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Abstract. An analytical theory is developed that obtains Horton laws for six Hydraulic-Geometric

(H-G) variables (stream dischargeQ, widthW , depthD, velocity U , slope S, and friction n′) in self-

similar Tokunaga networks in the limit of large network order. The theory uses several disjoint theo-

retical concepts like, Horton laws of stream numbers and areas as asymptotic relations in Tokunaga

networks, dimensional analysis, Buckingham-Pi theorem, asymptotic self-similarity of the first kind,5

or SS-1, and asymptotic self-similarity of the second kind, or SS-2. A self-contained review of these

concepts with examples is given as ‘methods’. The H-G data sets in channel networks from three

published studies and one unpublished study are summarized for testing theoretical predictions. The

theory builds on six independent dimensionless River-Basin numbers. A mass conservation equa-

tion in terms of Horton bifurcation and discharge ratios in Tokunaga networks is derived. Assuming10

that the H-G variables are homogeneous and self-similar functions of stream discharge, it is shown

that the functions are of a power law form. SS-1 is applied to predict the Horton laws for width,

depth and velocity as asymptotic relationships. Exponents of width and the Reynold’s number are

predicted, and tested against three field data sets. Tentatively assuming that SS-1 is valid for slope,

depth and velocity, corresponding Horton laws and the H-G exponents are derived. Our predictions15

of the exponents are same as those previously predicted for the optimal channel network (OCN)

model. In direct contrast to our work, the OCN model does not consider Horton laws for the H-G

variables, and uses optimality assumptions. The predicted exponents deviate substantially from the

values obtained from three field studies, which suggests that H-G in networks does not obey SS-1. It

fails because slope, a dimensionless River-Basin number, goes to 0 as network order increases, but,20

it cannot be eliminated from the asymptotic limit. Therefore, a generalization of SS-1, based in SS-2
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is considered. It introduces two anomalous scaling exponents as free parameters, which enables us

to show the existence of Horton laws for channel depth, velocity, slope and Manning’s friction. The

Manning’s friction exponent, y, is predicted and tested against field exponents from three studies.

One of these basins shows some deviation from the theoretical prediction. A physical reason for this25

deviation is given. Finally, we briefly sketch how the two anomalous scaling exponents could be

estimated from the transport of suspended sediment load and the bed load. Statistical variability in

the Horton laws for the H-G variables is also discussed. Both are important open problems for future

research.

1 Introduction30

Several key papers have been published on self-similar river networks in the last twenty years. As a

sample see Tokunaga (1978); Peckham (1995b); Peckham and Gupta (1999); Dodds and Rothman

(1999); Veitzer and Gupta (2000); Troutman (2005); Veitzer et al. (2003); Mcconnell and Gupta

(2008). Tokunaga model among them is very important because it is mathematically simple and

it predicts many topological and geometrical features that are observed in real channel networks35

(Tokunaga, 1978; Peckham, 1995a). The predictions are made in terms of “Horton laws” that are

explained in Sect. 2 on background. Our paper develops an analytical theory to predict Horton rela-

tionships for six hydraulic-geometric (H-G) variables (stream discharge Qω , width Wω , depth Dω ,

velocity Uω , slope Sω , and Manning’s friction n′ω) in self-similar Tokunaga river networks. It is the

first study that generalizes the theory from topology and geometry to H-G in channel networks. The40

H-G exponents for Wω and n′ω are predicted and tested against observed exponents from three field

studies. Developing an analytical theory of H-G is a long-standing, fundamental open problem in

Hydro-geomorphology that is addressed here. Next we explain the significance of this work.

Prediction of floods in river basins with sparse or no streamflow data is a hydrologic engineering

problem of great practical significance. An acronym for this problem that is widely used is Predic-45

tion in Ungauged Basins (PUB) (Dawdy, 2007; Sivapalan et al., 2003). PUB is common to both

developing as well as industrialized countries. A nonlinear geophysical theory is being developed

for almost 30 years to solve the PUB problem for floods. Two review articles have been published

on this theory Gupta and Waymire (1998); Gupta et al. (2007). Given space-time rainfall intensity

field for any rainfall-runoff event, the theory attempts to predict stream flow hydrographs at all the50

‘junctions’ (where two or three channels meet) in a channel network. The theory requires a model to

transform rainfall to runoff in space and time in a basin (Furey et al., 2013), and space-time river flow

dynamics in a network (Mantilla, 2007). Modeling of flow dynamics requires a theory of H-G of in a

channel network, because practically no data on H-G exists. Our paper begins to fill a long-standing

need in this context.55
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By extending the Horton laws to H-G variables, our paper shows how geomorphology, hydrology

and channel hydraulics are linked in river networks. Consequently, it opens a new door to under-

standing how the geometry, statistics and dynamics in river networks are mutually coupled on many

spatial scales, which has far-reaching implications for understanding and modeling river flows, as

explained above, and transport of sediments and pollutants in river networks in the future. A few dis-60

crete research efforts have been made on understanding the nature of the flood scaling from physical

processes on annual time scale (Poveda et al., 2007; Lima and Lall, 2010). But connecting this body

of work to flood scaling for events remains an important open problemGupta et al. (2010).

