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Abstract. We employ Detrended Fluctuation Analysis The well log data is the most valuable information that
(DFA) technique to investigate spatial properties of ans0il can be obtained from geological volumes and from oil reser-
reservoir. This reservoir is situated at Bacia de Namoradosvoirs. However, the cost of drilling imposes severe limita-
RJ, Brazil. The data corresponds to well logs of the follow- tions in the number of wells. In this situation we are faced
ing geophysical quantities: sonic, gamma ray, densitypgor with the problem of uncovering geophysical properties over
ity and electrical resistivity, measuredsa wells. We tested  long field extensions from data collected along few drilled
the hypothesis of constructing spatial models using datafs  wells. To perform this task we have to rely on data statis-
fluctuation analysis over well logs. To verify this hypotises  tics that guarantees similarities among geological strest

we compare the matrix of distances among well logs with theOne goal is to draw contour lines expressing the variation
differences amon®FA-exponents of geophysical quantities of proprieties in the subsurface by evaluating interpotati
using spatial correlation function and Mantel test. Ouiadat from well logs data. This will be justified if correlationsch
analysis suggests that the sonic profile is a good candidateonsistent spatial patterns. The question of this art&cledn

to represent spatial structures. Then, we apply the cingter we useDFA-exponent to discover spatial patterns. In other
analysis technique to the sonic profile to identify thes¢iapa words, isSDFA-exponent spatially correlated in such way we
patterns. In addition, we use the Mantel test to search fer co can employ it as a spatial parameter.

relations amond@FA-exponents of geophysical quantities. In the last decade new techniques from the physics of com-
s plex systems were introduced in geophysics, see Lovejoy
and Schertzer (2007); Dashtian et al. (2011b). The Detende
Fluctuation AnalysiDFA is a powerful fluctuation analysis
technique introduced by Peng et al. (1995) that was devel-
oped to deal with non-stationary time series. This toolis si

To a great extend the information about petroleum resesvoir . .
is obtained from well logs that measure geophysical qua“nti-'lar to the Hurst method, see for instance Mandelbrot (1977)

ties along drilled wells, see Asquith and Krygowski (2004). g‘gtv\'fn i‘;eg;r‘i’ecsor;fi‘vr ;ngaltia;?,gjg?: series :.\gt: :n.sd'rg'r:?r
As a rule data is spatially sparse and presents strong fluctua o ' T .
tion, therefore we have to rely on statistical methods fat-ev correlation in a ser|e@!:A techmque has been usgd_ln many
uating indices that describe the characteristics of therres areas of geophysical literature, in Padhy (2004) itis used t

voirs, see for instance Hardy and Beir (1994) and He\sﬁlittgbtzm Ir:folrmgggg .fr(c;rr? sellzsmlc s'%nﬁ.ls' Inzrgg‘)et_’r?rgﬁslAn-
(1998). The question about what methods are more approprl-ra eetal ( ); Chun-Feng and Liner ( ); Gholamy

ate to fulfil this task is still open. In this work we investiga et al. (200.8); T_avares et al. (.ZOFA is employed to mte_r- .
the use of fluctuation analysis to tackle this problem. pret and filter images of seismograms. In reference Ribeiro

1 Introduction
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2 R. A. Ribeiro: Spatial analysisof oil reservoirs using DFA of geophysical data

et al. (2011); Lozada-Zumeta et al. (2012); Marinho et al. S
(2013); Dashtian et al. (2011) this technique is used, as in o, ]
this manuscript, in the analysis of well logs. SOWN“’W‘”‘WW

When we treat with complex systems that have a huge
amount of data th®©FA method is attractive because it al-
lows to summarize data into a suitable parameter. DR&
parameter summarizes fluctuation information of a time se-
ries, this parameter is related to the autocorrelation grop
ties and the spectrum of frequency of the data. DR& ex-

ponent in this sense is an overall measure of its complex- QZOMWWWWMM
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ity. This simple procedure allows a fast comparison between 9 0 o o 5o 000
large samples. Furthermore, the first step in oil researah is 3 ‘ i A ——

g p _ p ran M v s e
geographical analysis of the surface. To have charagterist
of the geological structure of the subsurface projecteal ant b 200 400 600 800 1000
single measurement on the ground level is an useful informa- pepth

tion. In addition, the spatial correlation between thesangu

tities allow us to have a better understanding of the litgplo  Fig. 1. A segment of a typical measurement, for an arbitrary well,

which is crucial in oil prospection. of the geophysical properties versus depth (in meters): sonic (SO),
The case study employed in this work is an oil reservoirgamma ray (GR), density (DE), porosity (PO), and resistivity (RE).

