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Abstract. In the last few years, the scientific community
has witnessed an ongoing trend of using ideas developed in
the study of complex networks to analyze climate dynam-
ics. This powerful combination, usually called climate net-
works, can be used to uncover non-trivial patterns of weather
changes along the years. Here we investigate the tempera-
ture network of North America region and show that two
network characteristics, namely degree and clustering, have
markedly differences between the Eastern and Western re-
gions. We show that such differences are a reflection of the

presence of a large network community in the western side of s

the continent. Moreover, we provide evidence that this large
community is a consequence of the peculiar characteristics
of the western relief of North America.

1 Introduction

Complex networks are powerful tools for describing the
structure and functioning of a wide range of natural, tech-
nological and social systems (da Fontoura Costa et al.,
2011). Owing to the general framework that the network the-
ory provides, a mathematical representation of such systems
is straightforward, allowing not just the description of net-
worked topologies, but also leading to a better comprehen-
sion of dynamical processes in systems whose elements are
connected in a non-trivial fashion (Boccaletti et al., 2006).
In the past few years, complex networks have also been ap-
plied in climate sciences, creating this way the new field
of climate networks (Tsonis et al., 2006, 2008; Tsonis and
Swanson, 2008; Donges et al., 2009a,b; Gozolchiani et al.,
2008; Tsonis and Roebber, 2004; Yamasaki et al., 2008). Ac-
cording to this paradigm, climate networks are formed by
nodes, corresponding to spatial grid points in a given global
climate data. These nodes are connected by edges, which

46

47

48

49

50

51

64

65

66

67

68

69

correspond to statistical similarities between times series of 7

given climate variables (e.g., temperature, relative humidity,
precipitation) associated to each node in the network. Al-
though this field is relative new in the network research, sev-
eral results have been reported showing that network mea-
surements can indeed give new important insights into cli-
mate dynamics (Tsonis et al., 2006, 2008; Tsonis and Swan-
son, 2008; Donges et al., 2009a,b; Gozolchiani et al., 2008;
Tsonis and Roebber, 2004; Yamasaki et al., 2008; Rhein-
walt et al., 2012; Mheen et al., 2013; Runge et al., 2014).
For instance, by using degree centrality measurements of
climate networks, researchers were capable of identifying
highly connected nodes, which turned out to be related with
the North Atlantic Oscillation. These results revealed that
climate networks can exhibit small-world properties due to
long-range edges (called teleconnections) connecting highly
distant nodes (Tsonis et al., 2006, 2008). Moreover, the anal-
ysis of the teleconnections unveiled by this framework has
also shed light on the study of extreme climate events, such
as the El Nifio-Southern Oscillations (ENSO) (Tsonis and
Swanson, 2008; Gozolchiani et al., 2008). More specifically,
by constructing climate networks of the surface temperature
field during El Nifio and La Niifia periods, it was found that
ENSO has a strong impact on the stability of climate sys-
tems, which is manifested as the decrease of the tempera-
ture predictability during El-Nifio years. It is worth noting
that the application of concepts from complex network the-
ory in climate sciences has brought new insights that could
not be unveiled by using classical methods of climatology
and statistics. Recently, by using cross-correlation and mu-
tual information to construct climate networks and analyz-
ing the betweenness centrality field (node centrality measure-
ment based on shortest path lengths (Costa et al., 2007)), re-
searches found wave-like structures that are related to sur-
face ocean currents, detecting this way a backbone of signifi-
cantly increased matter and energy flow in the global surface
air temperature field (Donges et al., 2009a,b). Furthermore,
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the authors also showed that these results cannot be achieved
by using methods derived from multivariate analysis, such
as principal component analysis (PCA) and singular spec-
trum analysis (SSA) (Donges et al., 2009a). In this work, we
extend the analysis of climate networks investigating the in-
fluence of altitudes of the grid points on centrality measure-
ments of the networks generated through similarities in tem-
perature time series measured at the surface level. The main
motivation for including the altitudes on the network model
is the assumption that the flow of matter and energy can be
affected by topographical barriers, leading to anomalies in
the correlations between the time series of climate variables.
Therefore, in order to uncover these phenomena and quan-
tify the influence of the relief on the network correlations,
for each node v we associate its geographical altitude h,, with
centrality measurements of the climate network, such as be-
tweenness and clustering coefficient.