Our paper is organized as follows. Sect. 2 gives a brief review of the literature. It also includes

two “Methods” sections that give a self-contained review of analytical methods used in the theory.65

Sect. 2.1 contains a review of the Horton laws for network topology and geometry as asymptotic re-

lations in self-similar Tokunaga networks that are taken from Mcconnell and Gupta (2008). Sect. 2.2

gives a review of similarity or similitude that is based in dimensional analysis and explains the

Buckingham-Pi theorem. It is followed by a review of “Asymptotic self-similarity of the first kind”,

or SS-1 for short. In many cases including the present case, SS-1 requires a generalization involving70

“Asymptotic Self-Similarity of the second kind”, or SS-2 for short. Physical examples are given to

explain these methodological concepts.

Section 3 explains the H-G data sets in channel networks from three published studies and one

unpublished study used in this paper to test theoretical predictions. In Sect. 4, an application of

Buckingham-Pi theorem gives a total of six independent dimensionless River-Basin numbers. The six75

numbers are specified using physical arguments rather than formal dimensional analysis. In Sect. 5,

we formulate a mass conservation equation for a river network indexed by Strahler order. We apply

the results from Sect. 2.1 to obtain a solution of this equation in terms of Horton bifurcation, area and

discharge ratios in the limit of large network order Ω. It applies to small order streams, ω = 1,2,3 . . ..

In Sect. 6, we consider three H-G variables, Wω , Dω and Uω , and show that they are power80

law functions of discharge. By definition, Qω = UωWωDω . Horton laws are obtained as asymptotic

relations for these three H-G variables. We show that self-similar solutions involving SS-1 hold

asymptotically for the width and the Reynold’s number. Values of their H-G exponents are predicted

and tested against field data from Sect. 3.

In Sect. 7, it is tentatively assumed that the SS-1 framework from Sect. 6 is valid for Sω , Dω85

and Uω . Horton laws for these three H-G variables are derived asymptotically, and their expo-

nents are predicted. Our predictions of the exponents are the same as those previously predicted

by (Rodríguez-Iturbe et al., 1992) for the Optimal Channel Network (OCN) model. In direct con-

trast to our work, the OCN model does not consider Horton Laws for these H-G variables, and uses

optimality assumptions. In this sense, foundations of our theory based in self-similarity and dimen-90

sional analysis are very different from that of the OCN model. The deviations between the observed

and predicted exponents are substantial suggesting that H-G in network does not obey SS-1.
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In Sect. 8, we explain that the reason for the failure of SS-1 is that slope, one of the dimensionless

numbers, goes to 0 as network order increases. But, slope cannot be eliminated from the asymp-

totic limit. Therefore, a generalization of SS-1 requiring SS-2 is needed. This section is divided into95

four subsections. The first one introduces two anomalous scaling exponents, α and β, in the theory.

It enables us to show the existence of Horton laws for channel depth, velocity, and slope, and de-

rive expressions for their exponents as functions of α and β. These two scaling exponents are free

parameters, which cannot be predicted from dimensional considerations. To make progress with de-

veloping and testing of theory, we consider Manning’s friction coefficient as the fifth H-G variable100

in the second subsection, which can be estimated from values of slope and velocity. We predict a

Horton law for the Manning’s friction coefficient and derive an expression for its exponent. The third

subsection tests the prediction of the exponent against three field studies. One of these basins shows

some deviation from the theoretical prediction. A physical reason for this deviation is investigated

in the fourth subsection.105

Two fundamental physical processes that shape the H-G of channels are transport of suspended

sediment load and the bed load that are not considered here. In Sect. 9, we sketch in a preliminary

manner how these two physical processes could be used to determine the two anomalous scaling ex-

ponents. Inclusion of statistical variability in the Horton laws for the H-G variables is also discussed.

Both are important open problems for future research. The paper is concluded in Sect. 10.110

2 Background and Methods

Leopold and Maddock (1953) first introduced the hydraulic-geometry (H-G) of rivers ‘at-a-station’

and in the ‘downstream direction’. At a station H-G relations refer to temporal variability of width,

depth, velocity, slope, channel roughness, and sediment transport as functions of discharge, and

‘downstream’ H-G relations refer to their spatial variability as functions of discharge. An extensive115

literature has developed on these topics; see Singh (2003) for a recent review of the literature. This

body of literature, though important, is not directly relevant to the objectives of our paper. Indeed,

Singh (2003) concluded his review paper with the statement, “The work on hydraulic geometry of

channels serves as an excellent starting point to move on to the development of a theory of drainage

basin geometry and channel network evolution. This will permit integration of channel hydraulics120

and drainage basin hydrology and geomorphology.”

