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Abstract. Recurrence plot based recurrence networks are an
approach to analyze time series using complex networks the-
ory. In both approaches, recurrence plots and recurrence net-
works, a threshold to identify recurrent states is required. The
selection of the threshold is important in order to avoid bias5

of the recurrence network results. In this paper we propose
a novel method to choose a recurrence threshold adaptively.
We show a comparison between constant threshold and adap-
tive threshold cases to study period-chaos and even period-
period transitions in the dynamics of a prototypical model10

system. This novel method is then used to identify climate
transitions from a lake sediment record.

1 Introduction

Recurrence based approaches have taken an important place15

in dynamical systems analysis. Related approaches have
been used for several decades. The basis of this analysis is
finding recurrent points on a trajectory in the phase space
of a dynamical system. The first recurrence based analysis
method was introduced by Poincaré as the method of the first20

recurrence times (Poincaré, 1890). A Poincaré recurrence is
the sequence of time intervals between two visits of a tra-
jectory to the same interval (or volume, depending on the
dimension of the trajectories).

Among the different approaches to investigate dynamical25

properties by recurrence, the recurrence plot (RP) is a mul-
tifaceted and powerful approach to study different aspects of
dynamical systems. RPs were first introduced as a visualiza-
tion of recurrent states of phase space trajectories (Eckmann
et al., 1987), but then enriched by different quantification30

techniques for characterizing dynamical properties, regime
transitions, synchronization, etc. (Marwan et al., 2007). In
the study of complex systems, one of the most important
issues is finding dynamical transitions or regime changes.
Transitions in the dynamics can be detected by different RP35

based measures, which in general are powerful to study com-
plex, real-world systems (Trulla et al., 1996; Marwan et al.,
2002; Donges et al., 2011). Examples of their successful
application in real-world systems can be found in life sci-
ence (Riley et al., 1999; Marwan et al., 2002; Neuman et al.,40

2009; Carrubba et al., 2012), Earth science (Marwan et al.,
2003; Matcharashvili et al., 2008; Donges et al., 2011), as-
trophysics (Asghari et al., 2004; Zolotova et al., 2009), and
others (Marwan, 2008).

The measures defined by the RP framework, called re-45

currence quantification analysis (RQA), are based on point
density and on the length of diagonal and vertical line struc-
tures visible in the RP, being regarded as alternative measures
to quantify the complexity of physical systems. In order to
uncover their time-dependent behaviour, RQA measures are50

often computed by applying a sliding window on the time
series, which then can be used to identify dynamical transi-
tions, such as period-chaos transitions (Trulla et al., 1996) or
chaos-chaos transitions (Marwan et al., 2002).

Another popular method to analyse complex systems is55

the complex network approach (Watts and Strogatz, 1998;
Boccaletti et al., 2006). Complex network measurements are
useful to investigate and understand the complex behaviour
of real world systems such as social, computer (Newman,
2002), or brain networks (Singer, 1999). The adjacency ma-60

trix of a complex network explains the structure of the sys-
tem, thus, determines the links between the nodes of a net-
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work. For unweighted and undirected networks, the adja-
cency matrix is binary and symmetric, hence very similar
to a RP. In our previous work, we have shown that time se-65

ries can be analysed by complex networks by identifying the
RP by the adjacency matrix of a network (Marwan et al.,
2009; Donner et al., 2011), forming so-called recurrence net-
works (RNs). Complex network measures applied on RNs
have been used to investigate real-world systems such as the70

climate system (Donges et al., 2011) or the cardio-respiratory
system (Ramı́rez Ávila et al., 2013). RNs have been shown
to be more sensitive for the detection of periodic-chaos or
chaos-periodic regime transitions than some of the standard
RQA measures (Zou et al., 2010; Marwan, 2011).75

