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2Programa de Ṕos-Graduaç̃ao em Cîencias Cliḿaticas, Universidade Federal do Rio Grande do Norte, UFRN - Campus
Universit́ario, Lagoa Nova, CEP 59078 972, Natal, RN, Brazil
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Abstract. We employ Detrended Fluctuation Analysis
(DFA) technique to investigate spatial properties of an oil
reservoir. This reservoir is situated at Bacia de Namorados,
RJ, Brazil. The data corresponds to well logs of the follow-
ing geophysical quantities: sonic, gamma ray, density, poros-5

ity and electrical resistivity, measured in56 wells. We tested
the hypothesis of constructing spatial models using data from
fluctuation analysis over well logs. To verify this hypothesis,
we compare the matrix of distances among well logs with the
differences amongDFA-exponents of geophysical quantities10

using spatial correlation function and Mantel test. Our data
analysis suggests that the sonic profile is a good candidate
to represent spatial structures. Then, we apply the clustering
analysis technique to the sonic profile to identify these spatial
patterns. In addition, we use the Mantel test to search for cor-15

relations amongDFA-exponents of geophysical quantities.

1 Introduction

To a great extend the information about petroleum reservoirs
is obtained from well logs that measure geophysical quanti-20

ties along drilled wells, see Asquith and Krygowski (2004).
As a rule data is spatially sparse and presents strong fluctua-
tion, therefore we have to rely on statistical methods for eval-
uating indices that describe the characteristics of the reser-
voirs, see for instance Hardy and Beir (1994) and Hewitt25

(1998). The question about what methods are more appropri-
ate to fulfil this task is still open. In this work we investigate
the use of fluctuation analysis to tackle this problem.

The well log data is the most valuable information that
can be obtained from geological volumes and from oil reser-30

voirs. However, the cost of drilling imposes severe limita-
tions in the number of wells. In this situation we are faced
with the problem of uncovering geophysical properties over
long field extensions from data collected along few drilled
wells. To perform this task we have to rely on data statis-35

tics that guarantees similarities among geological structures.
One goal is to draw contour lines expressing the variation
of proprieties in the subsurface by evaluating interpolation
from well logs data. This will be justified if correlations show
consistent spatial patterns. The question of this article is: can40

we useDFA-exponent to discover spatial patterns. In other
words, isDFA-exponent spatially correlated in such way we
can employ it as a spatial parameter.

In the last decade new techniques from the physics of com-
plex systems were introduced in geophysics, see Lovejoy45

and Schertzer (2007); Dashtian et al. (2011b). The Detrended
Fluctuation AnalysisDFA is a powerful fluctuation analysis
technique introduced by Peng et al. (1995) that was devel-
oped to deal with non-stationary time series. This tool is sim-
ilar to the Hurst method, see for instance Mandelbrot (1977),50

that is used to compare an aleatory time series with a similar
Brownian series, as well as, to evaluate correlation and anti-
correlation in a series.DFA technique has been used in many
areas of geophysical literature, in Padhy (2004) it is used to
obtain information from seismic signals. In references An-55

drade et al. (2009); Chun-Feng and Liner (2005); Gholamy
et al. (2008); Tavares et al. (2005)DFA is employed to inter-
pret and filter images of seismograms. In reference Ribeiro
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et al. (2011); Lozada-Zumeta et al. (2012); Marinho et al.
(2013); Dashtian et al. (2011) this technique is used, as in60

this manuscript, in the analysis of well logs.
When we treat with complex systems that have a huge

amount of data theDFA method is attractive because it al-
lows to summarize data into a suitable parameter. TheDFA
parameter summarizes fluctuation information of a time se-65

ries, this parameter is related to the autocorrelation proper-
ties and the spectrum of frequency of the data. TheDFA ex-
ponent in this sense is an overall measure of its complex-
ity. This simple procedure allows a fast comparison between
large samples. Furthermore, the first step in oil research isa70

geographical analysis of the surface. To have characteristics
of the geological structure of the subsurface projected into a
single measurement on the ground level is an useful informa-
tion. In addition, the spatial correlation between these quan-
tities allow us to have a better understanding of the lithology75

