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Abstract. In the last few years, the scientific community1

has witnessed an ongoing trend of using ideas developed in2

the study of complex networks to analyze climate dynam-3

ics. This powerful combination, usually called climate net-4

works, can be used to uncover non-trivial patterns of weather5

changes along the years. Here we investigate the tempera-6

ture network of North America region and show that two7

network characteristics, namely degree and clustering, have8

markedly differences between the Eastern and Western re-9

gions. We show that such differences are a reflection of the10

presence of a large network community in the western side of11

the continent. Moreover, we provide evidence that this large12

community is a consequence of the peculiar characteristics13

of the western relief of North America.14

15

1 Introduction16

Complex networks are powerful tools for describing the17

structure and functioning of a wide range of natural, tech-18

nological and social systems (da Fontoura Costa et al.,19

2011). Owing to the general framework that the network the-20

ory provides, a mathematical representation of such systems21

is straightforward, allowing not just the description of net-22

worked topologies, but also leading to a better comprehen-23

sion of dynamical processes in systems whose elements are24

connected in a non-trivial fashion (Boccaletti et al., 2006).25

In the past few years, complex networks have also been ap-26

plied in climate sciences, creating this way the new field27

of climate networks (Tsonis et al., 2006, 2008; Tsonis and28

Swanson, 2008; Donges et al., 2009a,b; Gozolchiani et al.,29

2008; Tsonis and Roebber, 2004; Yamasaki et al., 2008). Ac-30

cording to this paradigm, climate networks are formed by31

nodes, corresponding to spatial grid points in a given global32

climate data. These nodes are connected by edges, which33

correspond to statistical similarities between times series of34

given climate variables (e.g., temperature, relative humidity,35

precipitation) associated to each node in the network. Al-36

though this field is relative new in the network research, sev-37

eral results have been reported showing that network mea-38

surements can indeed give new important insights into cli-39

mate dynamics (Tsonis et al., 2006, 2008; Tsonis and Swan-40

son, 2008; Donges et al., 2009a,b; Gozolchiani et al., 2008;41

Tsonis and Roebber, 2004; Yamasaki et al., 2008; Rhein-42

walt et al., 2012; Mheen et al., 2013; Runge et al., 2014).43

For instance, by using degree centrality measurements of44

climate networks, researchers were capable of identifying45

highly connected nodes, which turned out to be related with46

the North Atlantic Oscillation. These results revealed that47

climate networks can exhibit small-world properties due to48

long-range edges (called teleconnections) connecting highly49

distant nodes (Tsonis et al., 2006, 2008). Moreover, the anal-50

ysis of the teleconnections unveiled by this framework has51

also shed light on the study of extreme climate events, such52

as the El Niño-Southern Oscillations (ENSO) (Tsonis and53

Swanson, 2008; Gozolchiani et al., 2008). More specifically,54

by constructing climate networks of the surface temperature55

field during El Niño and La Niña periods, it was found that56

ENSO has a strong impact on the stability of climate sys-57

tems, which is manifested as the decrease of the tempera-58

ture predictability during El-Niño years. It is worth noting59

that the application of concepts from complex network the-60

ory in climate sciences has brought new insights that could61

not be unveiled by using classical methods of climatology62

and statistics. Recently, by using cross-correlation and mu-63

tual information to construct climate networks and analyz-64

ing the betweenness centrality field (node centrality measure-65

ment based on shortest path lengths (Costa et al., 2007)), re-66

searches found wave-like structures that are related to sur-67

face ocean currents, detecting this way a backbone of signifi-68

cantly increased matter and energy flow in the global surface69

air temperature field (Donges et al., 2009a,b). Furthermore,70
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the authors also showed that these results cannot be achieved71