In a classic paper, Leopold and Miller (1956) extended the H-G relations to drainage networks. A

brief review of pertinent concepts is given that is required to understand this work. Horton (1945)

first discovered ’Horton laws’ in quantitative geomorphology with the aid of maps. The original mo-

tivation was to define stream size based on a hierarchy of tributaries. The most common method for125

defining a spatial scale in a hierarchical branched network is the method of Horton–Strahler order-

ing, or Strahler ordering for short, because Strahler (1952, 1957) modified the ordering system that
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Horton had introduced. Strahler ordering assigns, ω = 1 to all the unbranched streams. They contain

the highest level of spatial resolution for a network and thereby define a spatial scale. Continuing

downstream through the network, where two streams of identical order ω meet, they form a stream130

of order ω+ 1. Where two streams of different orders meet, the downstream channel is assigned the

higher of the two orders. This continues throughout the network, labeling each stream, and ending

with the stream of order Ω. By definition, any network contains only one stream of order Ω called

the network order. Strahler ordering defines a one-to-one map under pruning, i.e., if the streams of

order 1 are pruned and the entire tree is renumbered, the order 2 streams identically become the new135

order 1 streams, the order 3 streams become order 2, and so on throughout the network. The order

of the entire network decreases by one. It is a necessary condition for defining self-similarity for

a hierarchical branched network that is reviewed in Sect. 2.1.

Strahler ordering led to the discovery of the “Horton laws of drainage composition”. They are

often referred to simply as the Horton laws. The most famous of the Horton’s laws is the law of140

stream numbers for Nω , denoting the number of streams of order ω in a network of order Ω. It is

traditionally written as

Nω
Nω+1

=RB, 1≤ ω ≤ Ω. (1)

The number RB is called the bifurcation ratio. Observations from real river networks show a lim-

ited range of RB values between three and five. These are not formal laws because they have not145

been proved from first principles, however, they are widely observed in real river networks. Similar

relationships are observed for lengths, slopes, and areas.

Shreve (1967) developed the ‘random model’ of channel networks and thereby offered the first

theoretical understanding of Eq. (1). He introduced the basic topological concepts of channel links

(defined as the segment of channel between two adjacent junctions where two or three channels150

meet) and magnitude, (defined as the total number of non-branching or source channel links). Shreve

(1967) showed that in the limit as magnitude goes to infinity,RB converges to 4. This demonstration

showed for the first time that the empirical Eq. (1) can be derived as an asymptotic result from

a suitable mathematical model of channel networks. We review this foundational issue in greater

detail in the next subsection using the mathematical model of self-similar Tokunaga River networks.155

Leopold and Miller (1956) extended the Horton laws to H-G variables. Their reasoning was that

channel discharge varies as a function of drainage area as a power law, Q= kAc. At the time, the

Horton law for drainage area was known (Jarvis and Woldenberg, 1984). They tested the Horton

law for discharge, and asserted that the Horton laws hold for the entire suite of H-G variables as

functions of discharge, e.g., width, depth, velocity, slope, channel roughness, and sediment trans-160

port. Until this paper was published, the Horton laws had been observed for only the topologic and

geometric variables (Jarvis and Woldenberg, 1984). By extending the Horton laws to H-G variables,

the Leopold and Miller (1956) paper showed how river basin geomorphology, hydrology and chan-

nel hydraulics are linked. Consequently, it opened a new door to understanding how the geometry,
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statistics and dynamics in river networks are mutually coupled on many spatial scales, which has165

far-reaching implications for understanding and modeling river flows and sediment transport in river

networks. This major objective has not been realized because the theoretical underpinning of the

Horton laws and the H-G exponents in channel networks has remained elusive. It remains a funda-

mental, long-standing open problem in Hydro-geomorphology that is addressed here.