Although recurrence based methods are powerful tools to
study complex systems, they come with an important, non-
trivial issue (Marwan, 2011). To identify recurrences, usually
a spatial distance (or volume, depending on the dimension of
the system) in the phase space is used and a sufficient close-80

ness between the trajectories is determined by applying a so-
called recurrence threshold ε to the distances (Marwan et al.,
2007; Donner et al., 2010). Several approaches for selecting
a meaningful threshold value has been suggested (Marwan
et al., 2007; Schinkel et al., 2008; Donges et al., 2012). Of85

particular interest are such methods that help to overcome
the problem of sliding window based analyses of systems
with varying amplitude fluctuations (as coming from differ-
ent dynamical regimes or non-stationarities), e.g., based on
normalizing time series or fixing recurrence density. How-90

ever, in real-world applications, time series are usually not
smooth all the time. When considering the time series by a
RN representation, extreme points (very high jumps or falls
in the fluctuation of time series) in the time series could break
the connected components in the network since the distance95

between an extreme point and other points would be larger
than the threshold value. The normalization method would
then result in non-optimal recurrence thresholds biasing the
recurrence analysis.

In this work we will suggest a novel method of an adaptive100

threshold selection basing on the network’s spectral proper-
ties (Boccaletti et al., 2006). We will present a comparison
between the constant and the adaptive threshold approach
for detecting certain regime transitions (chaos to periodic or
periodic to chaos). Finally we will demonstrate the novel ap-105

proach for analyzing lake sediment based palaeoclimate vari-
ation.

2 Recurrence plots, recurrence networks and the adap-
tive threshold

In the m-dimensional phase space reconstruction of a time110

series, a state is considered to be recurrent if its state vector
falls into the ε-neighbourhood of another state vector. For-
mally, for a given trajectory xi (i= 1, . . . ,N,xi ∈ Rm), the

recurrence plot R is defined as

Ri,j(ε) = Θ(ε−‖xi−xj‖), i, j = 1, . . . ,N, (1)115

where N is the trajectory length, Θ(·) is the Heaviside func-
tion, and ‖·‖ is the norm of the adopted phase space (Marwan
et al., 2007). Thus, Ri,j = 1 if states at times i and j are re-
current, and Ri,j = 0 otherwise. The trajectory in the phase
space can be reconstructed via time delay embedding from a120

time series {ui}Ni=1 (Packard et al., 1980)

xi = (ui,ui+τ , ...,ui+τ(m−1)), (2)

wherem is the embedding dimension and τ is the embedding
delay. The embedding dimension m can be found by false
nearest neighbours and the delay τ by mutual information or125

auto-correlation (Kantz and Schreiber, 1997).
The main diagonal of the RP, Ri,i = 1, represents the line

of identity (LOI). As we have mentioned the RP is a symmet-
ric, binary matrix. The structures formed by line segments,
which are parallel to the LOI in a RP, characterize typical dy-130

namical properties. We observe homogeneously distributed
recurrence points if the dynamics is white noise. If the sys-
tem is deterministic, diagonal line segments which are par-
allel to the LOI will dominate. The dynamics is related to
the length of the diagonal line segments: chaotic dynamics135

causes mainly short line segments, but contrary, regular (pe-
riodic) dynamics causes long line segments. The RQA quan-
tifies this relation and can be used to detect transitions in the
system’s dynamics (Trulla et al., 1996; Marwan et al., 2007).

Recurrence networks are based on the recurrence matrix,140

Eq. (1) which is aN×N matrix whereN is the length of the
phase space trajectory (the number of time steps). We now
consider these time steps as nodes of a network; if the nodes
are sufficiently close to each other, in other words, if the
space vectors are neighbours, there is a link between them.145

In network theory, connections between network nodes can
be described with the adjacency matrix A, with Ai,j = 1 if
there is a link between nodes i and j, otherwise Ai,j = 0. To
obtain the adjacency matrix from the recurrence matrix, we
discard self-loops in the recurrence matrix, i.e.,150

Ai,j =Ri,j − δi,j , (3)

where δi,j is the Kronecker delta (δi,j = 1 if i= j, otherwise
δi,j = 0).

