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Abstract

An analytical theory is presented to predict Horton laws for five Hydraulic-Geometric
(H-G) variables (stream discharge Q, width W , depth D, velocity U , slope S, and fric-
tion n′). The theory builds on the concept of dimensional analysis, and identifies six
independent dimensionless River-Basin numbers. We consider self-similar Tokunaga5

networks and derive a mass conservation equation in the limit of large network order
in terms of Horton bifurcation and discharge ratios. It is applied to obtain self-similar
solutions of type-1 (SS-1), and predict Horton laws for width, depth and velocity as
asymptotic relationships. Exponents of width and the Reynold’s number are predicted.
Assuming that SS-1 is valid for slope, depth and velocity, corresponding Horton laws10

and the H-G exponents are derived. The exponent values agree with that for the Opti-
mal Channel Network (OCN) model, but do not agree with values from three field exper-
iments. The deviations are substantial, suggesting that H-G in network does not obey
optimality or SS-1. It fails because slope, a dimensionless River-Basin number, goes
to 0 as network order increases, but, it cannot be eliminated from the asymptotic limit.15

Therefore, a generalization of SS-1, based in self-similar solutions of Type-2 (SS-2) is
considered. It introduces two anomalous scaling exponents as free parameters, which
enables us to show the existence of Horton laws for channel depth, velocity, slope and
Manning’s friction. The Manning’s friction exponent, y , is predicted and tested against
observed exponents from three field studies. We briefly sketch how the two anomalous20

scaling exponents could be estimated from the transport of suspended sediment load
and the bed load. Statistical variability in the Horton laws for the H-G variables is also
discussed. Both are important open problems for future research.

1 Introduction

Horton (1945) first discovered Horton laws in quantitative geomorphology with the aid25

of maps. The original motivation was to define stream size based on a hierarchy of
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tributaries. The most common method for defining a spatial scale in a hierarchical
branched network is the method of Horton–Strahler ordering, or Strahler ordering for
short, because Strahler (1952, 1957) modified the ordering system that Horton had
introduced. Strahler ordering assigns, ω = 1 to all the unbranched streams. They con-
tain the highest level of spatial resolution for a network and thereby define a spatial5

scale. Continuing downstream through the network, where two streams of identical or-
der ω meet, they form a stream of order ω+1. Where two streams of different orders
meet, the downstream channel is assigned the higher of the two orders. This contin-
ues throughout the network, labeling each stream, and ending with the stream of order
Ω. By definition, any network contains only one stream of order Ω called the network10

order. Strahler ordering defines a one-to-one map under pruning, i.e., if the streams
of order 1 are pruned and the entire tree is renumbered, the order 2 streams identi-
cally become the new order 1 streams, the order 3 streams become order 2, and so
on throughout the network. The order of the entire network decreases by one. This is
a necessary condition for defining self-similarity for a hierarchical branched network.15

Strahler ordering led to the discovery of the “Horton laws of drainage composition”.
Often referred to simply as the Horton laws, the most common of these laws include
a relationship between stream orders and stream numbers. Similar relationships are
observed for lengths, slopes, and areas. These are not formal laws as they have not
been proved from first principles, however, they are widely observed in real river net-20

works. The most famous of the Horton’s laws is the law of stream numbers for Nω,
denoting the number of streams of order ω in a network of order Ω. It is traditionally
written as
Nω

Nω+1
= RB, 1 ≤ω ≤Ω. (1)

The number RB is called the bifurcation ratio. Observations from real river networks25

show a limited range of RB values between three and five. The Strahler ordering and the
Horton laws concepts had a big impact to model growth of plants, and other hierarchical
biological structures such as animal respiratory and circulatory systems, in the order
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of register allocation for compilation of high level programming languages and in the
analysis of social networks (Jarvis and Woldenberg, 1984; Pries and Secomb, 2011;
Viennot and Vauchaussade de Chaumont, 1985; Park, 1985; Horsfield, 1980; Borchert
and Slade, 1981; Berry and Bradley, 1976). The widespread appearance of Horton
laws suggests that perhaps a “fundamental principle” underlies them. Indeed, recent5

research has shown that Horton laws arise in “self-similar networks”, which is a form
of scale invariance. Theoretical river network models based in self-similarity have been
developed that prove Horton laws are asymptotic relations, as cited in Sect. 2. Horton
laws as asymptotic relations in a self-similar network serve as the foundation for the
theory presented in this paper.10

In a classic paper, Leopold and Miller (1956), discovered that channel discharge
varies as a function of drainage area as a power law, Q = kAc. At the time, the Hor-
ton law for drainage area was known (Jarvis and Woldenberg, 1984). They tested the
Horton law for discharge, and asserted that the Horton laws hold for the entire suite of
hydraulic-geometric (H-G) variables as functions of discharge, e.g., width, depth, veloc-15

ity, slope, channel roughness, and sediment transport. Until this paper was published,
the Horton laws had been discovered for only the topologic and geometric variables
(Jarvis and Woldenberg, 1984). The H-G relations in river networks followed the earlier
pioneering work on “at-a-station” (temporal) and downstream (spatial) H-G relations
(Leopold and Maddock, 1953). By extending the Horton laws to H-G variables, the20

Leopold and Miller (1956) paper showed how river basin geomorphology, hydrology
and channel hydraulics are linked. Consequently, it opened a new door to understand-
ing how the geometry, statistics and dynamics in river networks are mutually coupled on
many spatial scales, which has far-reaching implications for understanding and mod-
eling river flows and sediment transport in river networks. This major objective has25

not been realized because the theoretical underpinning of the Horton laws and the
H-G exponents in channel networks has remained elusive. It is a fundamental, long-
standing open problem in Hydro-geomorphology. We develop an analytical theory to
predict Horton relationships for five H-G variables (stream discharge Qω, width Wω,
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depth Dω, velocity Uω, slope Sω, and Manning’s friction n′
ω) in self-similar Tokunaga

river networks (Tokunaga, 1978; Peckham, 1995a). The H-G exponents for Wω and n′
ω

are predicted and tested against observed exponents from three field studies.
Section 2 gives a brief review of the literature. In Sect. 3, our theoretical framework

builds on the concept of similarity or similitude that is based in dimensionless numbers5

(Barenblatt, 1996). We identify a total of six independent dimensionless River-Basin
numbers. The self-similarity concept has been successfully applied to derive the Horton
laws for channel network topology and geometry as asymptotic relations. Mcconnell
and Gupta (2008) derived these results for the self-similar Tokunaga networks that are
considered in this paper for developing the H-G theory. In Sect. 4, we formulate a mass10

conservation equation for a river network indexed by Strahler order. A solution of this
equation in the limit of large network order Ω is obtained in terms of Horton bifurcation,
area and discharge ratios. It applies to small order streams, ω = 1,2,3 . . .

In Sect. 5, we consider three H-G variables, Wω, Dω and Uω, and show that they
are power law functions of discharge. By definition, Qω = UωWωDω. Horton laws are15

obtained as asymptotic relations for these three H-G variables. We show that self-
similar solutions of type-1 (SS-1) hold asymptotically for the width and the Reynold’s
number, and values for their H-G exponents are predicted.

In Sect. 6, it is assumed that the SS-1 framework from Sect. 5 is valid for Sω, Dω
and Uω. Horton laws for these three H-G variables are derived asymptotically, and their20

exponents are predicted, which agree with that of the Optimal Channel Network (OCN)
model (Rodríguez-Iturbe et al., 1992). But the OCN model uses optimality assumptions
and does not consider Horton Laws for these H-G variables. In this sense, foundations
of our theory based in self-similarity are very different from that of the OCN model. Ibbitt
et al. (1998); McKerchar et al. (1998) conducted two comprehensive field experiments25

in New Zealand to test the OCN predictions. We show using H-G data from one of these
field studies that they obey Horton laws. Moreover, the field values of the exponents
don’t agree with the OCN predictions. The deviations are substantial suggesting that
H-G in network does not obey either optimality or SS-1.
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In Sect. 7, we explain that the reason for the failure of SS-1 is that slope, as one of
the dimensionless numbers, goes to 0 as network order increases. But, slope cannot
be eliminated from the asymptotic limit. Therefore, a generalization of SS-1 theoretical
framework is necessary. It requires the concept of “Asymptotic Self-Similarity of Type-2
(SS-2)” discussed in Barenblatt (1996) with many physical examples. SS-2 introduces5

two anomalous scaling exponents in the theory, which enables us to show the exis-
tence of Horton laws for channel depth, velocity, slope and Manning’s friction. The two
scaling exponents are free parameters, which cannot be predicted from dimensional
considerations. We estimate them from the field-observed values of velocity and slope
exponents, which creates a problem with field-testing our theory. To make progress on10

this front, we consider Manning’s friction coefficient that could be estimated from values
of depth and slope, as well as predicted from our theory without any free parameters.
Predictions are tested against three field data sets.