by using methods derived from multivariate analysis, such72

as principal component analysis (PCA) and singular spec-73

trum analysis (SSA) (Donges et al., 2009a). In this work, we74

extend the analysis of climate networks investigating the in-75

fluence of altitudes of the grid points on centrality measure-76

ments of the networks generated through similarities in tem-77

perature time series measured at the surface level. The main78

motivation for including the altitudes on the network model79

is the assumption that the flow of matter and energy can be80

affected by topographical barriers, leading to anomalies in81

the correlations between the time series of climate variables.82

Therefore, in order to uncover these phenomena and quan-83

tify the influence of the relief on the network correlations,84

for each node v we associate its geographical altitude hv with85

centrality measurements of the climate network, such as be-86

tweenness and clustering coefficient.87

We constructed climate networks allowing the existence of88

long-range connections. By detecting communities in the cli-89

mate networks, we found clusters that correspond to groups90

of nodes embedded in geographical areas of similar relief91

properties. Moreover, it was also found that the correlation92

patterns between centrality measurements and relief proper-93

ties vary according to the considered network community.94

Finally we point out a possible effect of time series inter-95

polation generated by stations in the degree and clustering96

coefficient fields of the networks.97

2 Materials and Methods98

2.1 Dataset description99

Throughout the analysis we used the following databases:100

(i) Monthly land temperature records from the National101

Center for Environmental Prediction/National Center for At-102

mospheric Research NCEP/NCAR (Kistler et al., 2001; Fan103

and Van den Dool, 2008) obtained from January 1948 to Jan-104

uary 2011. The dataset consists of a regular spatio-temporal105

grid with 0.5o of latitude and longitude resolution. Each grid106

point i has a temperature time series T i(t) associated, con-107

taining the time evolution of the monthly mean temperature.108

A visualization of stations employed in the analysis that orig-109

inated the database is shown in Fig. 1 (data provided by the110

NOAA, 2013).111

(ii) Relief dataset provided by National Geophysical Data112

Center (NGDC, 2009) and consisting of 1-arc minute reg-113

ular gridded area measuring land topography and ocean114

bathymetry.115

2.2 Complex networks measurements116

In order to seek for relationships between the climate and117

relief, we use network measurements related to centrality and118

symmetry of connections. The most simple of them, referred119

CAMS
GHCN

Fig. 1. Visualization of the stations used to interpolate the grid
points in the temperature database.

to as node degree, is given by120

ki =

N∑
j=1

Aij , (1)121

where Aij = 1 if nodes i and j are connected and Aij = 0122

otherwise. The degree is a simple way to study the local im-123

portance of a node. Concerning climate networks, the degree124

can be used to quantify how many points of the studied re-125

gion display a time series similar to a given point in the globe.126

In other words, nodes with large degrees are related to large127

regions of correlation.128

The clustering coefficient of a node is the probability that129

two of its neighbors are also connected in the network, and130

is given by (da Fontoura Costa et al., 2011)131

ci =
2T (i)

ki(ki− 1)
, (2)132

where T (i) is the number of triangles passing through i, or133

equivalently, the number of connections between neighbors134

of i. The clustering bears an interesting local information.135

If a given point of the globe is strongly correlated with two136

other points, the clustering quantifies how often these two137

points are also strongly correlated between themselves. The138

existence of regions taking low values of ci suggests that the139

propagation of climate changes occurs in a streamlined fash-140

ion in those regions. Conversely, large clustering is related to141

a more diffusive propagation.142

Another feature we study is betweenness centrality of a143

node. To define this measurement, consider the following no-144

tation. Let σst be the number of shortest paths from node s to145

node t (da Fontoura Costa et al., 2011). If σst(i) is the num-146

ber of such paths passing through node i, the betweenness147

centrality is given by (da Fontoura Costa et al., 2011)148

bi =
∑

s6=t6=i

σst(i)

σst
. (3)149

It gives information about global relationships in climate dy-150

namics. It is of great importance in quantifying if a node is151
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commonly used as a route for long-range correlations in the152

