of the 

values can be considered to be significant. The mean values of α over the 25 years are: DFA, 

1.46 ± 0.02; SA (12h-1h), 1.39 ± 0.04; SA (1d-1min), 1.54 ± 0.07. 

Discussion 

To summarize the above findings, all analyses, irrespective of scale, indicate fBm. Both SA 240 

used in the regime 12h - 1h and DFA (in which determination of the scaling exponent is 

weighted towards the longest scales), indicate α≈1.42. For day-minute scales SA yields 

α=1.54 but the uncertainty dictates that the result cannot be regarded as significantly different 

from, for example that of the DFA. The results weighted towards longer timescale 

fluctuations, however, exhibit small enough uncertainties that taken collectively one can 245 

conclude that α is slightly less than 1.5, the significance of which will be discussed forthwith. 

Other studies of complexity in geomagnetic, or geomagneticaly related time series have 

either used isolated periods of, for example, months [Wanliss and Reynolds, 2003; Hamid et 

al., 2009] albeit with time resolution comparable to that used here, or much longer derived 

datasets of, for example AE-index with different time resolution. Rypdal and Rypdal [2010] 250 

studied AE-index at timescales similar to those addressed here. Obtaining a synthesis, even 

over several relatively local time-series (as is done when determining the AE index, but 

especially globally – e.g. for the KP index) will tend to even out variances over intra-diurnal 

timescales, e.g. occurrence of local ionospheric current systems. Any non-stationarities may 

be masked out such that local determinations of α and identification of processes as fGn or 255 

fBm may well differ. Wanliss and Reynolds [2003] and Hamid et al. [2009] employed 

geomagnetic data from specific stations, but for low latitude. In contrast to the analyses here, 
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Wanliss and Reynolds [2003] examined only a short time interval of 5 days, but for 6 

different Southern Hemisphere sites determining α to increase approximately with increasing 

latitude (southward) from α = 1.55 to α = 1.69 i.e. fBm but with consistently slightly higher 260 

exponents than determined here. Hamid et al. [2009] employed a longer dataset (1 month) 

than Wanliss and Reynolds [2003] but for 2 sites. However Hamid et al. [2009] categorized 

days as active or quiet and finding active days exhibited α = 1.64 and 1.55 for the two sites, 

and, for quiet days, α = 1.45 and 1.33. In this study, no attempt has been made to pick out 

quiet and disturbed days. Over the course of an entire year, however, it could be expected that 265 

quiet days predominate considering that the rapid perturbations extracted from the 

observation and deemed to be a stochastic component rely on current systems being 

approximately over the magnetometer. The findings in this study, viz. that α lies slightly 

under 1.5, can be considered in good agreement with those of Wanliss and Reynolds [2003] 

and Hamid et al. [2009]. In order to attempt to discriminate between active and quiet years 270 

[e.g. Vaquero et al., 2014], however annual mean sunspot numbers have been plotted in the 

bottom panel of Figure 4. There is no conclusive correlation between solar activity and the 

values of α from the 2 methods (and 2 scaling ranges). If the trends could be considered 

significant (which they are not) they might be seen to anticorrelate with overall solar activity 

over the 25 years (quieter sun) which would contradict the suggestion by Hamid et al. [2009] 275 

that active days are characterized by α > 1.5.  

Wanliss and Reynolds [2003] point to several publications employing high latitude 

geomagnetic data, but these use the AE index. Takalo et al. [1994] find that AE scales with α 

≈ 1 for low frequencies (timescales > 100 min) and α ≈ 1.5 for high frequencies (1-100 min, 

and therefore shorter than typical substorm durations). Note that Takalo et al. [1994] use “α” 280 

for power-law dependence whereas this study uses “β”, and thereafter Rypdal and Rypdal 
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[2010] convert Takalo et al.’s value to “H” – the Hurst exponent. In terms of the 

classification used here and also by Kantelhardt et al. [2006], AE appears as a non-stationary 

process for intra-sub-storm timescales with  α ≈ 1.5 but becoming stationary (i.e. fGn) when 

only > sub-storm timescales are considered. This is compatible with the findings here 285 

because at any given instant, it is unlikely that the same geomagnetic fluctuations will be 

registered by more than a few geographically grouped observations: AE and the stochastic 

component of H should be expected to exhibit similar signatures at short timescales, and this 

is the case here.  