which is crucial in oil prospection.
The case study employed in this work is an oil reservoir

and we apply theDFA technique over data logs of drilled
wells. The oil reservoir is situated at Bacia de Namorados,
an offshore field in the Rio de Janeiro State, Brazil. The80

five geophysical measurements available in the well logs are:
sonic (DT, sonic transient time), gamma ray (GR, gamma
emission), density (RHOB, bulk density), porosity (NPHI,
neutron porosity) and electrical resistivity (ILD, deep induc-
tion resistivity). The manuscript can be summarized as fol-85

lows. In section2 we perform three tasks: show the geologic
data in some detail, introduce briefly the mathematics of the
DFA and present the statistical methods we use in this work:
spatial correlation, Mantel test and k-means clustering anal-
ysis technique. In section3 we show the results of the spatial90

correlation function and the Mantel test; we estimate that the
sonic profile is the best candidate to model spatial patterns.
In addition, we apply clustering analysis to this geophysical
quantity to create a spatial model. Finally, in section4 we
conclude the work and give our final remarks.95

2 Model background

2.1 The geologic data

The geologic data used in this work are from well logs lo-
cated in the oil field of Bacia de Namorados, Rio de Janeiro
State, Brazil. The wells are situated in an area of approxi-100

mately100km2 and distant150km from the coast. The spa-
tial arrangement of the well logs is illustrated in figure 3.3
and the matrix of distance among pairs of welli and j is
done bydi,j . The number of records for each well is not con-
stant, the sonic register was recorded in (N = 17) well logs,105

gamma ray (N = 53), density (N = 51), porosity (N = 48),
and, finally, resistivity (N = 54). The time series of the geo-
physical quantities of each well log has aroundNS ≈ 1000,
the exact value depends on the measurement, this data se-
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Fig. 1. A segment of a typical measurement, for an arbitrary well,
of the geophysical properties versus depth (in meters): sonic (SO),
gamma ray (GR), density (DE), porosity (PO), and resistivity (RE).

ries length guarantees a good statistic for the use ofDFA110

method Kantelhardt et al. (2001). An example of a segment
of the time series corresponding to each of the five geophys-
ical variables is visualized in figure 2.1.

2.2 The Detrended Fluctuation Analysis DFA

TheDFA is a fluctuation analysis technique, see for instance115

Peng et al. (1994) and Kantelhardt et al. (2001). We present
a concise description of theDFA algorithm, comprehensive
introduction of the method is in Peng et al. (1995) and Ihlen
(2012). Consider a time seriesxt = (x1,x2, ...,xNS

) with
NS elements. To calculate theDFA algorithm we initially120

integrate the seriesx(t) producing a new variabley(t):

y(t) =

t
∑

i=1

|xi| (1)

In the second step of the algorithm we perform an equally
partition of the time series into boxes of lengthn. A data
fitting is performed inside each box a using the least square125

method, the generated auxiliary curve is called the local trend
yn(t) of the data. In the third step we detrend the integrated
series,y(t), to execute this procedure we subtracty(t) from
the local trendyn(t). The root mean square fluctuation is
found with help of the relation:130

F (n) =

√

√

√

√

1

NS

NS
∑

i=1

(y(t)− yn(t))
2
. (2)

The fourth step consists in estimating Eq. (2) over all boxes
of sizen. UsuallyF (n) increases withn, a linear increasing
of F (n) with n in a log-log scale is a typical signature of a



R. A. Ribeiro: Spatial analysis of oil reservoirs using DFA of geophysical data 3

fractal behavior. The exponentα of the relation:135

F (n) = nα (3)

is known as theDFA-exponent. The most important equation
of this theoretical development is Eq. (3) that provides a re-
lationship between the average root mean square fluctuation,
F (n), as a function of the box sizen. In this work we have140

computedα with the help of the algorithm available in Mat-
lab, a similar algorithm is also available in C-language, Peng
et al. (1995). In figure 3.3 we show, as an illustration, the
curve ofF (n) versusn for two distinct well for gamma-ray
and sonic data.145

We performed a similar analysis for the available well logs
of all geophysical quantities. For98% of cases the correlation
coefficient of the adjusted line in the log-log plot fulfil the
relation R2 ≤ 0.95, for R the linear correlation coefficient
Sokal and Rohlf (1995). The cases that do not follow this150

condition were discarded from the statistics.