and we apply theDFA technique over data logs of drilled

wells. The oil reservoir is situated at Bacia de Namorados,

an offshore field in the Rio de Janeiro State, Brazil. The

five geophysical measurements available in the well logs‘are’'S length guarantees a good statistic for the usBA
sonic (DT, sonic transient time), gamma ray (GR, gammamethOd Kantelhardt et al. (2001). An example of a segment

emission), density (RHOB, bulk density), porosity (NPHI, of the time series corresponding to each of the five geophys-

neutron porosity) and electrical resistivity (ILD, deeplirec- ical variables is visualized in figure 2.1.
tion resistivity). The manuscript can be summarized as foI—2
lows. In sectior2 we perform three tasks: show the geologic

data in some detail, introduce briefly the mathematics of therhe DFA is a fluctuation analysis technique, see for instance
DFA and present the statistical methods we use in this workpeng et al. (1994) and Kantelhardt et al. (2001). We present
spatial correlation, Mantel test and k-means clusterir@-an 5 concise description of tH2FA algorithm, comprehensive
ysis technique. In sectichwe show the results of the spatial jntroduction of the method is in Peng et al. (1995) and Ihlen
correlation function and the Mantel test; we estimate thatt (2012). Consider a time series = (21,29,...,xN) With
sonic profile is the best candidate to model spatial pattgfnsy, elements. To calculate tHBFA algorithm we initially

In addition, we apply clustering analysis to this geophgsic  integrate the series(t) producing a new variablg(t):
quantity to create a spatial model. Finally, in sectibwe

The Detrended Fluctuation Analysis DFA

conclude the work and give our final remarks. t
y(t) = |l @
=1
2 Model background In the second step of the algorithm we perform an equally

partition of the time series into boxes of length A data
125 fitting is performed inside each box a using the least square
method, the generated auxiliary curve is called the loealdr

The ggok;gm ,‘Ij?tall dusfeg m_th(ljs Vlzlork are dfromR\_/ve(IjI I(?]gs lo- ., (#) of the data. In the third step we detrend the integrated
cs:ate 'Et e'IOITr:e O” acia de arcrjlc?ra 0s, RIO fe ane'rpseries;g(t), to execute this procedure we subtratt) from
tate, Brazil. The wells are situated in an area of approxipe |ocq| trendy,,(¢). The root mean square fluctuation is

9 .
mately100km= and distanti50km from the coast. The Sp%53 found with help of the relation:

tial arrangement of the well logs is illustrated in figure 3.
and the matrix of distance among pairs of weknd j is

2.1 Thegeologic data

N,
done byd; ;. The number of records for each well is not con- 1. n) = 1 ZS (y(t) = yn (). @)
stant, the sonic register was recordedM=£ 17) well logs, Ns = o

gamma ray &V = 53), density (V = 51), porosity (V = 48),

and, finally, resistivity (v = 54). The time series of the geo- The fourth step consists in estimating Eqg. (2) over all boxes
physical quantities of each well log has arouligd ~ 1000, of sizen. Usually F'(n) increases withe, a linear increasing
the exact value depends on the measurement, this data sef F'(n) with n in a log-log scale is a typical signature of a
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fractal behavior. The exponeatof the relation: 180 We compute two distinct sets of tests: in the first we check
for correlation between the matrix of distances of the well
F(n)=n" () logsd, ; and the differences matrix of DFA-exponekta; ;

of any geophysical variablg. In a second moment we com-
is known as th®FA-exponent. The most important equation pare the DFA among geophysical quantities applying Mantel
of this theoretical development is Eq. (3) that provides-gJe test between matrices &’a; ; and A« ; of geophysical
lationship between the average root mean square fluctyatioyuantities;* andg®. Of course we evaluate this test only over

F(n), as a function of the box size. In this work we have  pairs; and; of well logs that have available data for bath
computedx with the help of the algorithm available in Mat-  andg.

lab, a similar algorithm is also available in C-languageydPe

et al. (1995). In figure 3.3 we show, as an illustration, the2.33 Clustering analysis

curve of F'(n) versusn for two distinct well for gamma-ray

and sonic data. 1o For the geophysical quantities that show spatial coralati
We performed a similar analysis for the available well logs we search for spatial patterns. In this article we use k-mean

of all geophysical quantities. FO8% of cases the correlation - a standard tool of clustering analysis to perform this task

coefficient of the adjusted line in the log-log plot fulfil the The k-means methodology works by creating groups using a

relation R? < 0.95, for R the linear correlation coefficient metric criterion. The user of the method chooses a fixed num-