Two fundamental physical processes that shape the H-G of channels are trans-
port of suspended sediment load and the bed load that are not considered above.15

In Sect. 8, we sketch how these two physical processes could be used to determine
the two anomalous scaling exponents. Inclusion of statistical variability in the Horton
laws for the H-G variables is also discussed. Both are important open problems for
future research. The paper is concluded in Sect. 9.

2 Background20

Leopold and Maddock (1953) first introduced the H-G of rivers at-a-station and in
the downstream direction. Langbein (1964) used energy considerations in developing
a theoretical framework to predict downstream H-G exponents (Leopold et al., 1964,
p. 266–271). A dedicated body of literature came out in the 1970s devoted to predicting
at-a-station H-G relations that were based in the idea of “optimality”. Griffiths (1984)25

severely criticized these efforts, and called them “an illusion of progress”. Recently,
Griffiths (2003) published an article on downstream H-G using ideas of similarity or
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similitude. An extensive literature has developed on these topics; see Singh (2003) for
a recent review of the literature. This body of literature, though important, is not directly
relevant to the objectives of our paper. Singh concluded, “The work on hydraulic geom-
etry of channels serves as an excellent starting point to move on to the development
of a theory of drainage basin geometry and channel network evolution. This will permit5

integration of channel hydraulics and drainage basin hydrology and geomorphology.”
We take an innovative step towards developing a theory of H-G in river networks in this
paper.

In a classic paper Leopold and Miller (1956) extended the H-G relations to channel
networks (Jarvis and Woldenberg, 1984, chap. 19). It included Horton laws for the H-G10

variables, channel discharge, width, depth and slope as functions of stream order. The
literature is minimal on understanding the Horton laws for the H-G variables in channel
networks. An attempt to predict the H-G exponents in river networks without the Horton
laws is the theory of optimal channel networks (OCN) (Rodríguez-Iturbe et al., 1992).
OCNs have been analytically shown to produce three universality classes in terms of15

scaling exponents, but none of these predictions agree with data (Maritan et al., 1996).
Two comprehensive field programs were carried out in New Zealand to test the OCN
predictions (Ibbitt et al., 1998; McKerchar et al., 1998). However, the observed values
of the H-G exponents substantially deviated from the OCN predictions. Other attempts
building on optimality ideas have used data from these two New Zealand basins (Mol-20

nar and Ramirez, 2002). But, a foundational understanding of the geophysical origins
of Horton laws for the H-G variables and their exponents has remained elusive.

West et al. (1997) recently tackled a somewhat similar problem in the allometric the-
ory of biological networks. Our treatment of the H-G problem has some similarities but
major differences. For example, West et al. (1997) appeal to an “optimality assump-25

tion” by maximizing or minimizing a function. By contrast the present theory uses no
optimality assumption, but uses “self-similarity” as its basic building block.

The complexity resulting from space-time variability in climate and lithology can be
contrasted with the empirical observations like the Horton laws that suggest regularities
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related to similarity across scales, or self-similarity. How the network adjusts its geom-
etry and hydraulics to increasing discharge in a channel network is related to conserva-
tion laws governing network development and maintenance that cannot be understood
only by focusing attention on climate and physiographic complexities. The regularity
across scale suggests the existence of more simple physical principles like the Hor-5

ton laws that have been known for nearly 70 years (Jarvis and Woldenberg, 1984).
Self-similarity concept has been applied successfully to channel network topology and
geometry. A partial list of references is Peckham (1995b); Peckham and Gupta (1999);
Dodds and Rothman (1999); Veitzer and Gupta (2000); Troutman (2005); Veitzer et al.
(2003); Mcconnell and Gupta (2008). This paper extends the self-similarity framework10

to include H-G variables in river networks. Although we don’t consider fluctuations
within the present theory, concrete ideas regarding this important issue are discussed
in Sect. 8. Other points of comparison with the existing literature are given throughout
this paper when required.

3 Definitions and assumptions15

3.1 A brief review of self-similar Tokunaga River networks

Assume that a self-similar Tokunaga river network is given (Mcconnell and Gupta,
2008). The topological fractal dimension DT for Tokunaga networks is given by, DT =
logRB/ logRC, where RB is Horton bifurcation ratio and RC is the link ratio (Peckham,
1995a). Since RB = RA, and assuming constant link lengths, RC = RL, it follows that,20

RL = R1/DT

A , where RA is Horton area ratio, and RL is the length ratio. For OCNs,
DT = 2 (Maritan et al., 1996). For natural river networks data sets show that typically,
1.7 < DT < 1.8. The class of Tokunaga networks predicts values of DT less than or
equal to 2. The Hack exponent for Tokunaga networks is, β = 1/DT ≥ 1/2, and the area
exponent α ≤ 1/2 as observed empirically (Peckham, 1995b). Moreover, for Tokunaga25

networks, α+β = 1 (Peckham and Gupta, 1999). A new theory of random self-similar
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networks (RSN) has been developed to include statistical variability, and the Tokunaga
is shown as a special case for a subclass of RSN that obey mean self-similarity (Veitzer
and Gupta, 2000). The RSN theory provides the topologic and geometric foundations
on which a H-G theory incorporating statistical fluctuations can be developed in the
future.5

3.2 Defining stream discharge in complete Strahler streams

Let Qω denote the discharge at the bottom of a complete Strahler stream of order ω.
The discharge is computed below using a mass conservation equation for a network
indexed by the Strahler order. It is similar to a mass conservation equation for a channel
network indexed by link magnitudes rather than by Strahler order (Gupta and Waymire,10

1998). We assume that a channel network obeys Tokunaga self-similarity that is used
in solving this equation.

In the current literature, spatial variability of bank-full flows is treated using an
empirical-statistical method based in quantiles. However, this approach is unsuitable
for the present purposes because it need not conserve mass on a channel network15

for individual rainfall–runoff events. For example, Furey and Gupta (2000) noted that
disaggregation of flows for unnested subbasins using quantiles can give negative dis-
charges. Though it is recognized that the most meaningful discharge to consider in
morphology studies is the one that forms and maintains the channel, these considera-
tions plus the availability of data lead us to the consideration of a mean discharge for20

this theory, at least as a first approximation (Leopold et al., 1964, p. 241). A further
argument is that the exponents in scaling relations among variables related to bank-full
variables are preserved in relations among mean variables provided that there is a fixed
relation between the respective mean and bank-full variables. For instance if bank-full
depth, DB is related to bank-full discharge QB as, DB ∝Qf

B, and both QB = c1Q, and25

DB = c2D, it follows that D ∝Q
f
.
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Our treatment considers only spatially variable stream flows in networks rather than
space-time variable flows. For this purpose, we assume a steady state condition w.r.t
to storages in channels. Our formulation shows rigorously that Qω = RAω,∀ω ≥ 1 holds
asymptotically in the limit of large Ω for Tokunaga self-similar networks. Here Aω is the
cumulative drainage area for a complete Strahler stream, and R is a constant of pro-5

portionality. Based on dimensional considerations, it can be interpreted as a spatially
uniform discharge rate per unit area, and it has the dimension [LT−1]. Furey and Gupta
(2000) explicitly computed such a rate using subsurface discharge from hills in the con-
text of low flows for a network. Their computations show that Qω = RAω,∀ω ≥ 1 holds
in a statistical-mean sense. This result can be extended to a RSN using the results10

obtained by Veitzer and Gupta (2000), but we will not get into considering fluctuations
in the network topology and geometry in this paper as mentioned earlier. Moreover,
the two drainage basins from New Zealand that are used to test our theory in Sect. 7.2
measured H-G exponents for low stream flows that can be assumed to obey our steady
state condition.15