2.3 Statistical Analysis

In the paragraphs that follow we show the statistical methods
explored in the paper. All statistical analysis were performed
using R language, see the reference R-project (2008).155

2.3.1 Spatial correlation

To test the spatial correlation among variables, the most sim-
ple statistics is the correlation function,Corr(τ), for τ the
correlation length. To test spatial correlation betweenDFA-
exponent and distance we start ranking alldi,j of the dis-160

tance matrix. We compute the difference of the matrix of
DFA-exponent:∆tαi,j = |αt

i −αt
j | for all geophysical vari-

ablegt. The quantity∆αt is ordered according to distances
τ . Corrt(τ) is estimated as follows:

Corrt(τ) =

∑Num

l=1
∆αt(d)∆αt(d + τ)

Numsd(∆αt)
(4)165

where the sum in equation is performed over all possible
pairsNum. To computeCorr(τ) the quantity∆α is trans-
formed to∆α → ∆α−µ for µ the average of∆α, the corre-
lation function is evaluated over zero means series. The stan-
dard deviation,sd(∆α), in the denominator normalizes ade-170

quately the function such thatCorr(0) = 1.

2.3.2 Mantel test

Mantel test is a statistical tool to test correlation between two
symmetrical matrices of the same rank. The rationale of this
test is to employ matrix elements in the same way as vectors175

of objects, in this way the Mantel test is quite similar to the
Pearson test that search for a correlation between two vec-
tors. In the Mantel test matrices are transformed into vectors
to evaluate the linear correlation, see Sokal and Rohlf (1995).

We compute two distinct sets of tests: in the first we check180

for correlation between the matrix of distances of the well
logsdi,j and the differences matrix of DFA-exponent∆tαi,j

of any geophysical variablegt. In a second moment we com-
pare the DFA among geophysical quantities applying Mantel
test between matrices of∆tαi,j and∆sαi,j of geophysical185

quantitiesgt andgs. Of course we evaluate this test only over
pairsi andj of well logs that have available data for bothgt

andgs.

2.3.3 Clustering analysis

For the geophysical quantities that show spatial correlation190

we search for spatial patterns. In this article we use k-means
- a standard tool of clustering analysis to perform this task.
The k-means methodology works by creating groups using a
metric criterion. The user of the method chooses a fixed num-
ber k of subsets, or clusters, and an optimization algorithm195

selects elements according to the distance tok centroids.
In our study, we find that only one geophysical quantity

present significant spatial correlation, the sonic variable. To
use k-means methodology it is necessary to have at least
three input variables. For obtaining the two additional pa-200

rameters we employ the following strategy: we use the up-
per and lower values of the error interval of the fitting of the
curve defined by Eq. (3).

We use a Monte Carlo test, or a randomization test, to
check if k-clusters method creates groups that are closer, in205

a metric sense, than groups generated by an aleatory way.
We define an indexΩ of neighborhood in the following way.
Consider the map of the field with all wells. Over each well
we attach a geometric ball (or a disk) of radiusb. The wells
that are spatially closer share overlapping balls in opposition210

to distant wells. This schema of overlapping balls is used to
measure if two wells that are in the samek-group are close
or not. For all pairs of well logs we perform the computation:
if the balls of two well logs overlap and belong to the same
group we countΩ → Ω+1 otherwise we do nothing. The in-215

dexΩ is normalized by the number of groups and the maxi-
mal number of elements in each k-group. After that we shuf-
fle the well logs over the k-groups and computeΩshuffled

over the shuffled data. The idea of this method is to compare
if the k-groups are more distant from each other than groups220

chosen at random. We estimate a p-value as the probability
of Ω being larger than theΩshuffled distribution.