network (Donges et al., 2009a).153

A node can be central but still not communicate well with154

the rest of the network. For instance, a node that is connected155

to another with large degree can be regarded as being central156

in the network, but it has a strong dependence on its highly157

connected neighbor. The accessibility measurement quanti-158

fies the number of nodes effectively accessed after h steps,159

where the node accessed in the next step is chosen randomly.160

Formally, the accessibility is computed as161

ai =
1

Nh
i

exp

− N∑
j

Ph
ij logPh

ij

 , (4)162

where Ph
ij is the probability that a random walk starting at163

node i arrives at node j in h steps, Nh
i the number of reach-164

able nodes in h steps from node i and exp(·) is the expo-165

nential function (see, e.g., Viana et al., 2012 for a detailed166

explanation of this measurement).167

Real-world networks often display a modular structure,168

i.e., the presence of communities (Fortunato, 2010). The169

modular structure of a given network can be quantified by the170

measurement known as modularity, which is given by (New-171

man, 2003)172

Q=
1

2m

∑
ij

(
Aij −

kikj
2m

,

)
δ(Ci,Cj), (5)173

where m= 1/2
∑
Aij is the total number of edges, Ci is the174

community to which node i belongs and δ is the Kronecker175

delta. Once the partitioning of the nodes into communities176

is done, the modularity Q basically calculates the fraction177

of edges that connects nodes of the same community sub-178

tracting the fraction of these edges that we would expect to179

find in a random graph with the same degree sequence. Thus,180

eq. 5 provides a significance test of the obtained network par-181

titioning, which will be used to validate our results in the next182

sections.183

Since the modularity Q quantifies how good a given par-184

tition is, many methods intended to uncover communities185

in networks are based on the optimization of this measure-186

ment. Different strategies for the modularity optimization187

have been adopted in the literature such as simulated anneal-188

ing (Reichardt and Bornholdt, 2006; Guimera et al., 2004),189

greedy algorithms (Newman, 2004; Clauset et al., 2004) and190

extremal optimization (Duch and Arenas, 2005). Although191

these algorithms provide accurate results, most of them a192

have great computational cost. For this reason, we adopt the193

method proposed in (Newman, 2006) to obtain the commu-194

nity structure of climate networks. This method consists in195

mapping the modularity optimization in terms of the spec-196

trum of the so-called modularity matrix B defined as197

B = A− kkT

2m
, (6)198

where A is the adjacency matrix, m is as defined before in199

eq. 5 and k = [k1, ...,kN ]T the vector whose element ki is the200

degree of the i-th node. The spectral optimization of the mod-201

ularity Q has complexity of order O(N2 logN), which turns202

out to be faster than, for instance, simulated annealing and203

extremal optimization approaches, besides providing more204

accurate results for large networks (Newman, 2006; Fortu-205

nato, 2010).206

2.3 Climate networks207

Because we are most interested in the topological charac-208

teristics of climate networks and its correlations with re-209

lief heights, we consider now only the connected subgraph210

whose nodes are located inside a continent. Note that we211

do not simply extract the subgraph over land discarding any212

edges which connects nodes on the ocean, rather we recalcu-213

late the threshold ε by taking into account only the nodes in214

the spatio-temporal grid which are over land.215

Having the values of temperatures for each grid point in216

the dataset, a simple way to infer that two points have sim-217

ilar dynamical evolution is through the Pearson correlation218

coefficient between pairs of time series, which is given by219

ρij =
〈TiTj〉− 〈Ti〉〈Tj〉√

(〈T 2
i 〉− 〈Ti〉

2
)(
〈
T 2
j

〉
−〈Tj〉2)

, (7)220

where Ti is the time series associated to a point i in the221

spatio-temporal grid and 〈X〉 means the average of the vari-222

able X . Furthermore, we also remove the mean annual cycle223

in order to avoid seasonal effects in the time series. In this224

section, we describe the approach employed in our analysis.225

We start with a fully connected network where each grid226

point is a node and two nodes are connected through an227

edge with an associated weight given by ρij . The fully con-228

nected network can be studied by using weighted versions229

of the characteristics presented in section 2.2 (cf. Boccaletti230

et al., 2006 for a description of weighted measurements for231

graphs). Nevertheless, we are only interested in connections232

representing strong correlations. Hence, connections having233

a correlation smaller than a given threshold ε are discarded.234

This leads to a network defined by the adjacency matrix A235

whose elements are given by Aij = Θ(ρij − ε)− δij , where236

Θ(·) is the Heaviside function. The threshold ε should be237

chosen in order to keep the network edges that correspond to238

strong correlation between time series, thus eliminating the239

non-relevant ones (Tsonis et al., 2006; Tsonis and Swanson,240

2008; Tsonis et al., 2008; Gozolchiani et al., 2008; Donges241

et al., 2009a). Therefore, for all networks analysed in this242

approach, the threshold ε was chosen so that only 5% of the243

connections are kept in the network. Without the constraint of244

only first-neighbours connections, it is reasonable to expect245

a much richer pattern of connectivity with, e.g., presence of246

communities in the network, i.e., clusters of nodes that are247

more connected inside these groups than external nodes to248
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(a)

(b)

Fig. 2. (a) Degree ki; and (b) clustering coefficient ci obtained from
the network of temperature correlations.

the cluster. In the context of climate networks, the grouping249

of nodes into communities was shown to be related to dif-250

ferent climate patterns and to unveil different known climate251

zones (Tsonis et al., 2011).252

3 Results253

From reference (Fan and Van den Dool, 2008) we know that254

the land surface temperature database is constructed by inter-255

polating recorded time series from stations spread over the256

globe. In order to avoid interpolation effects, it is useful to257

analyze the spatial distribution of the stations that generate258

this database. Using data from (NGDC, 2009), in Fig. 1 we259

show the stations location used to record the monthly average260

temperature time series. As we can see, except the northeast261

region of Brazil, South American is sparsely covered by sta-262

tions, whereas North America and Europe are more densely263

covered. Therefore, in order to eliminate any doubts whether264

the observed patterns in the networks measurements are be-265

ing affected by the interpolation or not, we turn our analysis266

to regions with high density of stations, namely, the North267

America region.268

Applying the methodology described in Section 2.3, we269

obtain the climate networks and extract the centrality mea-270

surements for the region with the values of longitude θ and271

latitude φ ranging in the intervals −128o ≤ θ ≤−60o and272

30o ≤ φ≤ 70o, respectively. Our results are shown in Fig. 2.273

(a)

(b)

Fig. 3. (a) Betweenness centrality bi; and (b) accessibility ai for
h= 3 steps obtained from the network of temperature correlations.