The number of links at the ith node (the degree) is given by
ki =

∑
jAij . In this paper we use the eigenvalue spectrum155

of the Laplacian matrix L to find an adaptive threshold εc,
where Li,j = δi,jki−Ai,j .

The crucial point in the paper is choosing the adaptive
threshold for calculating the RN. A threshold for recurrence
based methods should be sufficiently small (Marwan et al.,160

2007; Donner et al., 2010; Donges et al., 2012). Too small ε
cause very sparsely connected RN with many isolated com-
ponents; too large ε results in an almost completely con-
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nected network. For data sets which are not smooth, choos-
ing an actually reasonable small threshold could neverthe-165

less result in unconnected recurrence network components.
These unconnected components would cause problems for
some complex network measures, since some of them need
a connected network to be computed for the entire network.
For example, even if we have just one node that is not con-170

nected to the network, the average path length will be al-
ways infinite for the entire network. An even more impor-
tant motivation for avoiding isolated components in the RN
is that the RN provides a large amount of information about
the dynamics of the underlying system although it contains175

only binary information. This has been demonstrated by re-
constructing time series from RPs (Thiel et al., 2004; Hirata
et al., 2008). The condition for reconstructing a time series
from a RP is that all points are connected by their neighbor-
hoods, i.e., there are no isolated components. By applying180

recurrence measures we would like to quantify the dynam-
ics encoded by the RN. This can be ensured by the above
mentioned condition.

To find a sufficiently small threshold ε that fulfills the de-
sired condition of connected neighborhoods, we will use185

the connectivity properties of the network. In particular, we
choose the value for ε that is the smallest one for the RN to
be connected. In order to find such an adaptive threshold, we
start from very small values of the threshold and vary the ε
parameter until we get a connected network. In order to apply190

this approach efficiently, we use iterative bisection method in
the simulations. The connectivity of a network can be mea-
sured by the second smallest eigenvalue λ2 of the Laplacian
matrix. If the network is connected, λ2 > 0 (Boccaletti et al.,
2006). We choose the adaptive threshold value as the min-195

imum value of the sequence of thresholds T = Ti,Ti+1, . . .
when the second minimum eigenvalue λ2 is positive,

εc = min(T) with T = {Ti |∀i : λ2(Ti)> 0}. (4)

Values ε below the critical value εc are indicating the ex-
istence of unconnected components in the RN (Fig. 1). After200

that critical threshold, λ2 becomes positive and if we still in-
crease the threshold the connectivity of the RN is increasing.
By choosing the critical point εc as the recurrence thresh-
old, we ensure that the RN will be connected by the smallest
threshold possible.205

3 Applications

3.1 Logistic map

As a first application we compare some RN measures for us-
ing first the adaptive and then constant threshold approach by
analysing the logistic map,210

xi+1 = axi(1−xi). (5)

It is one of the most popular iterated maps which has differ-
ent regimes for different control parameter a. The detection

𝛜c

Fig. 1. Variation of the second smallest eigenvalue of the Laplacian
λ2 due to changing threshold value, using the logistic map as an
illustrative example (control parameter a= 4.0). λ2 = 0 for thresh-
olds below a critical value εc, indicating the existence of uncon-
nected components in the RN. For ε > εc, there are no unconnected
components in the RN anymore. The adaptive threshold value for
this time series is εc ≈ 0.19.

of the transitions of the logistic map between these differ-
ent regimes was studied with RP and RN previously(Trulla215

et al., 1996; Marwan et al., 2009). The logistic map shows
interesting dynamics in the range of the control parame-
ter a ∈ [3.5,4.0], which is studied here with a step size of
∆a= 0.0005, there occur e.g., periodic and chaotic regimes,
bifurcations, inner and outer crises. We compute a time series220

of length N = 5000 for each value of a. In order to discard
transients, we delete the first 2000 values, resulting in time
series consisting of 3000 values that have been used for all
analysis of the logistic map in this paper.