3.3 Dimensionless River-Basin numbers

The fundamental physical variables governing hydraulic-geometry in drainage net-
works are Qω, Dω, Uω, Wω, Hω, Lω, Sω, Aω, ν, ρ, R, g. Here, Qω is river discharge
rate, and Dω,Uω,Wω are the corresponding channel depth, velocity, and width, re-
spectively at the bottom of a complete Strahler stream of order ω ≥ 1. The elevation20

drop, or the elevation difference between the two end junctions of a complete Strahler
stream is denoted by Hω. Lω denotes the corresponding stream length, and slope,
Sω = Hω/Lω. Kinematic viscosity is ν, water density is ρ, runoff rate is R, and the ac-
celeration due to gravity is g. We have identified a total of nine independent variables,

because, Qω = UωWωDω, Sω = Hω/Lω, and Lω = A1/DT
ω reduce three independent vari-25

ables from the set of twelve listed above. These variables include three basic repeat
dimensions, Length (L), time (T) and mass (M). The Buckingham–Pi theorem gives
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us six independent dimensionless numbers, which are specified using physical argu-
ments rather than formal dimensional analysis. Some of the dimensionless numbers
were considered in Peckham (1995b).

The first dimensionless number is given by,

Π1(ω) =
Qω

RAω
. (2)5

Here, R is the mean runoff rate per unit area, and it has the dimension [LT−1]. The
spatial uniformity of R implies that river basin is homogeneous with respect to runoff
generation. This assumption can be easily relaxed but we want to keep this presenta-
tion simple. Discharge rate Qω is taken to be a linear function of drainage area. This is
observed in many humid climates for low and even mean flows. Mean flow has been10

widely used in H-G investigations (Leopold et al., 1964).
The second dimensionless number is,

Π2(ω) =
R
√
Aω

DωUω
. (3)

It is suggested by mass conservation involving the ratio of runoff per unit width of
drainage basin in the numerator, and discharge per unit channel width in the denomi-15

nator.
The relation between gravitational and inertia forces in river networks suggest the

third dimensionless number Π3(ω). Specifically, we define the “Basin Froude Number”
as,

Π3(ω) =
Uω√
gHω

=
Uω√
gSωLω

, (4)20

where the channel slope,

Π4(ω) = Sω = Hω/Lω (5)
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is the fourth dimensionless number. The drop Hω defines the length scale governing
gravitational force. It should be differentiated from a channel Froude number in open
channel hydraulics where flow depth defines the length scale.

The fifth dimensionless number is given by the Reynolds number. Leopold et al.
(1964, p. 158) have discussed its significance in the context of laminar and turbulent5

flows. In natural streams, the flow is largely turbulent.

Π5(ω) =
UωDω

ν
. (6)

The sixth dimensionless number incorporates the factors controlling flow velocity. Total
frictional force along the channel boundary is, τω(2Dω+Wω)Lω ≈ τωWωLω, where τω is
the shear stress per unit area. It is proportional to the square of the mean velocity for10

turbulent flows if the boundary does not change with variations in flow (Leopold et al.,
1964, p. 157). Gravitational force due to the mass of water along the channel length Lω
is given by ρgWωDωLωSω. Dimensionless ratio of these two forces gives,

Π6(ω) =
U2
ω

gDωSω
. (7)

The term
√
gDωSω is known as the shear velocity. Π6 is proportional to the Darcy–15

Weisbach resistance coefficient. Leopold et al. (1964, Fig. 6.5) illustrated for the
Bryandywine Creek, PA that 1/

√
Π6 is linearly related to the logarithm of relative rough-

ness defined by the ratio of flow depth to the height of roughness elements.

4 Mass conservation in Tokunaga self similar networks

We will formulate a mass conservation equation for a river network indexed by Strahler20

order. Recent developments show that Strahler order rather than link magnitude is most
natural in understanding self-similarity in channel networks (Tokunaga, 1978; Peck-
ham, 1995b; Veitzer and Gupta, 2000; Mcconnell and Gupta, 2008).
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Let Sω(t) denote the storage in a Strahler stream of order ω ≥ 1 defined by,

Sω(t) =Wω(t)Dω(t)Lω(t). (8)

The dependence of storage on time t comes from temporal variations of streamflows
in the downstream direction, which results in width and depth to vary with time.

Let Tω,ω−k ,k = 1,2, . . . ,ω−1 denote the number of side tributaries of order ω−k5

joining a stream of order ω. We assume that a network has a self-similar topology
defined as,

Tω,ω−k = Tk , k = 1,2, . . . ,ω−1; ω ≥ 1. (9)

We further assume that the network obeys Tokunaga self-similarity defined by,

Tk = ack−1, k = 1,2, . . . ,ω−1, (10)10

where the parameters a, c are positive constants. Mcconnell and Gupta (2008) proved
the Horton laws of stream numbers and magnitudes (equivalent to stream areas) in
Tokunaga networks.

Total number of junctions denoted by Cω is the same as the total number of links in
a complete Strahler stream of order ω. Let ti , i = 1,2,3, . . . ,Cω be a sequence of travel15

times for water to reach the bottom of a complete Strahler stream from successive
junctions enumerated from the bottom. This means that t1 represents the travel time
from the first junction from the bottom, t2 from the second junction and so on. For
example, since all the links are assumed to have the same length l in Sect. 3.1, and if
water flows with a uniform velocity u, then ti = i l/u.20

Let Ri (t), i = 1,2,3, . . . ,Cω denote the volumetric runoff rate from the i th hill along
a complete Strahler stream of order ω. Let Qki , i = 1,2, . . . ,Cω denote the discharge
from the side tributary at the i th junction from the bottom. Here the subscripts k1,k2, . . .
denote the Strahler orders of the side tributaries coming into the junctions counted from
the bottom of a stream. Let Qω(t) denote the discharge at the bottom of a stream of25
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order ω, and Q1
ω−1(t) and Q2

ω−1(t) denote the discharges in the two tributaries at the
top of the stream. Each of them is of order ω−1 by the definition of Strahler order.

Considering a Strahler stream as a finite control volume, the mass conservation
equation can be written as,

dSω(t)

dt
+Qω(t) =Q1

ω−1(t− tω−1)+Q2
ω−1(t− tω−1)+

Cω∑
i=1

Qki (t− ti )+2
Cω∑
i=1

Ri (t). (11)5

For ω = 1, Eq. (11) reduces to the link magnitude-based mass conservation equation
in Gupta and Waymire (1998) that the reader may easily check.

As a first step, we have chosen to focus solely on the spatial analysis in the context
of H-G. In particular, we will seek a spatial solution of Eq. (11) by ignoring the time
dependence of Qω(t), and denoting it as Qω(t) =Qω. This is tantamount to assuming10

that dSω(t)/dt = 0, Ri (t) = 0, ∀i ,t > 0, and the travel times ti = 0,∀i . Physically, these
sets of assumptions can be interpreted to mean that a fixed quantity of runoff rate per
unit area, say R, is applied uniformly throughout the network at time t = 0. Moreover,
water is assumed to travel in a very short time throughout the network so that travel
times are ignored.15

In a recent paper on a space-time theory of low flows for river networks, travel times
were ignored throughout the basin compared to the subsurface response time for hill-
slopes, and R was computed from hillslope processes under idealized conditions. The
theoretical results so obtained compared well with observations (Furey and Gupta,
2000). Similarly, in the present context, these idealized assumptions are necessary to20

make progress on this complex problem. Further developments of the H-G theory for
networks will require that one or more of these assumptions be relaxed in order to de-
velop a broad understanding of space-time variability of physically relevant streamflows
on channel networks. A general space-time solution, either analytical or numerical, of
Eq. (11) is beyond the scope of this paper because numerous issues remain unsolved.25

For some complementary on-going work on the spatial scaling structure of peakflows
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governed by the link-based mass conservation in deterministic networks and RSNs,
see Gupta et al. (2007).