The Strahler ordering and the Horton laws concepts had a big impact on several areas, for example,170

(i) model growth of plants and other hierarchical biological structures such as animal respiratory and

circulatory systems, (ii) in the order of register allocation for compilation of high level programming

languages, and (iii) in the analysis of social networks (Jarvis and Woldenberg, 1984; Pries and Sec-

omb, 2011; Viennot and Vauchaussade de Chaumont, 1985; Park, 1985; Horsfield, 1980; Borchert

and Slade, 1981; Berry and Bradley, 1976). The widespread appearance of Horton laws suggests175

that perhaps a “fundamental principle” underlies them. Indeed, recent research has shown that Hor-

ton laws are asymptotic relations that have been proved in theoretical self-similar river network

models. Self-similarity is a form of scale invariance. Specifically, we have selected the self-similar

Tokunga network model to develop the theory in this paper. This model is briefly reviewed in the

next Sect. 2.1.180

An attempt to predict the H-G exponents in river networks without the Horton laws is the theory

of optimal channel networks (OCN) (Rodríguez-Iturbe et al., 1992). OCNs have been analytically

shown to produce three universality classes in terms of scaling exponents, but none of these predic-

tions agree with data (Maritan et al., 1996). Two comprehensive field programs were carried out in

New Zealand (NZ) to test the OCN predictions (Ibbitt et al., 1998; McKerchar et al., 1998). However,185

the observed values of the H-G exponents substantially deviated from the OCN predictions that is

explained in greater detail in Sect. 7 and Sect. 8.3. Other attempts building on optimality ideas have

used data from these two New Zealand basins (Molnar and Ramirez, 2002). But, a foundational un-

derstanding of the geophysical origins of Horton laws for the H-G variables and their exponents has

remained elusive.190

West et al. (1997) recently tackled a somewhat similar problem in the allometric theory of biolog-

ical networks. Our treatment of the H-G problem has some similarities but major differences with

their approach. For example, West et al. (1997) appeal to an “optimality assumption” by maximizing

or minimizing a function. By contrast the present theory uses no optimality assumption, but uses

“self-similarity” as its basic building block.195

The complexity resulting from space-time variability in climate, hydrology and lithology can be

contrasted with the empirical observations like the Horton laws that suggest regularities related to

similarity across scales, or self-similarity. We briefly review key results for the self-similar Tokunaga

model in the next Subsection regarding Horton laws of stream numbers and magnitudes.
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2.1 Method: A brief review of self-similar Tokunaga River networks200

Eiji Tokunag introduced the Tokunaga model (Tokunaga, 1978). It is based on Strahler ordering and

involves the concept of self-similar topology in its construction. Unlike the random model of Shreve

(1967), this model is deterministic and does not include any statistical variability that is observed

in real networks. Therefore, the link lengths are assumed to be equal to l throughout the paper.

(Peckham, 1995a) gave empirical evidence that supports the idea that the average topologic features205

of medium to large river networks can be well described by the Tokunaga model. For example, in real

networks, generally 3<RB < 5 that the Tokunaga model can exhibit but the random model predicts

RB = 4 as mentioned above. Moreover, the mathematics in the Tokunaga model is simplified that is

necessary to make progress in the H-G problem addressed here.

The key building block of the model is a generator for side tributaries, Tω,ω−k, which may be210

interpreted as the mean number of streams of order ω− k joining streams of order ω since real

networks exhibit statistical variability in their branching structures (topology). Self-similarity in the

network topology is reflected in the assumption that, Tω,ω−k = Tk, k = 2,3, . . .. Tokunaga further

restricted his model by requiring that, Tk/Tk−1 = c, k = 2,3, . . ., and T1 = a, where c and a are

constant parameters associated with network topology. It leads to the generator expression,215

Tk = ack−1, k = 1,2, . . . , (2)

representing mean self-similar Tokunaga trees (Dodds and Rothman, 1999). These parameters are

observable quantities in natural basins.

Predictions are based on a fundamental recursion equation governing Nk, the number of streams

of order k,220

Nk = 2Nk+1 +

Ω−k∑
j=1

TjNk+j . (3)

Mcconnell and Gupta (2008) proved that the ratioNk/Nk+1 converges toRB in the limit as Ω−k→
∞. The limit applies to small order streams, k = 1,2, , . . ., as the network order Ω→∞. Mcconnell

and Gupta (2008) gave a physical interpretation of the limit as follows, “Note that if the overall order

Ω could be increased, we would expect to see more streams of higher and lower orders. However,225

when all the streams of smaller orders k and k+ 1 in a basin of very large order Ω are counted, we

expect that we have captured a significant and representative portion of the side tributaries, and the

observed bifurcation ratio more closely matches the predicted ratio. This physical argument clarifies

the use of the limit, Ω− k→∞´´. The solution to Eq. (3) is given by,

RB =
(2 + a+ c) +

√
(2 + a+ c)2− 8c

2
. (4)230

Mcconnell and Gupta (2008) also proved a Horton law for stream magnitudes, Mω, ω = 1,2, . . .

from the above result. Magnitude is defined in Sect. 2, and is the topological equivalent of drainage
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area. The Horton law for magnitudes is expressed as,

lim
Ω−ω→∞

Mω+1

Mω
=RM = lim

Ω−ω→∞

Aω+1

Aω
=RA. (5)

Where the Horton magnitude ratio, RM =RB =RA, and RA is the Horton area ratio. We remark235

that the random model obeys self-similarity in a mean sense, and it has, a= 1, c= 2. Above equation

predicts RB = 4 that agrees with the random model (Shreve, 1967).