Other studies of geomagnetic signatures include analysis of the Disturbance storm time (Dst) 290 

index, e.g. by Balasis et al. [2006], who calculate, explicitly, β for periods during 2001 and 

for the entire year. Scaling was examined in the range 5d-2h and indicated α between ~1.4 

and ~1.6. However inspection of the spectra, and particularly for the whole year (as used here 

too) there is a suggestion of a change of slope at ~10h, such the higher frequency subrange 

would yield a slightly higher (presumably > 1.5) result for α. This is not the same as the 295 

spectral breakpoint mentioned in this study, but together they illustrate that bicoloured noise 

[Takalo et al., 1994] may well be present. Recent exploits into comparing complexity 

signatures are worthy of note: Scafetta and West [2003] proposed terrestrial temperature 

anomalies to be linked to solar flare intermittency via a Lévy process. Rypdal and Rypdal 

[2011] find identical multifractal noise signatures in both the AE index and the z-component 300 

of the interplanetary magnetic field suggestive of the existence of mechanisms linking 

intermittency in the two. These studies utilised very long datasets, typically of 1-month time 

resolution aimed at facilitating better trend analyses and prediction of future climate, Here, 

similar techniques are employed on shorter (~years) datasets with higher time resolution 

(~seconds) but to help identify differences between geographically local complexity. 305 
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Kantelhardt et al. [2006], using different hydrological data types, explain how results from 

shorter-term data could be modelled by an autoregressive moving-average (ARMA) [Wittle, 

1951], but given the time series lengths and similarities with other work, fBm seems a good 

candidate to model the stochastic nature of the geomagnetic field. 

Conclusions 310 

To conclude: 25 years of 10s local measurements of the horizontal component of the 

geomagnetic field are examined, one year at a time. All variability with timescales 1-d or 

longer thus including anticipated and/or known periodicities are removed. This is analogous 

to deseasonalization of, for example, monthly temperature data – a common practice for 

meteorological time-series, but apparently, not necessarily the case, nor meaningful, for 315 

studies of the AE index. Thereafter, quantile-quantile (Q-Q) followed by spectral and 

detrended fluctuation analyses (SA and DFA respectively) are performed revealing, as a 

characteristic common to all years, distributions better described as Cauchy rather than 

Gaussian. The SA, performed here by a Lomb-Scargle periodogram analysis, rather than the 

more usual Fourier analysis, in order to allow for data-gaps, suggests bicoloured spectra, 320 

more difficult to discern if using DFA alone. The resulting generalized Hurst exponents, α, 

generally indicate anti-persistence with values 1.42 ± 0.02 for DFA and 1.39 ± 0.04 for SA. 

There is a possibility that for shorter timescales (down to 1 min) α ≈ 1.54 ± 0.07. The former 

is indicative of fractional Brownian motion (fBm) but with a degree of likelihood for anti-

persistence, while the latter is indicative of persistence. Taking the uncertainties (σ) into 325 

consideration, none of the analyses yield values of α which are significantly (viz. 2σ) 

different from 1.5, and therefore either significantly anti-persistent or persistent. 

Nevertheless, the results agree qualitatively with independent findings both derived from 

local data, as used here, and with zonally synthesized data as comprises the AE index, for 
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example. In particular, Takalo and Timonen [1994] identified two subranges in the power 330 

spectrum of AE, attributing the lower frequency regime to turbulence in the solar wind and 

the higher frequencies to origins in the magnetosphere. This would, in addition, support a 

hypothesis that geomagnetic field variations can be universally described by fractional 

Brownian motion. Matching this signature with those identified in space weather 

parameterizations add to a growing arsenal of tools available for understanding and 335 

forecasting the impact of solar activity on the terrestrial environment. This study also points 

the way to further, although computationally demanding, analyses including use of 

geomagnetic data from other locations, hypothesis-testing using surrogates and more refined 

data selection according to disturbed conditions.  

 340 
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Fig. 1.  H-component of geomagnetic field from Tromsø, 70°N, 19°E for the year 2001. Data 

are at 10s time resolution. The top panel shows the original data in black and with a 1-day 

smoothing superimposed in blue. The bottom panel shows a detail of the residual  - the 

result of subtracting the smoothed time series from the original – for 1st June, and with the 

mean-subtracted 1-day smoothing, again superimposed in blue. 450 
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Fig. 2.  Portrayals of the distribution of the stochastic component of the H-component of the 

geomagnetic field from 2001 as shown in Figure 1. Top-left: linear ordinate axis; top 455 

right: logarithmic ordinate axis. In the top panels Gaussian (red) and Cauchy (blue) 

distributions are fitted (explained and discussed in the text). Bottom left: Q-Q plot of the 

observed data versus Gaussian; bottom right: Q-Q plot of the observed data versus 

Cauchy. 

 460 
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Fig. 3.  Spectral (left) and detrended fluctuation (right) analyses for data shown in previous 

figures. Familiar timescales are indicated by vertical dotted/dashed lines. Fitted scaling 465 

exponents are shown by coloured lines together with corresponding values. 
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 470 

Fig, 4. Generalized Hurst exponents (β) from all years 1988-2013 (with uncertainties). Top: 

DFA method; second panel: SA method using range 1 day-1 min.; third panel: SA using 

only 12h-1h. Tentative linear trends are shown together with 95% confidence limits 

indicated by dotted hyperbolae. Bottom panel: yearly average sunspot numbers. 