In view of above assumptions, Eq. (11) simplifies to,

Qω =Q1
ω−1 +Q2

ω−1 +
Cω∑
i=1

Qki . (12)

The key problem is to compute a solution for Qω. In view of the definition of self-5

similarity given by Eq. (9), Eq. (12) reduces to,

Qω = 2Qω−1 +
ω−1∑
k=1

TkQω−k , (13)

where Tk = Tω,ω−k , k = 1,2, . . . ,ω−1 denotes the number of side tributaries of order
ω−k joining a stream of order ω. Equation (13) has been solved rigorously under the
assumption that Tk ’s obey Tokunaga self-similarity given by Eq. (10). The solution can10

be written as (Mcconnell and Gupta, 2008),

lim
Ω−ω→∞

Qω+1

Qω
= RQ. (14)

Because the recursion equation (Eq. 13) for Qω is the same as the ones for Nw and
Aw, we assert from Mcconnell and Gupta (2008) that

RQ = lim
Ω−ω→∞

Qω+1

Qω
= RB = lim

Ω−ω→∞

Nω

Nω+1
= RA = lim

Ω−ω→∞

Aω+1

Aω
(15)15

and

RQ = RB = RA =
(2+a+c)+

√
(2+a+c)2 −8c
2

.
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Equation (15) implies that Qω = RAω that is used in defining the first dimensionless
number in Sect. 3.3. It follows from the definitions of Horton ratios given in Eq. (14),
and from the equality, RQ = RB that,

Qω+1Nω+1 =QωNω, as Ω−ω→∞. (16)

This is a foundational result governing mass conservation in Tokunaga networks5

indexed by Strahler order. Even though, Eq. (16) is valid in the limit of large network
order, the result holds for small values of ω. West et al. (1997) used a similar equation
for perfect branching biological networks in which no side tributaries are present and
each parent branch bifurcates into two branches. In that case, it is simple to write down
Eq. (16) as a special case without involving any limit. West et al. (1997) used it to10

obtain some remarkable results governing allometry in biological networks. We apply
Eq. (16) to extend the geometric and topological Horton laws in Tokunaga networks to
include the H-G variables. Figure 1 shows a Horton law for channel widths in a drainage
network that was mentioned along with other H-G variables in Sect. 1. The key equation
providing this link was a power-law relation between discharge and drainage area, and15

a Horton law for drainage areas (Leopold and Miller, 1956, p. 19-20). This important
issue is discussed in greater detail in Sect. 7.2.

5 Asymptotic Self-Similarity of Type-1

5.1 Horton laws for channel width, depth and velocity

It follows from the definition of Π1 (Eq. 2) and the fact that RQ = RA (Eq. 14) in Tokunaga20

networks that

lim
Ω−ω→∞

Π1(ω+1)

Π1(ω)
= RΠ1

= 1, ω = 1,2, . . .�Ω. (17)

This is a very important result that comes from the self-similarity of Tokunaga networks
and the assumption of spatial homogeneity of runoff. It probably is a valid assumption
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for widely varying climatic regions and a broad range of spatial scales. For example,
the three river basins, one from the United States (US) and two from New Zealand (NZ)
that we use to test the predictions of our theory in Sect. 7.2 have different climates, and
different sized drainage areas. We also test if RQ = RA holds for one of the NZ basins
in Sect. 7.2.5

All the five H-G variables, U , W , D, S and the Manning’s friction coefficient n′ consid-
ered in this paper vary as discharge Q varies. Therefore, we assume that all the H-G
variables are homogeneous functions of Q. This means that the functions do not de-
pend on any other parameter except Q. We can write it as U = f1(Q), W = f2(Q) etc. To
determine the form of these functions, assume that they are self-similar in a Tokunaga10

network. Consider U = f1(Q). Self-similarity can be represented by the functional equa-
tion f1(Q1+Q2) = f1(Q1)f2(Q2) (Gupta and Waymire, 1998, p. 102–103), whose solution
is a power law.

U = f1(Q) ∝Qm.

The above argument applies to all the functions. Therefore, the H-G variables can be15

written as power law functions of discharge,

Uω ∝Qm
ω , Wω ∝Qb

ω, Dω ∝Qf
ω, Sω ∝Qz

ω and n′
ω ∝Qy

ω. (18)

Our notations for the H-G exponents are the same as in Leopold et al. (1964, p. 244).
If we consider the ratio, Qω+1/Qω, and take the limit as Ω−ω→∞, it follows from
(Eq. 14) that it converges to a constant, RQ, and thereby obeys a Horton law. To extend20

Horton laws to the H-G variables, let us consider velocity

lim
Ω−ω→∞

Uω+1

Uω
=

Qm
ω+1

Qm
ω

= Rm
Q = RU , (19)

which follows from the fact that the ratios are positive and monotonic in ω as shown in
(Eq. 18) (Rudin, 1976, p. 44).
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Similarly, RW = Rb
Q and RD = Rf

Q. By definition, Qω = UωWωDω. Therefore, the Horton
ratios for velocity, width and depth can be written as,

RU = Rm
Q , RW = Rb

Q, RD = Rf
Q, m+b+ f = 1. (20)

Equation (20) required that, (i) Horton laws for channel widths, depths and velocities
hold in Tokunaga self-similar networks, (ii) runoff generation is spatially homogeneous,5

and (iii) channel width, depth and velocity depend monotonically on channel order. For
further reference we will call a network satisfying these three conditions as self-similar
homogeneous networks (SSHN).

5.2 Prediction of the width exponent and Reynolds number exponent

We will now use the above results to show that in SSHN, topologic and geometric self-10

similarity extends to “asymptotic self-similarity of Type-I”, or SS-1 for short, in the limit
of large order that is based in dimensional analysis (Barenblatt, 1996, p. 148). Let us
first consider the dimensionless number Π2(ω) defined by Eq. (3), and the ratio given
by,

RΠ2
(ω) =

√
Aω+1√
Aω

×
DωUω

Uω+1Dω+1
. (21)15

Substituting, DωUω =Qω/Wω, in the above expression gives,

RΠ2
(ω) =

√
Aω+1√
Aω

×
QωWω+1

Qω+1Wω
. (22)

We have already shown that the right hand side converges to a constant in
Sect. 5.1. It follows that the left side of Eq. (22) also converges to a constant. Stated
mathematically,20
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lim
Ω−ω→∞

√
Aω+1√
Aω

QωWω+1

Qω+1Wω
=

R1/2
A RW

RQ
= lim

Ω−ω→∞
RΠ2

(ω) = RΠ2
. (23)

The asymptotic constancy of the ratio RΠ2
(ω) of the dimensionless number Π2 across

different Strahler orders holds in SSHN. Since, RQ = RA, Eqs. (23) and (20) can be
combined to obtain,

RW = RΠ2
R1/2
Q = Rb

Q. (24)5

Therefore, RΠ2
= 1, and the width H-G exponent is,

RW = R1/2
Q , b = 1/2. (25)

It directly follows from Eqs. (6), (20) and (25) that a Horton law for Reynolds number
in SSHN can be written as,

RΠ5
= RURD = Rm+f

Q = R1/2
Q . (26)10

6 OCN model exponents and SS-Type-I

As an application of the above results, we test our predictions of the H-G exponents
against the optimal channel network (OCN) model of Rodríguez-Iturbe et al. (1992),
and show that the two are the same. However, our theory differs from the OCN model
in a fundamental manner as will be explained below. In the following developments, we15

assume that SS-1 applies to slope, Sω, and that the Horton ratio for slope converges
to RS following a similar reasoning as given in Eq. (19). However, this assumption is
invalid as explained at the end of this section. It is being made only to compare the H-G
exponents from our theory with the OCN model.
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Define the Horton ratio for the Basin Froude number from Eq. (4). Following similar
arguments as given in Eq. (19), and given about the length ratio in Sect. 3.1. We assert
the convergence of the Basin Froude number because the Horton ratio of each term in
it converges.

lim
Ω−ω→∞

Π3(ω+1)

Π3(ω)
= RΠ3

=
RU√
RLRS

. (27)5

From Eq. (18) RS = Rz
A = Rz

Q. Invoking, RL = R1/DT

A = R1/DT

Q from Sect. 3.1 and as-
suming that the Tokunaga network is space filling as discussed there for the OCN
model, it follows that DT = 2. Substituting RU = Rm

Q from Eq. (19) into Eq. (27) gives,

RU = Rm
Q = RΠ3

R1/4
Q Rz/2

Q . (28)