Finally, we review two results, which were previously reported by others, and which have been

shown to hold for Tokunaga networks. The topological fractal dimension DT for Tokunaga net-

works is given by, DT = logRB/ logRC, where RB is Horton bifurcation ratio and RC is the link240

ratio (Peckham, 1995a). Since RB =RA, and assuming constant link lengths, RC =RL, it follows

that, RL =R
1/DT

A , where RL is the length ratio. For OCNs, DT = 2 (Maritan et al., 1996). For

natural river networks data sets show that typically, 1.7<DT < 1.8. The class of Tokunaga net-

works predicts values of DT less than or equal to 2. The Hack exponent for Tokunaga networks is,

βT = 1/DT ≥ 1/2, and the area exponent αT ≤ 1/2 as observed empirically (Peckham, 1995b).245

Moreover, for Tokunaga networks, αT +βT = 1 (Peckham and Gupta, 1999). A new theory of

random self-similar networks (RSN) includes statistical variability, and the Tokunaga is shown as

a special case for a subclass of RSN that obey mean self-similarity (Veitzer and Gupta, 2000). The

RSN theory provides the topologic and geometric foundations on which a H-G theory incorporating

statistical fluctuations can be developed in the future. RSN theory is not used here.250

2.2 Method: Asymptotic Self-Similarity of Type-1 and Type-2

The material covered in this subsection is a huge topic with a long history. We have selected Baren-

blatt (1996, 2003) because they are well written and offer a comprehensive reference on this impor-

tant topic in science and engineering. We have limited our review to some key concepts that are used

in our paper. The reader may consult Barenblatt (1996, 2003) as required for further explanations.255

Dimensional analysis is based on the simple idea that the laws of nature are independent of the

arbitrarily chosen basic unit of measurements. As a consequence these laws are invariant under a

change of scale. Mathematically this is expressed as a generalized homogeneity that manifests as

power laws. The famous Buckingham–Pi theorem, or simply Π-theorem, is a conceptualization of

this powerful idea. It enables one to reduce the number of arguments in the functions expressing260

the physical laws, thereby making it simpler to study nature’s regularities either experimentally or

theoretically. The Π-theorem says (Barenblatt, 2003, p. 25): “A physical relationship between a di-

mensional quantity and several dimensional governing parameters can be rewritten as a relationship

between a dimensionless parameter and several dimensionless products of the governing parame-

ters. The number of dimensionless products is equal to the total number of governing parameters265

minus the number of governing parameters with independent dimensions”. Let, a be the depen-

dent dimensional quantity, and a1, . . . ,ak, b1, . . . , bm the n= k+m governing parameters, k of them
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with independent dimensions. With this notation a= f(a1, . . . ,ak, b1, . . . , bm) can be transformed to

Π = Φ(Π1, . . . ,Πm), with Π = aa−p1 · · ·a
−r
k , and for i= 1, . . . ,m the dimensionless products for the

governing parameters with independent dimensions are Πi = bia
−pi
1 · · ·a−rik . Because of the defini-270

tions, the exponents pi, . . . , ri can always be obtained by solving elementary linear equations. A clas-

sical example to illustrate the Π-theorem is the formula for the period θ of the small oscillations of a

pendulum of mass m and length ` and the gravitational acceleration g. The three governing parame-

ters (m,`,g) have three independent dimensions (M,L,LT−2). Therefore the number of dimension-

less products of the governing parameters is n− k =m= 3− 3 = 0, which implies that the dimen-275

sionless product involving the period, Π, is a constant. It can be written as, θg1/2`−1/2 = constant

(Barenblatt, 2003, p. 132). The constant cannot be obtained from dimensional analysis. It must be

determined either from a theory or from observations, and is 2π for the pendulum example.

Majority of the successful examples of the applications of dimensional analysis can be found

in many textbooks, which share another important property that is not always emphasized but is280

necessary in our context. For such problems there is a clear way of separating the important variables

from the ones that do not play a significant role because they are either too small or too large. For

instance the textbook example (Gibbings, 2011, p. 119) of the derivation of Kepler´s third law from

dimensional analysis needs three non-dimensional numbers, and expresses the ratio of the period of

rotation, T , in terms of the other two, namely, the ratio of the mass of the planet m to the mass of the285

Sun M and the ratio of axes of the ellipsis, a/b, that can be expressed in terms of the eccentricity,

e2 = 1− (b/a)2. Let G denote the constant of gravitation. Therefore

GMT 2

a3
= f(m/M,e). (6)

The crucial observation is that two of the dimensionless numbers are small and therefore don’t

play a significant role in the limit when they go to zero. The consequence is that the limit of the290

function that expresses the non-dimensional number involving the period of the rotation in terms

of the other two goes to a constant. It is well known from the theory that the limit is 4π2. This is

self-similarity characterized by the existence of a non-trivial (different from zero or infinity) limit

of the function when some of the other non-dimensional products become very small or large. This

is called “Asymptotic self-similarity of the first kind”, or SS-1 for short, (Barenblatt, 2003, p. 84).295

SS-1 is applied to our problem in Sect. 6 and 7.