As we can see in Fig. 1, the region has stations approximately274

uniformly distributed. Therefore, we can discard the hypoth-275

esis that the area with high values for the degree in Fig. 2(a)276

is due to interpolation effects. It is also interesting to note277

that in Fig. 2(b) there are two distinct patterns in the clus-278

tering coefficient field. While the eastern region has an al-279

most uniform distribution for ci, the western region displays280

a more irregular distribution. The same pattern is also fol-281

lowed by the other centrality measurements. Figs. 3(a) and282

(b) shows the accessibility and betweenness centrality fields,283

respectively. Likewise, the patterns observed in the western284

and eastern regions differ significantly, especially for the ac-285

cessibility. It is important to note that, according to Figs. 2(a)286

and 3(b), the regions taking low values of degree and accessi-287

bility overlap significantly. This pattern cannot be interpreted288

in a straightforward fashion, as the relevant correlation be-289

tween degree and accessibility usually appears when the hier-290

archical definition of the degree is taken into account (Viana291

et al., 2012).292

The topology of the climate network was further ana-293

lyzed by identifying the natural topological communities.294

The communities arising from the application of the eigen-295

vector strategy (see (Newman, 2006)) is shown in Fig. 4. A296

straightforward comparison of Figs. 2 and 4 reveals that the297

large community located at the western region corresponds to298

the nodes taking the lowest values of degree and accessibility299
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Fig. 4. Community structure for the network constructed with the
grid points with θ and latitude φ in the intervals −128o ≤ θ ≤−60o

and 30o ≤ φ≤ 70o of the temperature database. Grid-points col-
ored with the same color correspond to nodes belonging to the same
network community.

(see Figs. 2(a) and 3(a)). As for the clustering coefficient,it is300

irregularly distributed.301

Fig. 5 displays the network communities and the relief302

structure. Remarkably, the variations in the largest commu-303

nity border in the west side of North America is followed by304

variations in the relief structure. Comparing Figs. 5 and 2,305

we notice that the contrast between the west and east region306

in the degree and clustering coefficient field is also observed307

in the relief structure. More specifically, the regions present308

very different patterns in the relief structure which is also309

revealed in the pattern of network measurements, suggesting310

that with our methodology we may be able to quantify the in-311

fluence of the landscape in the climate network organization.312

313

4 Conclusions314

Despite being a recent field, climate networks have already315

been shown to provide valuable information about climate316

dynamics (Tsonis et al., 2006, 2008; Tsonis and Swan-317

son, 2008; Donges et al., 2009a,b; Gozolchiani et al., 2008;318

Tsonis and Roebber, 2004; Yamasaki et al., 2008). In this319

study, we used the monthly land temperature records from320

NCEP/NCAR reanalysis to define correlations between sta-321

tions, which are then transformed into network connections322

when they exceed a specified threshold. One important point323

raised during our investigation was the effect of the spatial324

distribution of stations on the resulting network. We found325

that data pertaining to the region in which (−128o,30o)≤326

(θ,φ)≤ (−60o,70o) should not suffer such effects, given its327

almost uniform distribution of stations. One important topic328

to be studied in the future is the specific effect of spatial het-329

erogeneities in the sampled data on the formation of abnor-330

mal, but most likely predictable, structures in the network.331

In this study, we showed that the North America, when332

modeled as a climate network, displays two regions with dis-333

Fig. 5. Boundaries of the communities obtained from the climate
networks. Note that the largest community coincides with a regular
relief profile.

tinct topological properties. We have found that the eastern334

and western regions display striking differences of degree,335

accessibility and clustering coefficient, which may be ex-336

plained by the presence of communities arising from the cli-337

mate network. More specifically, the eastern side was found338

to be characterized by uniform values of centrality measure-339

ments. Conversely, the western side was mainly character-340

ized by an heterogeneous distribution of measurements val-341

ues. The relationship between climate and relief was ana-342

lyzed in the relief dataset provided by NOAA jointly with343

the climate network data. Interestingly, we uncovered dy-344

namics not detected by other traditional methods. The most345

important pattern arising from the analysis was the observa-346

tion that the topological community of the climate network347

in the western region matched the region with peculiar relief348

structure, suggesting a strong influence of the relief on the349

climate dynamics.350

Of paramount interest for future studies is to use other rel-351

evant climate variables (e.g., humidity, wind, pressure) to un-352

cover additional relationships between relief and climate, us-353

ing the ideas developed in the climate networks field, as well354

the boundary effects (Rheinwalt et al., 2012) of spatially em-355

bedded networks.356
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