Equation (28) predicts that RΠ3
= 1, and10

m =
1
2

(z+1/2). (29)

Similarly, consider the Horton ratio for the dimensionless number proportional to
the Darcy–Weisbach resistance coefficient given by Eq. (7), and take limit. We have
demonstrated the convergence of each term in it. Therefore,

lim
Ω−ω→∞

Π6(ω+1)

Π6(ω)
= RΠ6

=
R2
U

RDRS
. (30)15

We get an expression for the depth exponent by rewriting Eq. (30) as

RD = Rf
Q =

R2
U

RΠ6
RS

=
R2m
Q

RΠ6
Rz
Q

. (31)
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It predicts, RΠ6
= 1, and

f = 2m− z. (32)

Solving Eqs. (29) and (32) gives, f = 1/2, m = 0, z = −1/2, which also satisfy the
constraint that m+ f = 1/2. In summary, our predictions for the OCN model H-G expo-
nents b = 1/2, m = 0, f = 1/2, z = −1/2 correspond to those of Rodríguez-Iturbe et al.5

(1992). However, no optimality ideas are used in making these predictions. We take
the self-similar Tokunaga network model, derive Horton laws for the H-G variables, and
predict the H-G exponents. By contrast, the OCN model directly predicts the H-G ex-
ponents using optimality and without Horton laws for the H-G variables. Consequently,
the connections between our theory and the OCN model remain unclear to us. But in10

our context, SS-1 does not hold in river networks as explained below.
Two comprehensive field experiments in NZ were conducted to test the OCN predic-

tions. Figure 2 illustrates the measurement sites in network of the Taieri River Basin.
These two basins are described in Sect. 7, where the field-measured values of the H-G
exponents are also given. These values don’t agree with the OCN predictions except15

for b = 1/2. The deviations are substantial suggesting that H-G in network does not
obey SS-1 or the optimality. We also show the existence of Horton laws for some of the
H-G variables for the Ashley River Basin in Sect. 7.

To understand the reason within a dimensional analysis framework, note that one of
the six dimensionless numbers, slope, Sω → 0 as Ω−ω→∞. Therefore, SS-1 frame-20

work is not applicable to asymptotic relations that include slope. The general theoretical
framework of renormalization group approach is required to include slope into our the-
ory as given in the next section.
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7 Asymptotic Self-Similarity of Type-2 in Tokunaga networks

7.1 Theoretical expressions for the H-G exponents

Slope appears in dimensionless numbers given by Eqs. (4), (5) and (7). The stream
drop in Eq. (5) is bounded but stream length increases with order. Therefore, slope
Sω → 0 as Ω−ω→∞. Moreover, slope cannot be eliminated from the asymptotic limit.5

Therefore, a generalization of the dimensional analysis is necessary. It requires the
concept of “Asymptotic Self-Similarity of Type-2”, or SS-2 for short, discussed in Baren-
blatt (1996, chap. 5). He has given a recipe for the applications of similarity analysis
and renormalization group approach with many physical examples including turbulent
shear flows, fractals, biological allometry, and groundwater hydrology. We apply it to10

show the existence of Horton laws for channel depth, velocity, slope and Manning’s
friction. This enables us to make progress in predicting the corresponding H-G scaling
exponents.

SS-2 is a consequence of a dimensionless number that, despite being too small (or
large if you consider its reciprocal), cannot be ignored in the limit. For the problems15

in which dimensional analysis has proved successful, there is a clear way of separat-
ing the important variables from the ones that do not play a significant role because
they are too small. Mathematically this corresponds to the case of a function converg-
ing to a finite limit different from zero when the variable in question goes to zero. But
if the limit does not exist, or is zero or infinity, one cannot discard the variable. The20

simplicity of SS-1, that consists of the possibility of discarding small variables and ob-
taining the scaling exponents from dimensional analysis is lost in this case. In SS-2,
small variables continue to play a role in the problem, which requires an introduction
of anomalous exponents that cannot be derived from dimensional analysis. It requires
different physical arguments for their determination.25

Renormalization group theory has developed along two separate lines, the first
one in statistical physics and the second one in fluid mechanics. Barenblatt (1996)
has explained that these two approaches are equivalent. For our purposes, the
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fluid-mechanical approach is more natural than the statistical physical approach, be-
cause it is based on a generalization of the dimensional analysis framework. We will
follow the fluid-mechanical approach in the subsequent developments. The reader is
referred to Barenblatt (1996, chap. 5) for an expository overview of the renormalization
group approach based in a generalization of dimensional analysis.5

Following Barenblatt, we define two “renormalized dimensionless numbers” in which
slope appears. Equations (4) and (7) modify to,

Π∗
3(ω) =

Uω√
gLωS

α
ω

, (33)

Π∗
6(ω) =

U2
ω

gDωS
β
ω

. (34)
10

Here α and β are “anomalous scaling exponents” that cannot be predicted from dimen-
sional analysis. In principle they can be predicted from physical arguments involving
sediment transport. This is a task for future research as explained in Sect. 8.

Following similar arguments as given in Sect. 5 to justify Eq. (19), we assert the
convergence of the normalized dimensionless numbers,15

lim
Ω−ω→∞

Π∗
3(ω+1)

Π∗
3(ω)

= RΠ∗
3
=

RU√
RLR

α
S

. (35)

and,

lim
Ω−ω→∞

Π∗
6(ω+1)

Π∗
6(ω)

= RΠ∗
6
=

R2
U

RDR
β
S

. (36)
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Recall from Sect. 3.1 that RL = R1/DT

A = R1/DT

Q and from Sect. 5 that, RS = Rz
A = Rz

Q,
and RU = Rm

Q . Therefore, Eq. (35) gives,

RU = Rm
Q = R∗

Π3
R1/2DT

Q Rzα/2
Q . (37)

Equation (37) predicts that R∗
Π3

= 1, and

m =
1
2

(zα+1/DT). (38)5

Since m+ f = 1/2, an expression for the depth exponent follows directly from Eq. (38),

f =
1
2

(1− zα−1/DT). (39)

We get a second expression for the depth exponent by rewriting Eq. (36) as

RD = Rf
Q =

R2
U

RΠ∗
6
Rβ

S

=
R2m
Q

R∗
Π6
Rzβ
Q

. (40)

It predicts, RΠ∗
6
= 1, and, in view of Eq. (38),10

f = 2m− zβ = z(α−β)+1/DT. (41)

Equating the expressions for f from Eqs. (41) and (39), we obtain an expression for the
slope scaling exponent as,

z(3α−2β) = 1−3/DT. (42)

Equations (38) and (42) together generalize the H-G theory for a channel network15

based on an application of the renormalization group theory, and SS-2.
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To summarize, given the topological fractal dimension DT, and prediction of the width
exponent, b = 1/2 by Eq. (26), we have two Eqs. (38), (42) that give theoretical expres-
sions for H-G exponents m, z in terms of two unknown parameters, α, β. Our theoretical
expressions for the H-G exponents can be written as,

b = 1/25

z = (1−3/DT)/(3α−2β)

m = (zα+1/DT)/2 (43)

f = 1/2−m.

Throughout, we will fix, DT = 7/4, a realistic value for river networks (La Barbera and10

Rosso, 1989; Maritan et al., 1996). The scaling exponents α and β are free parame-
ters, which are not predicted by our theory in this paper. We estimate them from the
observed values of m and z. Therefore, the depth exponent, f = 1/2−m is also esti-
mated from data, which creates a problem in testing our theory. To make progress on
this front, we consider Manning’s friction coefficient that can be estimated from values15

of depth and slope as explained below. But first, we derive a theoretical expression for
the Manning’s friction exponent.

Rewrite Π∗
6(ω) given by Eq. (34) as,

Π∗
6(ω) = 1 =

U2
ω

gDωS
β
ω

=
U2
ω

gDωSωS
−1+β
ω

, (44)

so it may be expressed in the form of the well-known Chezy’s equation,20

Uω = (gDωSω)1/2S (−1+β)/2
ω . (45)

Therefore an expression for the Chezy’s friction parameter is given as,

C∗
ω = (g)1/2S (−1+β)/2

ω , (46)
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provided, β < 1. This constraint is mentioned because the slope exponent must be neg-
ative to be consistent with data. Manning’s friction coefficient n′

ω is related to Chezy’s
by means of (Leopold et al., 1964, p. 158),

Uω = C∗
ω

√
DωSω =

1.49

n′
ω

D2/3
ω S1/2

ω =
1.49

n′
ω

D1/6
ω

√
DωSω.