As the constant threshold selection method, we use the re-225

currence rate method to choose a threshold value: a threshold
is selected in such a way that the recurrence rate RR is con-
stant even for different time series with different dynamics
(e.g., different values of a) (Marwan et al., 2007). In this pa-
per, we use RR= 5% arbitrarily for further analysis.230

Now we compute the RNs by using the given threshold se-
lection techniques ε and εc for each control parameter a. We
then calculate transitivity T and betweenness centrality BC
as the complex networks measures in order to detect the tran-
sitions from periodic to chaotic, chaotic to periodic states, bi-235

furcations and inner(outer)-crisis. The network transitivity is
given by,

T =

∑
i,j,kAi,jAj,kAk,i∑
i,j,kAk,iAk,j

. (6)

The average betweenness centrality of network,

BC =
1

N

∑
v

∑
s6=v 6=t

σst(v)

σst
, (7)240

where σst is the total number of shortest paths from node
s to node t and σst(v) is number of those paths that pass
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Fig. 2. (a) Lyapunov exponent and transitivity using (b) adaptive
threshold and (c) constant threshold for the logistic map. Dashed
lines show certain bifurcation points before the chaotic regime.

through v. As mentioned in the previous chapter, not all com-
plex network measures can be applied to a disconnected net-
work. However, it would cause problems for computing the245

measures on RNs calculated by using the constant threshold
technique, since the network could be disconnected. For in-
stance, to compute the average shortest path length or assor-
tativity for an entire network, the network must be connected.
Disconnected nodes of the network could be discarded from250

the calculation, but in this case, we would lose information.
In the adaptive threshold case, we could calculate all these
measurements on the entire network since the selection of
the adaptive threshold ensures that the recurrence network is
connected.255

Both threshold selection methods could detect transi-
tions between dynamical regimes (periodic-chaos or chaos-
periodic). Transitivity gives large values for the chaotic
regime and small values for periodic. In the betweenness
centrality case, it is contrary to transitivity, large values for260

periodic and small values for the chaotic regimes. Although
the constant threshold selection detects the periodic win-
dows (chaos-period transitions) more sharply than the adap-
tive threshold case, the transitivity and betweenness central-
ity for the constant threshold selection case (in the constant265

threshold case, as general, the threshold arbitrarily chosen
by RR= 5%), Tconstant and BCconstant, cannot distinguish be-
tween different periodic dynamics, i.e., cannot detect cer-
tain bifurcation points such as for period doublings, e.g.,
at a≈ 3.544,3.564,3.84. Contrary, in the adaptively chosen270

threshold case, Tadaptive and BCadaptive are sensitive to these
bifurcations (Figs. 2, 3). Thus, using the adaptive threshold
allows also the detection of period-period transitions (i.e., the
study of bifurcation points where the maximal Lyapunov ex-
ponent keeps non-positive).275

Fig. 3. (a) Lyapunov exponent and betweenness centrality using (b)
adaptive threshold and (c) constant threshold for the logistic map.
Dashed lines show certain bifurcation points before the chaotic
regime.

3.2 Application to palaeoclimate record

The study of palaeoclimate variation helps in understanding
and evaluating possible future climate change. Lake sedi-
ments provide valuable archives of past climate variations.