Sokal and Rohlf (1995). The cases that do not follow thisber & of subsets, or clusters, and an optimization algorithm

condition were discarded from the statistics. selects elements according to the distande¢entroids.
o _ In our study, we find that only one geophysical quantity
23 Statistical Analysis present significant spatial correlation, the sonic vaeiaib

o use k-means methodology it is necessary to have at least
In the paragraphs that follow we show the statistical meshod a6 input variables. For obtaining the two additional pa-

explored in the paper. All statistical analysis_ were perfed rameters we employ the following strategy: we use the up-
using R language, see the reference R-project (2008). per and lower values of the error interval of the fitting of the
. . curve defined by Eq. (3).
231 Spatial correlation We use a Monte Carlo test, or a randomization test, to
check if k-clusters method creates groups that are claser, i
a metric sense, than groups generated by an aleatory way.
We define an inde& of neighborhood in the following way.
exponent and distance we start rankingl} of the dis- Consider the map of.the field with.all wells. Over each well
tance matrix. We compute the difference of the matrix of V& attach a geometnc ball (or a disk) C.)f radlusT_he w.ells.
DFA-exponentAla; ; = |a — Ozﬁ-l for all geophysical vari® that.are spatially clqser share overlappmg balls in qppm;m
ableg'. The quantityAat is ordered according to distances to dlstant_wells. This schema _of overlapping balls is used to
7. Corr!(r) is estimated as follows: measure if two wells that are in the satwg@roup are clos_e
or not. For all pairs of well logs we perform the computation:
Num A ¢ ¢ if the balls of two well logs overlap and belong to the same
Corrt(r) = &=L Aa (d)Aat(dJr 7) (4)2s  group we counf) — 2+ 1 otherwise we do nothing. The in-
Num sd(Aa’) dex (2 is normalized by the number of groups and the maxi-
where the sum in equation is performed over all possiblemal number of elements in each k-group. After that we shuf-

pairs Num. To computeCorr(7) the quantityAc is trans- 1€ the well logs over the k-groups and compéig, . sica
formed toAa — Aa— u for i the average afa, the corre- over the shuffled data. The idea of this method is to compare

lation function is evaluated over zero means series. Tie%ta If the k-groups are more distant from each other than groups
dard deviationsd(A«), in the denominator normalizes ade- CN0Sen at random. We estimate a p-value as the probability

quately the function such thatorr(0) = 1. of 2 being larger than th&,,, 1 ¢1.q distribution.

To test the spatial correlation among variables, the most’Si
ple statistics is the correlation functioGorr(7), for 7 the
correlation length. To test spatial correlation betw&d -

232 Mantd test

3 Results
Mantel test is a statistical tool to test correlation betmviveo
symmetrical matrices of the same rank. The rationale of thisTo check for spatial correlation we use three independant st
test is to employ matrix elements in the same way as vegtorsistical tests: the spatial correlation, the Mantel test tHre
of objects, in this way the Mantel test is quite similar to the clustering analysis. To improve the visualization of oualan
Pearson test that search for a correlation between two veoysis we introduce a couple of spatial pictures of the DFA-
tors. In the Mantel test matrices are transformed into vecto exponent computed over the well logs, figure 3.3. We de-
to evaluate the linear correlation, see Sokal and Rohlf§L99 pict five figures, one for each geophysical variables: poros-
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ity (PO), resistivity (RE), gamma ray (GR), density (DE), Table 1. The results of spatial correlation: the decaying of the spa-
and sonic (SO) as indicated in the picture. The spatial imagédial correlation and Mantel test. The linear fitting of the correlation
uses arbitrary distance unitiesandy, to help the perception function is indicated in table as well as the output of the Mantel
of the system we depict contour plots with colours, regionstest: The result indicates that only sonic data is appropriate for con-

sharing the same color assume close DFA values structing spatial analysis. The geophysical quantities are indicated
in the table: sonic (SO), density (DE), gamma ray (GR), electrical

31 Spatial correlation resistivity (RE), and porosity (PO).

Spatial correlation Mantel test
We initially compute the functioCorr () for 0 <7 <80 E P p r p
for all geophysical variables; we checked th@is a number PO | 0.002 000003 096 0.021 064
large enough t@orr(7) decay and start oscillating around RE | 011 0.002 0.74] 0.016 051
zero. We expect that in casevariables of any geophysical GR | 1.05 0015 031] -0028 073
quantity g shows spatial correlation the functi@rorr(7) SO | 903 012 0004 0.181 0.6
should decrease with. To analyze the decay @forr(7) of DE | 0.64 0.01 043] 0023 034

the geophysical variables we fit a linear curve and test how
significant is its decay. The result of the fitting of the geo- . )
Table 2. This symmetric table shows thevalue of the Mantel test

physical quantities is shown in table 1, this result indésat . )

that the only quantity that reveals a significant decay is theOf hypothesis for correlation among tB&A-exponent of geophys-
. g 4 ical quantities. The test is performed between each pair of five geo-

sonic data, all the other quantities shpw 0.05 for the lin-

7 physical variables: porosity (PO), resistivity (RE), gamma ray (GR),
ear fitting test. density (DE), and sonic (SO).