3 Results

To check for spatial correlation we use three independent sta-
tistical tests: the spatial correlation, the Mantel test and the225

clustering analysis. To improve the visualization of our anal-
ysis we introduce a couple of spatial pictures of the DFA-
exponent computed over the well logs, figure 3.3. We de-
pict five figures, one for each geophysical variables: poros-
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ity (PO), resistivity (RE), gamma ray (GR), density (DE),230

and sonic (SO) as indicated in the picture. The spatial image
uses arbitrary distance unitiesx andy, to help the perception
of the system we depict contour plots with colours, regions
sharing the same color assume close DFA values.

3.1 Spatial correlation235

We initially compute the functionCorr(τ) for 0 ≤ τ ≤ 80
for all geophysical variables; we checked that80 is a number
large enough toCorr(τ) decay and start oscillating around
zero. We expect that in caseα variables of any geophysical
quantitygt shows spatial correlation the functionCorr(τ)240

should decrease withτ . To analyze the decay ofCorr(τ) of
the geophysical variables we fit a linear curve and test how
significant is its decay. The result of the fitting of the geo-
physical quantities is shown in table 1, this result indicates
that the only quantity that reveals a significant decay is the245

sonic data, all the other quantities showp > 0.05 for the lin-
ear fitting test.

3.2 Mantel test

Table 1 it also shows the results of the analysis of the Mantel
test for all geophysical variables. Here it computes the cor-250

relation between two matrices:di,j , the matrix of distance
between two wells, and∆αi,j = αi −αj , the matrix of dif-
ference betweenDFA-exponentα for the same wells. The
correlation parameter of the test is indicated byr while p is
thep-value of the significance test. In agreement with the out-255

put of the correlation function analysis the smallestp-value
is attributed to the sonic variable. This result justifies the use
of sonic data for constructing spatial patterns, the subject of
the next section.

We use Mantel test not only to analyze the correlation260

between distances andDFA-exponent, but also to perform
a comparison between distinct geophysical quantities. That
means we compare matrices∆αt and∆αs of geophysical
quantitiesgt andgs. The result of this analysis is shown in
table 2. We plot only thep-value of the test in the table, the265

major agreement observed was between variables: resistivity
and porosity, which is followed by density and sonic.

3.3 Clustering analysis

The sonic variable has revealed a good candidate to generate
spatial patterns. In figure 3.3 we plot the oil reservoir area270

with well logs, the axisx andy represent the spatial coordi-
nates, we use metric arbitrary units. The points in the figure
represent the coordinates of the well logs. In figure 3.3a we
use the fixed number of clustersk = 3 while in figure 3.3b
we usek = 4. Elements in the same cluster are indicated by a275

common symbol, these two pictures suggests that sonic vari-
able is indeed a good geophysical quantity to model spatial
formations.

Table 1. The results of spatial correlation: the decaying of the spa-
tial correlation and Mantel test. The linear fitting of the correlation
function is indicated in table as well as the output of the Mantel
test. The result indicates that only sonic data is appropriate for con-
structing spatial analysis. The geophysical quantities are indicated
in the table: sonic (SO), density (DE), gamma ray (GR), electrical
resistivity (RE), and porosity (PO).

Spatial correlation Mantel test
F ρ p r p

PO 0.002 0.00003 0.96 -0.021 0.64
RE 0.11 0.002 0.74 0.016 0.51
GR 1.05 0.015 0.31 -0.028 0.73
SO 9.03 0.12 0.004 0.181 0.06
DE 0. 64 0.01 0.43 0.023 0.34

Table 2. This symmetric table shows thep-value of the Mantel test
of hypothesis for correlation among theDFA-exponent of geophys-
ical quantities. The test is performed between each pair of five geo-
physical variables: porosity (PO), resistivity (RE), gamma ray (GR),
density (DE), and sonic (SO).