Therefore,5

n′
ω = 1.49D1/6

ω /C∗
ω. (47)

It can be expressed as the ratio using Eqs. (46) and (47) as,

C∗
ω+1

C∗
ω

=
[
Dω+1

Dω

]1/6
[

n′
ω

n′
ω+1

]
. (48)

Taking the limit as, Ω−ω→∞, gives

Rn′ = R1/6
D R−(−1+β)/2

S
. (49)10

Equation (18) defined Rn′ = Ry
Q. Using RS = Rz

Q as before gives an expression for the
H-G scaling exponent related to the Manning’s equation,

Rn′ = Ry
Q = Rf /6

Q R−z(−1+β)/2
Q , (50)

which gives a theoretical prediction for the Manning friction exponent as,

y = f /6− z(−1+β)/2 (51)15

provided, β < 1. There are no adjustable parameters in this expression. It is tested
against the field value of the Manning friction exponent in the next section. We will use
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the same sets of field data from channel networks to support that estimated β < 1, and
β < 3α/2 from Eq. (42).

Mantilla et al. (2006) have described the H-G form of Chezy’s friction coefficient
that they deduced from empirical observations. They showed that the expression for
Chezy’s friction coefficient played a key role in testing the presence of statistical self-5

similarity involving Hortonian relationship in peak flows in the Walnut Gulch basin, Ari-
zona.

7.2 Test of the theory: prediction of Manning Scaling exponent for Three Field
Studies

As mentioned in Sect. 7.1, we estimate the free parameters, α, β using the empirical10

values of f and z from three field experiments. This exercise allows us to compute the
numerical values of the scaling exponents, α, β and check that Eqs. (44) and (42) hold
as required by the theory. We use the published data for H-G exponents from these
three basins, and test the prediction of the scaling exponents b and y corresponding
to the width and the Manning friction as a test of our theory.15

Our first two basins are from NZ. The largest part of NZ has a pleasant sea climate
with mild winters and warm summers. Köppen climate classification lists it as type Cf.
The first field experiment was conducted in the Taieri River Basin (Ibbitt et al., 1998)
that was introduced earlier. It has an estimated mean annual precipitation of 1400 mm.
Basin Area is 158 km2. Mean discharge, as measured at the streamflow recorder over20

the discontinuous 14 year period 1983–1996, is 4.90 m3 s−1, representing an average
runoff rate of 980 mmyr−1 from the basin.

The field values of the H-G exponents are, b = 0.517, z = −0.315, m = 0.238 and
f = 0.247. The empirical width exponent is close to the predicted value, b = 1/2. Ibbitt
et al. (1998) do not give an empirical value of Manning’s friction exponent, but it can be25

computed from other exponents given above, and the empirical Manning equation,

Uω = 1.49D2/3
ω S1/2

ω /n′
ω,
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as,

y = (2/3)0.247− (1/2)0.315−0.238 = −0.231. (52)

To make a theoretical prediction of y , we take, DT = 7/4, since river networks show
a value between 1.7 and 1.8 (La Barbera and Rosso, 1989; Maritan et al., 1996). Then,
using the empirically computed values of the scaling exponents f and z in Eq. (41) we5

get

α−β = (f −1/DT)/z = 1.030, (53)

and from Eq. (42)

3α−2β = (1−3/DT)/z = 2.268. (54)

Solving Eqs. (53) and (54) gives the values of the scaling exponents as, α = 0.208,10

and β = −0.822, which satisfy the constraints on α,β described above. The predicted
value of the Manning-scaling exponent from Eq. (51) is,

y = f /6− z(−1+β)/2 = −0.246, (55)

which is very close to the observed Manning exponent given in Eq. (52), which supports
our theory.15

The second field experiment was conducted in the 121 km2 Ashley River Basin
(McKerchar et al., 1998). Annual precipitation increases in a northwesterly direction
across the basin from 1200 to about 2000 mmyr−1. Mean discharge, as measured at
the stream gauge over the 20-year period 1977–1996 is 3.99 m3 s−1, representing an
average runoff rate of 1040 mmyr−1 from the basin.20

Tradionally Horton laws have been known in terms of statistical means. Peckham
and Gupta (1999) reformulated the Horton laws in terms of probability distributions as
explained in Sect. 8. We name it as statistical self-similarity in ordered networks (SS-
SON) for an easy reference here and in future research articles on this topic. Mantilla
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(2014) is testing the presence of SSSON for the H-G variables in the two NZ basins
considered here and a few others basins for which he has data. He has kindly shared
some of his analysis with us for the Ashley basin that has Ω= 6. Mantilla (2014) ex-
tracted the Ashley basin geomorphology from the Digital Elevation Model (DEM) data
using the software CUENCAS (Mantilla and Gupta, 2005). His first set of results per-5

tains to the Horton laws for drainage area and stream numbers as shown in Figs. 3
and 4. The Horton laws hold quite well, and the observed RA = 4.47 agrees well with
RB = 4.5 as predicted for the Tokunaga network in Sect. 4.

Next, the Horton law for mean stream flow is considered. In making this plot, the
theoretical condition Ω−ω→∞ is incorporated by omitting order 6 and 5 streams from10

the analysis. Mantilla (2014) found that the basin has a large number of the 1-st order
streams that are mostly missed in the map that McKerchar et al. (1998) presented.
Therefore, the Horton plot is made for streams of order ω = 2,3,4, shown in Fig. 5.
RQ = 3.05 is observed. It shows that RQ = Rθ

A, where θ = 0.74. The reason is that all
the streams in a network need not contribute to stream flows. Many physical processes15

play a role, like space-time variable rainfall, state of dryness or wetness of soil in a basin
at the time rainfall begins, which governs infiltration into soil and evaporation from it and
so on. The physical parameter, θ, represents the aggregate behavior of the physical
processes governing runoff generation, and can take a values less than or equal to 1.
It is written as,20

RQ = Rθ
A. (56)

Galster (2007) analyzed several basins to test the relationship Q = kAc. His results
show that the studied watersheds could be grouped into two broad categories based
on their respective c values: (1) those where c = 1 or nearly 1, and (2) those where c is
significantly < 1 like 0.8 or 0.5. Other research efforts have been made on understand-25

ing the nature of the scaling exponent θ from physical processes (Poveda et al., 2007;
Gupta et al., 2010; Furey et al., 2013). Clearly, the Ashley basin shows that θ < 1. Our
derivation in Eq. (15) that RQ = RA applies to category (1) basins in Galster (2007), but
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not to category (2) like the Ashley. Therefore, it needs to be generalized to incorporate
such basins for which θ < 1.

The observed H-G scaling exponents are, b = 0.44, z = −0.317, m = 0.318 and
f = 0.242. The empirical width exponent, b = 0.44 shows some deviation from the
predicted value, b = 1/2. The Horton law for the width, taken from Mantilla (2014) is5

shown in Fig. 6. The observed value of RW = 1.61, which shows some deviation form

the predicted Horton ratio for the width exponent R1/2
Q = 1.74. Since R0.44

Q = 1.63, the
width exponent that McKerchar et al. (1998) presented is consistent with the observed
value of the Horton width ratio of 1.61 that Mantilla (2014) obtained. Other H-G vari-
ables not shown here support that the Horton laws hold as predicted in our work, and10

RWRDRU = 2.96 that is close to the value of RQ = 3.05 (see Eq. 20).
McKerchar et al. (1998) do not give an empirical value of the Manning’s friction expo-

nent, but it can be computed from above exponents and the empirical Manning equa-
tion. The value is,

y = (2/3)0.242−0.318− (1/2)0.317 = −0.315. (57)15

We take, DT = 7/4. Using the observed values of f and z, the empirically computed
values of the scaling exponents are (using Eq. 53):

α−β =
0.242−4/7

−0.317
=

0.329
0.317

= 1.038. (58)