In the following we will focus on a well dated high res-280

olution climate archive from palaeolake Lisan located be-
neath the archaeological site of Massada in the near East
(Prasad et al., 2004, 2009). The sediments from the Upper
Member were deposited (26− 18 cal ka BP) when the lake
reached its highest stands (Bartov et al., 2003; Torfstein et al.,285

2013). The sedimentary sequence contains varves compris-
ing seasonally deposited primary (evaporitic) aragonite and
silty detritus (Prasad et al., 2004). The pure aragonite sub-
laminae were precipitated from the upper layer of the lake
during summer evaporation. Their formation requires inflow290

of HCO−3 ions into the lake from the catchment area during
winter floods (Stein et al., 2003) that also bring in silty de-
trital material. One detrital and overlying aragonite sublami-
nae constitute a varve. Previous studies (Prasad et al., 2004;
Torfstein et al., 2013) indicate that small ice-rafting events295

(denoted as a, b, c, and d), as well as prominent Heinrich
events in the North Atlantic, are associated with the Eastern
Mediterranean arid intervals. The study of seasonal sublami-
nae yields evidence of decadal to century scale arid events
that correlate with cooler temperatures at higher latitudes.300

Analyses in the frequency domain indicate the presence of
periodicities centered at 1500 yr, 500 yr, 192 yr, 139 yr, 90 yr,
and 50−60 yr, suggesting a solar forcing on climate (Prasad
et al., 2004).

We use the yearly sampled pure aragonite proxy (CaCO3)
from the palaeolake Lisan for our RN analysis (Fig. 4a). We
use a time delay embedding with dimension m= 3 and de-
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lay τ = 2 (these parameters have been computed by standard
procedure using false nearest neighbours and mutual infor-
mation (Packard et al., 1980; Kantz and Schreiber, 1997))
for reconstructing the phase space. To detect dynamical tran-
sitions in the palaeoclimate data, we adopt a sliding window
of W data points with a step size of ∆W . RNs are computed
for each window of the time series one by one. We have cho-
sen a sampling window size of ∆T = 100 yr with 90% over-
lap corresponding to a time window size of W ≈ 100 data
points (since there are some gaps in the data, it is not ex-
actly 100). The time series’ length is N = 7665 and the total
number of the windows analysed is

N −W
∆W

≈ 755.

Transitivity and betweenness centrality is then calculated305

within these windows (Fig. 4b and c). As we have shown
for the logistic map, transitivity and betweenness centrality
are both sensitive to detect transitions. Larger values of tran-
sitivity T refer to regular behaviour, whereas smaller values
to more irregular dynamics in the considered window of the310

time series.
The grey shaded horizontal band in Fig. 4b, c is the con-

fidence interval of the network measures. We apply a rather
simple test in order to see whether the characteristics of the
dynamics at a certain time statistically differs from the gen-315

eral characteristics of the dynamics. In order to apply this
test, we use the following approach. We create surrogate data
segments of lengthW by drawing data points randomly from
the entire time series and we compute the RN and the net-
work measures from such a surrogate segment. We repeat320

this 10,000 times and have an empirical test distribution of
transitivity T and betweenness centrality BC. A confidence
interval is then estimated from these distributions by their
0.05 and 0.95 quantiles.

Previous studies (Prasad et al., 2004) had identified multi-325

ple climate fluctuations in the varved Lisan record and corre-
lated them with the Greenland oxygen isotope data (indica-
tive of temperature changes, (Stuiver and Grootes, 2000))
and ice rafting events in the north Atlantic (Bond et al.,
1997). The blue and orange vertical bars in Fig. 4 delineate330

periods of cooling and warming respectively in the higher lat-
itudes that resulted in drier and wetter episodes in the eastern
Mediterranean.

The network measures T and BC both indicate well
abrupt transitions (Fig. 4b, c). In particular for T , the values335

jump between high and low values. T reveals epochs of sig-
nificantly low values at around 25.8–25.6, 25.2–25.1, 24.3–
24.2, 24.0–23.9, 22.8–22.6, 22.3–22.1, 21.5–21.1, 21.7,
20.6–20.5, 20.1–19.9, 19.8–19.6, and 19.3–18.9 cal ka BP.
The periods 25.8–25.6, 22.3–22.1, 21.5–21.1, and 19.3–340

18.9 cal ka BP correspond to the known Bond events d, c,
b, and a, and the epoch between 24.3 and 23.9 cal ka BP co-
incides with the Heinrich H2 event. During the interstadial
peaks IS2 at 23.8–23.7 and 23.3–23.2 cal ka BP, T shows

significant high values, almost reaching the value one. BC345

exhibits a rather similar behavior of abrupt transitions like T ,
but with opposite sign. A general observation is that low val-
ues in T can be found during dry but high values during wet
regimes, and that such regimes change abruptly.