In many other cases a dimensionless number despite being too small (or large if you consider its

reciprocal), cannot be ignored in the limit. Mathematically this corresponds to the case that the limit

of a function does not exist, or is zero or infinity. The simplicity of SS-1, that consists in discarding

small dimensionless variables and obtaining the scaling exponents from dimensional analysis is lost300

in this case. In such cases small variables continue to play a role in the problem, and require a gen-

eralization of the dimensional analysis. The concept of “Asymptotic Self-Similarity of the second

kind”, or SS-2 for short, discussed in Barenblatt (1996, chap. 5). It is known as the ‘Renormalization
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group theory’ in statistical physics. For our purposes, the fluid-mechanical approach is more natural

than the statistical physical approach, because it is based on a generalization of the dimensional anal-305

ysis framework. We follow the fluid-mechanical approach in this paper. Barenblatt (1996, p. 172)

has explained that these two approaches are equivalent.

A simple example of SS-2 is the determination of the length of a fractal curve, that can be con-

trasted with a smooth curve (Barenblatt, 2003, p. 132). Let Lη be the length of a broken line of

segment length ξ that approximates the continuous curve between two points that are separated by310

a distance η. Lη depends on the two dimensional parameters η and ξ. Dimensional analysis gives

Lη = ηf(η/ξ). For a smooth curve, say a semicircle, as ξ→ 0 the argument η/ξ→∞ and the func-

tion f goes to a limit, namely π/2. Whereas for a fractal curve, the limit of f when η/ξ→∞
is infinity. In fact from fractal geometry we know that f(η/ξ)' (η/ξ)D−1. The anomalous expo-

nent D > 1 is the fractal dimension, that cannot be estimated from dimensional analysis. Barenblatt315

(1996) gives a recipe for the applications of similarity analysis and SS-2 to obtain the exponents

along with many physical examples that include turbulent shear flows, fractals, biological allometry,

and groundwater hydrology. We apply SS-2 in Sect. 8.

3 Data Sets

We use data sets from four drainage basins to test our theory. Three of them are taken from the320

literature. The fourth one is the experimental Whitewater basin, Kansas, USA that is unpublished.

These basins are selected with the criteria of availability of either complete H-G data for the entire

river network in them or the possibility to carry out Hortonian analysis for the H-G variables in one

or more basins. We are particularly interested in the power-law representation of the H-G variables

as functions of discharge that is widely used in the literature in analyzing data. The power-law325

representation and the corresponding scaling exponents are defined below. Our notation is the same

as in Leopold et al. (1964, p. 244).

Uω ∝Qmω , Wω ∝Qbω, Dω ∝Qfω, Sω ∝Qzω and n′ω ∝Qyω. (7)

The first basin is the classic Brandywine creek, PA in the US as given in Leopold et al. (1964,330

Table 7.5, p. 244), where the H-G exponents are also given. It has humid subtropical climate with

cool to cold winters, hot, humid summers, and generous precipitation throughout the year, approx

1100mm yr−1. Köppen climate classification lists it as type Cfa. It has a drainage Area of 777km2

at the mouth. Average discharge is 12m3 s−1. The observed values of the H-G exponents for the

Brandywine creek (Leopold et al., 1964, Table 7.5, p. 244) are b= 0.42, f = 0.45, m= 0.05, z =335

−1.07 and y =−0.28.

Two comprehensive field measurement programs were conducted in NZ. The largest part of NZ

has a pleasant sea climate with mild winters and warm summers. Köppen climate classification lists
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it as type Cf. The second field study was conducted in the Taieri River Basin (Ibbitt et al., 1998).

Figure 1 illustrates the measurement sites in the channel network of the Taieri River Basin. It has340

an estimated mean annual precipitation of 1400 mm. Basin Area is 158km2. Mean discharge, as

measured over the discontinuous 14 year period 1983–1996, is 4.90m3 s−1, representing an average

runoff rate of 980mm yr−1 from the basin. The field values of the H-G exponents for the Taieri

River Basin (Ibbitt et al., 1998) are, b= 0.517, z =−0.315, m= 0.238 and f = 0.247.