Similarly, using Eq. (54) and the empirical exponents we obtain

3α−2β =
1−12/7

−0.317
=

0.714
0.317

= 2.253. (59)20

Solving Eqs. (58) and (59) gives, α = 0.175, β = −0.864, which satisfy the constraints
on α and β described above.
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The predicted value of the Manning scaling exponent using Eq. (51) is,

y =
f
6
−
z(β−1)

2
=

0.242
6

+
0.317(−1−0.864)

2
= −0.255. (60)

There is some discrepancy between the observed and the predicted values. It seems
to come from the observed exponents of width and velocity. The discrepancy in the
width exponent affects the velocity exponent, which in turn affects the Manning friction5

exponent. The reader may compare the empirical H-G exponents in the Taieri basin
with those in the Ashley basin to get a comparative idea of the field measured values
of the H-G exponents in these two basins that have comparable scales and climates.
The measured values of f and z are comparable as one expects, but not of b and m.
Reasons for this potential discrepancy may lie in Q = kAc relationship if c < 1. This is10

a topic for future research as stated in Sect. 9.
The third example is for the classic Brandywine creek, PA in the US as given in

Leopold et al. (1964, Table 7.5, p. 244), where the H-G exponents are also given. It has
humid subtropical climate with cool to cold winters, hot, humid summers, and generous
precipitation throughout the year, approx 1100 mmyr−1. Köppen climate classification15

lists it as type Cfa. It has a drainage Area of 777 km2 at the mouth. Average discharge
is 12 m3 s−1.

The observed values of the H-G exponents are b = 0.42, f = 0.45, m = 0.05, z =
−1.07 and y = −0.28. We fix DT = 7/4. The empirically computed values of the scaling
exponents, which correspond to these H-G exponents, are: α = 0.441, and β = 0.327.20

They satisfy the theoretical constraints, β < 1 and β < 3α/2. Moreover, Eq. (51) cor-
rectly predicts the empirical value of the Manning’s exponent, y = −0.285. However,
the empirical values related to the width, depth and velocity do not satisfy b+f +m = 1,
instead they add to 0.92. Assuming that depth and velocity exponents are correct, be-
cause they correctly predict the Manning’s exponent, the value of b = 1− f −m = 1/225

agrees with our theoretical prediction.
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Table 1 presents a summary of the observed and predicted H-G scaling exponents
for the three basins considered above. Predicted values for the exponent y that we
presented above using Eq. (51), and for the exponent b = 1/2 from Eq. (43).

8 Future research problems: two examples

The above theory can be generalized along several lines. We illustrate two important5

problems. The first is that the anomalous scaling exponents α and β need to be pre-
dicted using physical arguments. Two fundamental physical processes that shape the
H-G of channels are transport of suspended sediment load and the bed load that we
have not considered so far. There is a huge literature on this subject (Leopold et al.,
1964; Singh, 2003). Our ideas on how these two physical processes can be used to10

determine α and β are rudimentary and are only meant for illustration.
The suspended load increases in proportion to discharge. Therefore, suspended

sediment concentration, defined as the ratio of the two, does not change. Leopold et al.
(1964, p. 269) gave an expression for sediment concentration, C ∝ (UD)0.5S1.5/n4,
constancy of C implies that 0.5m+0.5f +1.5z−4y = 0, or, 0.25+1.5z−4y = 0 since,15

m+ f = 1/2. It gives the first equation in terms of α and β.
The second equation can be developed from considering stream power per unit of

bed area, $ = ρgQS/W , which plays a basic role in the bed load transport (Molnar,
2001). Essentially all the theories of bed load transport assume that there is a threshold
shear stress, stream power, or mean flow speed, and no erosion occurs below it. During20

floods, these variables exceed the threshold, and bed load is transported that creates
erosion. We expect that a second equation can be obtained from these considerations
in terms of α and β. The two equations can be solved to compute α and β.

The second problem is to generalize the Horton laws for the H-G variables that in-
clude SSSON. Peckham and Gupta (1999) presented such a framework for drainage25

areas and channel lengths. Specifically, they gave observational and some theoreti-
cal arguments to show that probability distributions of all drainage areas rescaled by
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their means, Aω/Aω collapse into a common probability distribution. Let us consider
drainage areas, Aω/Aω to illustrate SSSON. There are two components to this argu-
ment.

i. A Horton law for the mean drainage areas, Aω of order ω, holds that can be written
as,5

Aω = Rω−1
A A1, ω = 1,2, . . . , (61)

where RA, is the Horton’s area ratio. It is illustrated in the Whitewater basin,
Kansas, USA in Fig. 7.

ii. SSSON is defined as

Aω+1/Aω+1
d
= Aω/Aω, (62)10

or,

Aω+1
d
=
(
Aω+1/Aω

)
Aω, ω = 1,2, . . . (63)

where
d
= means that the probability distributions of the rescaled areas on both

sides of Eq. (63) are the same. Since the Horton law holds for the mean areas
given in Eq. (61), it follows from Eq. (63) that,15

Aω+1
d
= RAAω, ω = 1,2, . . . (64)

This feature is illustrated for drainage areas in the Whitewater basin, Kansas, USA
in Fig. 8.

Let us consider the dependence of channel widths on discharge. Both are treated
as random variables. Therefore the results obtained in Sect. 5.2 can be interpreted as20
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for the means and written as, W (Qω) = cQ
b
ω. We conjecture that SSSON holds for the

rescaled channel widths. Then,

W (Qω+1) =

(
Qω+1

Qω

)b

W (Qω), ω = 1,2, . . . (65)

This is an equality among random variables as shown for drainage areas in Eq. (63).
But in the context of channel widths, a H-G variable, it also means that the probabil-5

ity distribution of W (Qω+1) can be computed from the probability distribution of W (Qω)
provided a Horton law of mean widths and the value of b are known. Both these fea-
tures, as predicted in Sect. 5 for SS Tokunaga networks, can be interpreted as those
for the means. This conjecture is made in the light of the result described in Sect. 3
that the Tokunaga networks are a special case for a subclass of RSN that obey mean10

self-similarity (Veitzer and Gupta, 2000). In view of these arguments, we can write,

W ω = Rω−1
W W1, ω = 1,2, . . . , (66)

where, RW = Rb
Q is the Horton ratio for the mean widths. We conjecture based on these

arguments that Horton laws hold for all the H-G variables measured in the two New
Zealand basins that were analyzed in the Sect. 7.2. We support this conjecture for the15

validity of Horton laws for widths and stream flows in the Ashley basin in Sect. 7.2. Both
the basins have the necessary data sets to test our conjecture regarding applicability
of SSSON. Mantilla (2014) is conducting this research as mentioned in Sect. 7.2.

9 Conclusions

There has been important progress in topological and geometric theories to explain20

the related Horton’s law for stream bifurcation, drainage areas and stream lengths as
asymptotic relations. But progress on Horton laws for the H-G variables has been long
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overdue. We made a contribution to this important problem, and laid the theoretical
foundations of a H-G theory in the SS Tokunaga networks. Our main findings are sum-
marized below:

1. We used the Buckingham–Pi theorem and identified six dimensionless basin num-
bers in Sect. 3, which served as a basis to develop the theory in the subsequent5

sections.

2. A mass conservation equation was specified in Strahler ordered networks. A link-
based equation was shown to be a special case of it. We solved it in Tokunaga SS
networks using the results from Mcconnell and Gupta (2008) and derived a mass
conservation equation in the limit as, Ω−ω goes to infinity in terms of Horton10

bifurcation and discharge ratios in Sect. 4.

3. We gave an analytical derivation of the H-G relations as power-law functions of
discharge. The derivation is based on the assumptions that the H-G variables
are homogeneous and self-similar functions of discharge. The Horton laws are
extended to width, depth and velocity in Tokunaga SS networks using the re-15

sults from Sect. 4. Within the dimensional analysis framework, the SS-1 given in
Barenblatt (1996) is used to predict the width exponent, b = 1/2. These results
are given in Sect. 5.