32 Mantel test | [ RE | GR | DE [ sO |
PO [ p=0.088] p=0.74] p=095[ p=0.21
Table 1 it also shows the results of the analysis of the Mantel RE - p=0.73| p=062| p=0.44
test for all geophysical variables. Here it computes the cor GR - - p=0.62| p=0.61
relation between two matriced; ;, the matrix of distance DE - - - p=0.13

between two wells, ando; ; = a; — 5, the matrix of dif-

ference betweelFA-exponenta for the same wells. The

correlation parameter of the test is indicatedrbyhile p is To test how good is the spatial formation of the clustering

thep-value of the significance test. In agreement with the gut-analysis, we employ a Monte Carlo test. We estimated the

put of the correlation function analysis the smallesialue properf value and foungh = 0.005 for k = 3 andp = 0.16

is attributed to the sonic variable. This result justifiestise  for &k =4 using an optimal ball sizé. We checked the k-

of sonic data for constructing spatial patterns, the stilgiec  means clustering technique for the other quantities: sogic

the next section. sistivity, porosity and gamma-ray. We ude< k < 6 for all

We use Mantel test not only to analyze the correlaipnthese geophysical data set and we foundpne0.05, that
between distances aridFA-exponent, but also to perform means, no evidence of significant spatial cluster formation

a comparison between distinct geophysical quantitiest ThaThis result is an indirect evidence that only sonic variasle

means we compare matricésy’ and Aa® of geophysical  a good choice to formation of spatial patterns.

guantitiesg’ andg*. The result of this analysis is shown in

table 2. We plot only the-value of the test in the table, the

major agreement observed was between variables: resistivi4 Final Remarks

and porosity, which is followed by density and sonic.

20 The issue of this manuscript is to test the hypothesis that we
can usDFA-exponent from log wells as integrated indices
projected over the earth surface to reveal spatial strestur

The sonic variable has revealed a good candidate to generaiachc is an index that summarizes the structure of fluctua-

spatial patterns. In figure 3.3 we plot the oil reservoir areation of a geophysical quantity over geologic layers of thou-

with well logs, the axisc andy represent the spatial coordi- sand meters deep. The challenge is to use the information of
nates, we use metric arbitrary units. The points in the figurethe fluctuation from a set of distinct well logs distributeso
represent the coordinates of the well logs. In figure 3.3a weseveral kilometers to construct spatial patterns.

use the fixed number of clusteks= 3 while in figure 3.3b The results of Mantel test and spatial correlation function

we usek = 4. Elements in the same cluster are indicated by aindicate that the only geophysical parameter we can rely on

common symbol, these two pictures suggests that sonicsarithis global approach to model spatial patterns is the sonic.
able is indeed a good geophysical quantity to model spatialWe use partitioning by k-means, a standard technique of clus
formations. ter analysis appropriate to represent spatial models. éavis

3.3 Clustering analysis
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10% (a)

Fig. 2. Atypical plot illustratingDFA scaling propertyf’(n) versus

n, the curve of Eq. 3. The good fitting of most curves in a log-log
scale reveals the fractal characteristic of geophysical data. In (a) the
well 2 of gamma ray data and in (b) the wefl of sonic data.

inspection of the spatial patterns, as well as a Monte Carlo o
test, verify that sonic data forms good spatial models for ]
k =3 and4. In opposition, other geophysical quantities do
not show significant results in Monte Carlo test.

In addition to spatial analysis, we also used Mantel test
to search for correlations among geophysical quantitiea. |
previous work Ribeiro et al. (2011), using the same data set,
but applying a different methodology, it was found that the
only pair of geophysical variables that shows significamt co
relation was density and son{p = 0.01). In this work the
pairs of quantities that show greater significance weregoro
ity and resistivity(p = 0.088) is closely followed by density
and sonic(p = 0.13). The paper Ferreira et al. (2009) has
also found a major correlation between sonic and density us-
ing a standard correlation matrix. For both methodolodies t
pair density and sonic seems to be correlated, this projgerty Fig. 3. Contour plots of DFA values over spatial data of oil reservoir
probably related to the trivial fact that sound speed irmeea of Campo dos Namorados, RJ, Brazil. We depict five figures one for
with density, see for instance Feynman and Leighton (1964)each geophysical variables: porosity (PO), resistivity (RE), gamma
a result that is close to our result. As the methodologies of@Y (GR), density (DE), and sonic (SO). The dots correspond to well
these works are not the identical, we do not expect the sami99s: We use arbitrary length unitiesandy.
result, indeed, small discrepancies are acceptable iis-stat
tical treatments. This last result is in agreement with Dash
tian et al. (2011) that have used cross-correlation arslysi
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