RE GR DE SO

PO p = 0.088 p = 0.74 p = 0.95 p = 0.21
RE - p = 0.73 p = 0.62 p = 0.44
GR - - p = 0.62 p = 0.61
DE - - - p = 0.13

To test how good is the spatial formation of the clustering
analysis, we employ a Monte Carlo test. We estimated the280

properΩ value and foundp = 0.005 for k = 3 andp = 0.16
for k = 4 using an optimal ball sizeb. We checked the k-
means clustering technique for the other quantities: sonic, re-
sistivity, porosity and gamma-ray. We use3 ≤ k ≤ 6 for all
these geophysical data set and we found nop > 0.05, that285

means, no evidence of significant spatial cluster formation.
This result is an indirect evidence that only sonic variableis
a good choice to formation of spatial patterns.

4 Final Remarks

The issue of this manuscript is to test the hypothesis that we290

can useDFA-exponentα from log wells as integrated indices
projected over the earth surface to reveal spatial structures.
Eachα is an index that summarizes the structure of fluctua-
tion of a geophysical quantity over geologic layers of thou-
sand meters deep. The challenge is to use the information of295

the fluctuation from a set of distinct well logs distributed over
several kilometers to construct spatial patterns.

The results of Mantel test and spatial correlation function
indicate that the only geophysical parameter we can rely on
this global approach to model spatial patterns is the sonic.300

We use partitioning by k-means, a standard technique of clus-
ter analysis appropriate to represent spatial models. A visual



R. A. Ribeiro: Spatial analysis of oil reservoirs using DFA of geophysical data 5

101 102 103

101

102

103
F(

n)

n

(a)
 

 

101 102 103

101

102

103

F(
n)

n

(b)
 

 

Fig. 2. A typical plot illustratingDFA scaling property:F (n) versus
n, the curve of Eq. 3. The good fitting of most curves in a log-log
scale reveals the fractal characteristic of geophysical data. In (a) the
well 2 of gamma ray data and in (b) the well17 of sonic data.

inspection of the spatial patterns, as well as a Monte Carlo
test, verify that sonic data forms good spatial models for
k = 3 and4. In opposition, other geophysical quantities do305

not show significant results in Monte Carlo test.
In addition to spatial analysis, we also used Mantel test

to search for correlations among geophysical quantities. In a
previous work Ribeiro et al. (2011), using the same data set,
but applying a different methodology, it was found that the310

only pair of geophysical variables that shows significant cor-
relation was density and sonic(p = 0.01). In this work the
pairs of quantities that show greater significance were poros-
ity and resistivity(p = 0.088) is closely followed by density
and sonic(p = 0.13). The paper Ferreira et al. (2009) has315

also found a major correlation between sonic and density us-
ing a standard correlation matrix. For both methodologies the
pair density and sonic seems to be correlated, this propertyis
probably related to the trivial fact that sound speed increases
with density, see for instance Feynman and Leighton (1964).320

a result that is close to our result. As the methodologies of
these works are not the identical, we do not expect the same
result, indeed, small discrepancies are acceptable in statis-
tical treatments. This last result is in agreement with Dash-
tian et al. (2011) that have used cross-correlation analysis325
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Fig. 3. Contour plots of DFA values over spatial data of oil reservoir
of Campo dos Namorados, RJ, Brazil. We depict five figures one for
each geophysical variables: porosity (PO), resistivity (RE), gamma
ray (GR), density (DE), and sonic (SO). The dots correspond to well
logs, we use arbitrary length unitiesx andy.
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Fig. 4. Clustering analysis patterns for sonic data (a)k = 3, and (b)
k = 4. Both figures show a satisfactory cluster formation in this data
as confirmed by Monte Carlo test. We use arbitrary length unitiesx

andy.

between well logs and found that sonic, porosity and density
are more correlated among them than with gamma-ray.

To conclude the work we go back to the initial question of
the manuscript: is it possible to create spatial models using
fluctuation analysis? The sonic variable has shown enough330

spatial correlation to perform this task, but the density, which
is the quantity the most correlated to sonic does not share the
same property. However, a visual inspection in the couple of
figures 3.3 suggests that the porosity has a consistent spatial
distribution. In a future work we intend to test the combi-335

nation of distinct geophysical quantities in the formationof
spatial patterns.
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