We constructed climate networks allowing the existence of
long-range connections. By detecting communities in the cli- "
mate networks, we found clusters that correspond to groups
of nodes embedded in geographical areas of similar relief ;,,
properties. Moreover, it was also found that the correlation ;,,
patterns between centrality measurements and relief proper- ;,,
ties vary according to the considered network community. s
Finally we point out a possible effect of time series inter-
polation generated by stations in the degree and clustering ,,,

120

coefficient fields of the networks. 128
129
130
2 Materials and Methods 131
2.1 Dataset description 132

Throughout the analysis we used the following databases:

(i) Monthly land temperature records from the National
Center for Environmental Prediction/National Center for At-
mospheric Research NCEP/NCAR (Kistler et al., 2001; Fan i
and Van den Dool, 2008) obtained from January 1948 to Jan- I
uary 2011. The dataset consists of a regular spatio-temporal
grid with 0.5 of latitude and longitude resolution. Each grid
point i has a temperature time series T';() associated, con-
taining the time evolution of the monthly mean temperature. ,,
A visualization of stations employed in the analysis that orig- ,,
inated the database is shown in Fig. 1 (data provided by the ,
NOAA, 2013). "

(i) Relief dataset provided by National Geophysical Data .
Center (NGDC, 2009) and consisting of 1-arc minute reg- .
ular gridded area measuring land topography and ocean,
bathymetry.
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2.2 Complex networks measurements o
In order to seek for relationships between the climate and

relief, we use network measurements related to centrality and 1so0
symmetry of connections. The most simple of them, referred 151

Fig. 1. Visualization of the stations used to interpolate the grid
points in the temperature database.

to as node degree, is given by

N
ki= ZAija
=1

where A;; =1 if nodes ¢ and j are connected and A;; =0
otherwise. The degree is a simple way to study the local im-
portance of a node. Concerning climate networks, the degree
can be used to quantify how many points of the studied re-
gion display a time series similar to a given point in the globe.
In other words, nodes with large degrees are related to large
regions of correlation.

The clustering coefficient of a node is the probability that
two of its neighbors are also connected in the network, and
is given by (da Fontoura Costa et al., 2011)

27 (7)

Cy = m, ()

6]

where 7 (¢) is the number of triangles passing through i, or
equivalently, the number of connections between neighbors
of i. The clustering bears an interesting local information.
If a given point of the globe is strongly correlated with two
other points, the clustering quantifies how often these two
points are also strongly correlated between themselves. The
existence of regions taking low values of ¢; suggests that the
propagation of climate changes occurs in a streamlined fash-
ion in those regions. Conversely, large clustering is related to
a more diffusive propagation.

Another feature we study is betweenness centrality of a
node. To define this measurement, consider the following no-
tation. Let o4, be the number of shortest paths from node s to
node ¢ (da Fontoura Costa et al., 2011). If o4 (¢) is the num-
ber of such paths passing through node ¢, the betweenness
centrality is given by (da Fontoura Costa et al., 2011)

bizzw.

(o2
sEtAL 5

3)

It gives information about global relationships in climate dy-
namics. It is of great importance in quantifying if a node is
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commonly used as a route for long-range correlations in the s
network (Donges et al., 2009a). 200
A node can be central but still not communicate well with 2o
the rest of the network. For instance, a node that is connected 202
to another with large degree can be regarded as being central 20
in the network, but it has a strong dependence on its highly 2o
connected neighbor. The accessibility measurement quanti- 2s
fies the number of nodes effectively accessed after h steps, 20
where the node accessed in the next step is chosen randomly.
Formally, the accessibility is computed as 207

208
(4) 200

210

a; = GXp

ZP” log P |,

211
where P[]L is the probability that a random walk starting at,,,
node i arrives at node j in h steps, N/* the number of reach- 213
able nodes in h steps from node i and exp(-) is the expo- 21
nential function (see, e.g., Viana et al., 2012 for a detailed 215
explanation of this measurement). 216

Real-world networks often display a modular structure, 217
e., the presence of communities (Fortunato, 2010). Thezis
modular structure of a given network can be quantified by the 21e
measurement known as modularity, which is given by (New-
man, 2003)

220

1 kik;
szZ(Aij— 2mj,>6<ci,cj>, )

ij 221

where m = 1/23 " A;; is the total number of edges, C;; is the * .
community to which node 7 belongs and ¢ is the Kronecker e
delta. Once the partitioning of the nodes into communities s
is done, the modularity () basically calculates the fraction e
of edges that connects nodes of the same community sub- wor
tracting the fraction of these edges that we would expect to e
find in a random graph with the same degree sequence. Thus, o
eq. 5 provides a significance test of the obtained network par- 20
titioning, which will be used to validate our results in the next
sections.