4. Assuming that SS-1 holds for slope, we predicted the Horton’s laws for S, U and
D, and their exponents. Our predictions agree with the exponents given in the20

optimal channel network model (OCN) (Rodríguez-Iturbe et al., 1992), but they
don’t predict Horton laws. Our theoretical framework is based in self-similarity,
and does not use any optimality assumptions. Published previous field studies
cited here have shown that the OCN predictions do not agree with observations.
These results are given in Sect. 6. We assert following Barenblatt (1996) that the25

problem lies in the assumption that SS-1 holds for slopes, because the slope goes
to zero in the limit of large basin order.
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5. SS-2 is required to deal with the case when one or more dimensionless numbers
go to zero in the limit (Barenblatt, 1996). Therefore, we consider that SS-2 holds
for slopes, which gives rise to two anomalous scaling exponents, α and β that
come from two dimensionless numbers in Sect. 3. We derived Horton’s law for
S, D, and U in Sect. 7, but the H-G exponents become functions of α and β.5

To predict these two anomalous scaling exponents from geophysics, we suggest
that it would require consideration of sediment transport, as briefly discussed in
Sect. 8.

6. We tested the predictions of our theory against observations using published H-G
data from three river basins in Sect. 7.2. Since we do not give a physical predic-10

tion of α and β, we back calculate them using observed exponents for D and S.
In this process we lose testability. To make progress with testing our theory, we
consider a fifth H-G variable, namely Manning’s friction, that could be estimated
from data on slope, velocity, width and depth, and predicted from our theory. The
predictions are good as given in Sect. 7.2. Even though there are few network15

field studies of H-G, the theory passes these tests reasonably well. The estima-
tion of the anomalous exponents from physical principles and the consideration
of sediment transport are needed for a definite test of the theory.

7. The Two NZ basins analyzed here show statistical variability in the H-G variables.
We showed some results from Mantilla (2014) for the Ashley basin for the exis-20

tence of Horton laws for widths and stream flows. He is testing for the presence of
SSSON in all the H-G variables for a further development of this theory. Last but
not least, more H-G data on river networks is needed in different climates to test
theoretical predictions as they become available. This is an expensive proposal,
which would require international cooperation to make progress.25

8. The empirical observation that RQ 6= RA, illustrated here for the Ashley basin,
is true more generally as Galster (2007) discussed. This is very important and
needs further considerations. In particular, some of the assumptions leading to
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Eq. (13) do not hold, because it was shown rigorously that under those assump-
tions RQ = RA = RB. In the text some possible physical explanations were sug-
gested. However, to incorporate this hydrologic feature in Tokunaga networks, the
generator expression given in Eq. (10) needs to be modified so that all the streams
that don’t contribute to stream flows are removed in the derivation of Eq. (13).5
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Table 1. Summary of observed and predicted H-G scaling exponents. The sources of the data
are Ibbitt et al. (1998) for the Taieri River Basin in New Zealand; McKerchar et al. (1998) for the
Ashley River Basin in New Zealand; Leopold et al. (1964, Table 7.5, p. 244) for the Brandywine
creek, PA in the United States.

Basin

Variable Exponent Taieri Asheley Brandywine

Observed

U ∝Qm m 0.238 0.318 0.050
W ∝Qb b 0.517 0.440 0.420
D ∝Qf f 0.247 0.242 0.450
S ∝Qz z −0.315 −0.317 −1.070
n′ =Qy y −0.231 −0.315 −0.280

Estimated using DT = 7/4, f and z

α 0.208 0.175 0.441
β −0.822 −0.864 0.327

Predicted using Eqs. (43) and (51)

W ∝Qb b 0.500 0.500 0.500
n′ ∝Qy y −0.246 −0.255 −0.285
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Fig. 1. Reproduction of the original figure of Leopold and Miller (1956, Fig. 19, p. 24) showing the relation of

stream width to stream order in arroyos. Numbers beside points correspond to different points in the network.
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Fig. 1. Reproduction of the original figure of Leopold and Miller (1956, Fig. 19, p. 24) showing
the relation of stream width to stream order in arroyos. Numbers beside points correspond to
different points in the network.
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Fig. 2. Reproduction of the original figure of Ibbitt et al. (1998, f. 1) showing the river network of the Taieri

basin in New Zealand along with measurements sites in the network.
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Fig. 2. Reproduction of the original figure of Ibbitt et al. (1998, Fig. 1) showing the river network
of the Taieri basin in New Zealand along with measurements sites in the network.
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Fig. 3. Horton analysis of upstream areas (including orders 2,3,and 4) for Ashley river basin (McKerchar et al.,

1998), results kindly provided by Mantilla (2014).
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Fig. 3. Horton analysis of upstream areas (including orders 2, 3, and 4) for Ashley River Basin
(McKerchar et al., 1998), results kindly provided by Mantilla (2014).

748

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 705–753, 2014

Hydraulic-Geometric
in river networks

V. K. Gupta and
O. J. Mesa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 4. Horton analysis of stream numbers (including orders 2,3,and 4) for Ashley river basin (McKerchar et al.,

1998), results kindly provided by Mantilla (2014).
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Fig. 4. Horton analysis of stream numbers (including orders 2, 3, and 4) for Ashley River Basin
(McKerchar et al., 1998), results kindly provided by Mantilla (2014).

749

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 705–753, 2014

Hydraulic-Geometric
in river networks

V. K. Gupta and
O. J. Mesa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Horton plots for discharge (Including Order 2, 3, and 4) for Ashley river basin (McKerchar et al., 1998),

results kindly provided by Mantilla (2014).
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Fig. 5. Horton plots for discharge (including order 2, 3, and 4) for Ashley River Basin (McKerchar
et al., 1998), results kindly provided by Mantilla (2014).
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Fig. 6. Horton plots for Hydraulic Geometric variables (Including Order 2, 3, and 4) for Ashley river basin

(McKerchar et al., 1998), results kindly provided by Mantilla (2014).
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Fig. 6. Horton plots for Hydraulic Geometric variables (including order 2, 3, and 4) for Ashley
river basin (McKerchar et al., 1998), results kindly provided by Mantilla (2014).
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Fig. 7. Reproduction of the original figure of Mantilla and Gupta (2005, f. 2) showing the scaling of mean

drainage area with order (Horton law) of the river network of the Whitewater basin, Kansas, US.

where, RW =RbQ is the Horton ratio for the mean widths. We conjecture based on these arguments690

that Horton laws hold for all the H-G variables measured in the two New Zealand basins that were

analyzed in the Subsection 7.2. We support this conjecture for the validity of Horton laws for widths

and stream flows in the Ashley basin in Subsection 7.2. Both the basins have the necessary data sets

to test our conjecture regarding applicability of SSSON. Mantilla (2014) is conducting this research

as mentioned in Subsection 7.2.695

9 Conclusions

There has been important progress in topological and geometric theories to explain the related Hor-

ton’s law for stream bifurcation, drainage areas and stream lengths as asymptotic relations. But

progress on Horton laws for the H-G variables has been long overdue. We made a contribution to

this important problem, and laid the theoretical foundations of a H-G theory in the SS Tokunaga700

29

Fig. 7. Reproduction of the original figure of Mantilla and Gupta (2005, Fig. 2) showing the
scaling of mean drainage area with order (Horton law) of the river network of the Whitewater
Basin, Kansas, US.
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Fig. 8. Reproduction of the original figure of Mantilla and Gupta (2005, f. 2) showing the statistical scaling

of the probability distribution of drainage area with order (generalized Horton law) of the river network of the

Whitewater basin, Kansas, US.

networks. Our main findings are summarized below:

(1) We used the Buckingham-Pi theorem and identified six dimensionless basin numbers in Section

3, which served as a basis to develop the theory in the subsequent sections.

(2) A mass conservation equation was specified in Strahler ordered networks. A link-based equation

was shown to be a special case of it. We solved it in Tokunaga SS networks using the results705

from Mcconnell and Gupta (2008) and derived a mass conservation equation in the limit as,

Ω−ω goes to infinity in terms of Horton bifurcation and discharge ratios in Section 4.

(3) We gave an analytical derivation of the H-G relations as power-law functions of discharge. The

derivation is based on the assumptions that the H-G variables are homogeneous and self-similar

30

Fig. 8. Reproduction of the original figure of Mantilla and Gupta (2005, Fig. 2) showing the
statistical scaling of the probability distribution of drainage area with order (generalized Horton
law) of the river network of the Whitewater basin, Kansas, US.

753

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/705/2014/npgd-1-705-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