The third field study was conducted in the 121km2 Ashley River Basin (McKerchar et al., 1998).345

Annual precipitation increases in a northwesterly direction across the basin from 1200 to about

2000mm yr−1. Mean discharge, as measured at the stream gauge over the 20-year period 1977–1996

is 3.99m3 s−1, representing an average runoff rate of 1040mm yr−1 from the basin. The observed H-

G scaling exponents for the Ashley River Basin (McKerchar et al., 1998) are, b= 0.44, z =−0.317,

m= 0.318 and f = 0.242. Horton analysis for this basin is briefly described in Sect. 8.4. Both the350

data sets from NZ are very unique and offer the potential to conduct Horton analysis for the H-G

variables that Mantilla (2014) is conducting. Some of the results are presented in Sect. 8.4.

The last dataset comes from the 1100km2 Whitewater, KS in the US. According to the Köppen

climate classification the climate of this part of Kansas can be characterized as a humid continental

climate, with cool to cold winters and hot, often humid summers. Most of the precipitation falls in the355

summer and spring. Average precipitation is of the order of 840mm yr−1. Snowmelt runoff is negli-

gible, soil is composed of fine-grained sediment, and the land use is primarily agricultural and cattle

ranching. Whitewater basin was instrumented to conduct an interdisciplinary field and theoretical

hydrology program, called Hydro-Kansas (2002-2012). Kean and Smith (2005) tested a theoretical

fluid-mechanical model to estimate stream flows. The model was used to estimate streamflows at360

multiple spatial locations in streams of different Strahler order in the Whitewater basin (Clayton and

Kean, 2010). Mantilla (2014) participated in the H-K program and took field measurements of some

of the H-G variables, especially width and depth . He has kindly shared the necessary data for our

study.

An important issue in estimating field values of the H-G exponents is the measurement errors365

that are inherent to measuring the H-G variables, which affect their scaling exponents. For example,

(Ibbitt et al., 1998) and (McKerchar et al., 1998) have given standard errors for each of the H-

G exponents that are listed in Table 1. We use these field-estimated values in testing theoretical

predictions for b and y against their observed values from three basins in Sect. 6 and Sect. 8.3.

Theoretical relations between the Horton laws for the H-G variables and the corresponding scaling370

exponents are briefly considered in Sect. 8.4.
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4 Dimensionless River-Basin Numbers

The fundamental physical parameters governing the H-G in drainage networks are defined at the

bottom of a complete Strahler stream of order ω ≥ 1 as follows. Qω is river discharge rate [L3/T],

Aω is the cumulative drainage area, and Dω,Uω,Wω are channel depth, velocity, and width, respec-375

tively. Hω is the elevation drop that is defined as the elevation difference between the beginning

and the end junctions of a complete Strahler stream. Lω denotes the corresponding stream length.

Slope is defined as, Sω =Hω/Lω . Kinematic viscosity is ν, water density is ρ, and the gravitational

acceleration is g.R is the mean runoff rate per unit area from the hillslopes along a channel network,

and has dimension [L T−1]. The spatial uniformity of R implies that river basin is being assumed380

to be homogeneous with respect to mean runoff generation. This assumption can be relaxed, but we

want to keep this presentation simple.

From the set of twelve variables listed above, only nine are independent, because three variables

are dependent:Qω = UωWωDω , Sω =Hω/Lω , andLω =A
1/DT
ω . These nine independent variables

include three basic dimensions, Length (L), time (T) and mass (M). The Buckingham-Pi theorem ex-385

plained in Sect. 2.2 gives that the number of independent dimensionless numbers is 6, but it does not

give what they are. They can be specified either using formal dimensional analysis or physical argu-

ments. We adopt the later approach because it is physically insightful. Some of these dimensionless

numbers were considered in Peckham (1995b).

The first dimensionless number is given by,390

Π1(ω) =
Qω

RAω
. (8)

Discharge rate Qω is taken to be a linear function of drainage area given by, Qω =RAω , that is

observed in many humid climates for low and mean flows. (Leopold et al., 1964) used mean flow in

their H-G investigations. Low flow has been used in recent field H-G observations that are analyzed

in Sect. 8.395

The second dimensionless number is,

Π2(ω) =
R
√
Aω

DωUω
. (9)

It is suggested by mass conservation involving the ratio of runoff per unit width of drainage basin in

the numerator, and discharge per unit channel width in the denominator.

The relation between gravitational and inertia forces in river networks suggests the third dimen-400

sionless number Π3(ω). Specifically, we define the “Basin Froude Number” as,

Π3(ω) =
Uω√
gHω

=
Uω√
gSωLω

, (10)

where the channel slope,

Π4(ω) = Sω =Hω/Lω (11)
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is the fourth dimensionless number. The drop Hω defines the length scale governing gravitational405

force. It should be differentiated from a channel Froude number in open channel hydraulics where

flow depth defines the length scale.