Since the modularity ) quantifies how good a given par- ;
tition is, many methods intended to uncover commumtles234
in networks are based on the optimization of this measure- wis
ment. Different strategies for the modularity optimization e
have been adopted in the literature such as simulated anneal—
ing (Reichardt and Bornholdt, 2006; Guimera et al., 2004)
greedy algorithms (Newman, 2004; Clauset et al., 2004) and
extremal optimization (Duch and Arenas, 2005). Although o
these algorithms provide accurate results, most of them a
have great computational cost. For this reason, we adopt the” nio
method proposed in (Newman, 2006) to obtain the commu- ns
nity structure of climate networks. This method consists in pee
mapping the modularity optimization in terms of the spec- nis

trum of the so-called modularity matrix B defined as nis

kkT 247
B=A- % (6) 248

where A is the adjacency matrix, m is as defined before in
eq.Sand k = [ky,...,kn|7 the vector whose element ; is the
degree of the ¢-th node. The spectral optimization of the mod-
ularity @ has complexity of order O(N?log V), which turns
out to be faster than, for instance, simulated annealing and
extremal optimization approaches, besides providing more
accurate results for large networks (Newman, 2006; Fortu-
nato, 2010).

2.3 Climate networks

Because we are most interested in the topological charac-
teristics of climate networks and its correlations with re-
lief heights, we consider now only the connected subgraph
whose nodes are located inside a continent. Note that we
do not simply extract the subgraph over land discarding any
edges which connects nodes on the ocean, rather we recalcu-
late the threshold e by taking into account only the nodes in
the spatio-temporal grid which are over land.

Having the values of temperatures for each grid point in
the dataset, a simple way to infer that two points have sim-
ilar dynamical evolution is through the Pearson correlation
coefficient between pairs of time series, which is given by

oo DL ENT)
JUT?) = @) (12) —(13))

where T; is the time series associated to a point ¢ in the
spatio-temporal grid and (X') means the average of the vari-
able X . Furthermore, we also remove the mean annual cycle
in order to avoid seasonal effects in the time series. In this
section, we describe the approach employed in our analysis.

We start with a fully connected network where each grid
point is a node and two nodes are connected through an
edge with an associated weight given by p;;. The fully con-
nected network can be studied by using weighted versions
of the characteristics presented in section 2.2 (cf. Boccaletti
et al., 2006 for a description of weighted measurements for
graphs). Nevertheless, we are only interested in connections
representing strong correlations. Hence, connections having
a correlation smaller than a given threshold € are discarded.
This leads to a network defined by the adjacency matrix A
whose elements are given by A;; = ©(p;; — €) — d;;, where
©(-) is the Heaviside function. The threshold e should be
chosen in order to keep the network edges that correspond to
strong correlation between time series, thus eliminating the
non-relevant ones (Tsonis et al., 2006; Tsonis and Swanson,
2008; Tsonis et al., 2008; Gozolchiani et al., 2008; Donges
et al., 2009a). Therefore, for all networks analysed in this
approach, the threshold € was chosen so that only 5% of the
connections are kept in the network. Without the constraint of
only first-neighbours connections, it is reasonable to expect
a much richer pattern of connectivity with, e.g., presence of
communities in the network, i.e., clusters of nodes that are
more connected inside these groups than external nodes to

)
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Fig. 2. (a) Degree k;; and (b) clustering coefficient c; obtained from
the network of temperature correlations.

the cluster. In the context of climate networks, the grouping

of nodes into communities was shown to be related to dif-
ferent climate patterns and to unveil different known climate 274
zones (Tsonis et al., 2011). 275
276
277
3 Results 278
279
From reference (Fan and Van den Dool, 2008) we know that 2so
the land surface temperature database is constructed by inter- zs1
polating recorded time series from stations spread over the zs
globe. In order to avoid interpolation effects, it is useful to2ss
analyze the spatial distribution of the stations that generate 2s
this database. Using data from (NGDC, 2009), in Fig. 1 we 2ss
show the stations location used to record the monthly average 2ss
temperature time series. As we can see, except the northeast 27
region of Brazil, South American is sparsely covered by sta- 2ss
tions, whereas North America and Europe are more densely 2ss
covered. Therefore, in order to eliminate any doubts whether 2s0
the observed patterns in the networks measurements are be- 291
ing affected by the interpolation or not, we turn our analysis 2e2
to regions with high density of stations, namely, the North 23
America region. 294
Applying the methodology described in Section 2.3, we 2ss
obtain the climate networks and extract the centrality mea- 26
surements for the region with the values of longitude 6 and 27
latitude ¢ ranging in the intervals —128° <8 < —60° and s
30° < ¢ < 70°, respectively. Our results are shown in Fig. 2. 2e

90°W
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Fig. 3. (a) Betweenness centrality b;; and (b) accessibility a; for
h = 3 steps obtained from the network of temperature correlations.