A high transitivity value indicates a more regular deposi-350

tion of aragonite, and, thus, a more regular, or even periodic
climate variability. This could be an indication for a domi-
nant role of the (more or less periodic) solar forcing via its
influence on the temperature in the higher latitudes. During
phases of a colder North Atlantic, the solar forcing become355

less important but regional climate effects more important
and dominating, causing a more complex, irregular climate
variability, finally indicated by low values of T .

Combining the maxima of T and minima of BC, we can
identify the above mentioned periods of non-regular climate360

dynamics. Most of these periods correspond to cold events,
e.g., the Bond events and Heinrich event, and the found Lisan
lake events L3 till L13 (Prasad et al., 2004). Several regular
periods can be identified, some of them coinciding with the
warm period during the interstadial IS2. Few remaining pe-365

riods of high or low regularity have not yet been identified in
the literature so far and call for further investigation.

T
BC

₃

a b c dH2IS2 IS2

L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

Time (cal ka BP)

Fig. 4. (a) Aragonite (CaCO3) record from palaeolake Lisan, (b)
transitivity, and (c) betweenness centrality results of RN using the
adaptive threshold. Abrupt changes in T and BC indicate transi-
tions between different climate regimes. Dry events in Lake Lisan
(cooling of the higher latitudes) are marked by blue bars and two
interstadial peaks (warming) by orange bars. The gray shaded band
is the 90% confidence interval for the networks measures.

The abrupt changes in T are available due to the adap-
tive threshold. By using a constant threshold, T varies only
slowly and more gradual. Defining the time points of the cli-370

mate regime shifts becomes more difficult in this case.
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4 Conclusions

We have represented a novel method to chose a recurrence
threshold adaptively and compared with the constant thresh-
old selection technique. The selection of recurrence thresh-375

olds for recurrence plots and recurrence networks is a crucial
step for these techniques. So far, the threshold had to be cho-
sen arbitrarily, taking into account different criteria and ap-
plication cases as well as requiring some expertise. Here we
have proposed a novel technique to determine such a thresh-380

old value automatically depending on the time series. Such
adaptive threshold is directly derived from the topology of
the recurrence network. It is selected in such a way that the
recurrence network does not have unconnected components.
We have discussed transitivity and betweenness centrality385

measures of the complex network approach. Both measures
are related to the regularity of the dynamics.

Moreover, the proposed threshold selection can also be
useful for the recurrence quantification analysis. A system-
atic investigation of the different threshold selections re-390

mains future work.
We have compared the novel adaptive threshold selection

with the arbitrarily selected threshold by applying them to
the logistic map. Although both methods distinguish the dy-
namical regimes clearly, the adaptively chosen threshold ap-395

proach detects much more bifurcations, in particular such as
period doubling. Such bifurcations are important characteris-
tics of the dynamical systems, since these bifurcations route
to chaos from periodicity.

Moreover, we have used our approach to investigate a400

palaeoclimate proxy record from the palaeolake Lisan rep-
resenting the climate variability in the near East between 27
and 18 cal ka BP. Both transitivity and betweenness central-
ity measures clearly identified transitions between wet and
dry (and vice versa) periods by an abrupt decrease of dy-405

namical regularity, perhaps due to a reduced solar influence.
Our method identified some transitions which have not been
know so far from the literature and require further investiga-
tion, e.g., by analyzing other proxy records from this region.
By choosing the adaptive threshold, we have been able to410

identify the transitions more clearly than by using the arbi-
trary selected threshold approach.
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