As we can see in Fig. 1, the region has stations approximately
uniformly distributed. Therefore, we can discard the hypoth-
esis that the area with high values for the degree in Fig. 2(a)
is due to interpolation effects. It is also interesting to note
that in Fig. 2(b) there are two distinct patterns in the clus-
tering coefficient field. While the eastern region has an al-
most uniform distribution for c;, the western region displays
a more irregular distribution. The same pattern is also fol-
lowed by the other centrality measurements. Figs. 3(a) and
(b) shows the accessibility and betweenness centrality fields,
respectively. Likewise, the patterns observed in the western
and eastern regions differ significantly, especially for the ac-
cessibility. It is important to note that, according to Figs. 2(a)
and 3(b), the regions taking low values of degree and accessi-
bility overlap significantly. This pattern cannot be interpreted
in a straightforward fashion, as the relevant correlation be-
tween degree and accessibility usually appears when the hier-
archical definition of the degree is taken into account (Viana
etal., 2012).

The topology of the climate network was further ana-
lyzed by identifying the natural topological communities.
The communities arising from the application of the eigen-
vector strategy (see (Newman, 2006)) is shown in Fig. 4. A
straightforward comparison of Figs. 2 and 4 reveals that the
large community located at the western region corresponds to
the nodes taking the lowest values of degree and accessibility
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Fig. 4. Community structure for the network constructed with the
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and 30° < ¢ < 70° of the temperature database. Grid-points col-
ored with the same color correspond to nodes belonging to the same
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334

(see Figs. 2(a) and 3(a)). As for the clustering coefficient,it is 335
irregularly distributed. 336
Fig. 5 displays the network communities and the reliefss
structure. Remarkably, the variations in the largest commu- 338
nity border in the west side of North America is followed by s
variations in the relief structure. Comparing Figs. 5 and 2,340
we notice that the contrast between the west and east region 3+
in the degree and clustering coefficient field is also observed s+
in the relief structure. More specifically, the regions present 343
very different patterns in the relief structure which is also s
revealed in the pattern of network measurements, suggesting 4
that with our methodology we may be able to quantify the in- 34
fluence of the landscape in the climate network organization. 347
348

349

350

4 Conclusions a5t

Despite being a recent field, climate networks have already *
been shown to provide valuable information about climate o
dynamics (Tsonis et al., 2006, 2008; Tsonis and Swan- s
son, 2008; Donges et al., 2009a,b; Gozolchiani et al., 2008; e
Tsonis and Roebber, 2004; Yamasaki et al., 2008). In this
study, we used the monthly land temperature records from
NCEP/NCAR reanalysis to define correlations between sta-
tions, which are then transformed into network connections
when they exceed a specified threshold. One important point 7
raised during our investigation was the effect of the spatial
distribution of stations on the resulting network. We found sss
that data pertaining to the region in which (—128°,30°) < ase
(0,¢) < (—60°,70°) should not suffer such effects, given its seo
almost uniform distribution of stations. One important topic ssi
to be studied in the future is the specific effect of spatial het- s
erogeneities in the sampled data on the formation of abnor-ses
mal, but most likely predictable, structures in the network. ses
In this study, we showed that the North America, when sss
modeled as a climate network, displays two regions with dis- sss

50°N [

40°N f

30°N

20°N

T 100°W

120°wW 110°w

Fig. 5. Boundaries of the communities obtained from the climate
networks. Note that the largest community coincides with a regular
relief profile.

tinct topological properties. We have found that the eastern
and western regions display striking differences of degree,
accessibility and clustering coefficient, which may be ex-
plained by the presence of communities arising from the cli-
mate network. More specifically, the eastern side was found
to be characterized by uniform values of centrality measure-
ments. Conversely, the western side was mainly character-
ized by an heterogeneous distribution of measurements val-
ues. The relationship between climate and relief was ana-
lyzed in the relief dataset provided by NOAA jointly with
the climate network data. Interestingly, we uncovered dy-
namics not detected by other traditional methods. The most
important pattern arising from the analysis was the observa-
tion that the topological community of the climate network
in the western region matched the region with peculiar relief
structure, suggesting a strong influence of the relief on the
climate dynamics.

Of paramount interest for future studies is to use other rel-
evant climate variables (e.g., humidity, wind, pressure) to un-
cover additional relationships between relief and climate, us-
ing the ideas developed in the climate networks field, as well
the boundary effects (Rheinwalt et al., 2012) of spatially em-
bedded networks.
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