The fifth dimensionless number is given by the Reynolds number. Leopold et al. (1964, p. 158)

have discussed its significance in the context of laminar and turbulent flows. In natural streams, the

flow is largely turbulent.410

Π5(ω) =
UωDω

ν
. (12)

The sixth dimensionless number incorporates the factors controlling flow velocity. Total frictional

force along the channel boundary is, τω(2Dω +Wω)Lω ≈ τωWωLω , where τω is the shear stress

per unit area. It is proportional to the square of the mean velocity for turbulent flows if the boundary

does not change with variations in flow (Leopold et al., 1964, p. 157). Gravitational force due to the415

mass of water along the channel length Lω is given by ρgWωDωLωSω . Dimensionless ratio of these

two forces gives,

Π6(ω) =
U2
ω

gDωSω
. (13)

The term
√
gDωSω is known as the shear velocity. Π6 is proportional to the Darcy-Weisbach re-

sistance coefficient. Leopold et al. (1964, Fig. 6.5) illustrated that for the Brandywine Creek, PA,420

1/
√

Π6 is linearly related to the logarithm of relative roughness defined by the ratio of flow depth to

the height of roughness elements.

5 Mass conservation in self similar Tokunaga networks

The discharge Qω is computed using a mass conservation equation for a network indexed by the

Strahler order ω ≥ 1. We show that a mass conservation equation for a channel network indexed by425

link magnitudes (Gupta and Waymire, 1998) is a special case of it. We further assume that our chan-

nel network is self-similar Tokunaga with link lengths l , and no statistical fluctuations in the topol-

ogy of channel network are considered in developing the H-G theory as mentioned in Sect. 2.1.

Let Sω(t) denote the storage in a Strahler stream of order ω ≥ 1 defined by,

Sω(t) =Wω(t)Dω(t)Lω. (14)430

The dependence of storage on time t comes from temporal variations of streamflows in the network,

which results in width and depth to vary with time.

Total number of junctions denoted by Cω is the same as the total number of links in a complete

Strahler stream of order ω. Let ti, i= 1,2,3, . . . ,Cω be a sequence of travel times for water to reach

the bottom of a complete Strahler stream from successive junctions enumerated from the bottom.435

This means that t1 represents the travel time from the first junction from the bottom, t2 from the
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second junction and so on. For example, since all the links are assumed to have the same length l,

and if water flows with a uniform velocity u, then ti = il/u.

Let Ri(t), i= 1,2,3, . . . ,Cω denote the volumetric runoff rate from the ith hill along a complete

Strahler stream of order ω. Let Qki , i= 1,2, . . . ,Cω denote the discharge from the side tributary at440

the ith junction from the bottom. Here the subscripts k1,k2, . . . denote the Strahler orders of the side

tributaries coming into the junctions counted from the bottom of a stream. LetQ1
ω−1(t) andQ2

ω−1(t)

denote the discharges in the two tributaries at the top of the stream. Each of them is of order ω− 1

by definition of the Strahler ordering given in Sect. 2.

Considering a Strahler stream as a finite control volume, the mass conservation equation can be445

written as,

dSω(t)

dt
+Qω(t) =Q1

ω−1(t− tω−1) +Q2
ω−1(t− tω−1)+

Cω∑
i=1

Qki(t− ti) + 2

Cω∑
i=1

Ri(t). (15)

For ω = 1, Eq. (15) reduces to the link magnitude-based mass conservation equation in Gupta and

Waymire (1998) that is easy to check.450

As a first step, we have chosen to focus solely on the spatial analysis in the context of H-G.

In particular, we seek a spatial solution of Eq. (15) by ignoring the time dependence of Qω(t), and

denoting it asQω(t) =Qω . This is tantamount to assuming that dSω(t)/dt= 0,Ri(t) = 0, ∀i, t > 0,

and the travel times ti = 0,∀i. Physically, these sets of assumptions can be interpreted to mean that

R, is applied uniformly throughout the network at time t= 0. Moreover, water is assumed to travel455

in a very short time throughout the network so that travel times are ignored.

In a recent paper on a space-time theory of low flows for river networks, travel times were ignored

throughout the basin compared to the subsurface response time for hillslopes, and R was computed

from hillslope processes under idealized conditions. The theoretical results so obtained compared

well with observations (Furey and Gupta, 2000). Similarly, in the present context, the idealized460

assumptions made above are necessary to make progress on this complex problem.

In view of above assumptions, Eq. (15) simplifies to,

Qω =Q1
ω−1 +Q2

ω−1 +

Cω∑
i=1

Qki . (16)

The key problem is to compute a solution for Qω . In view of the definition of self-similarity given

in Sect. 2.1, Eq. (16) reduces to,465

Qω = 2Qω−1 +

ω−1∑
k=1

TkQω−k, (17)

where Tk = Tω,ω−k, k = 1,2, . . . ,ω−1 denotes the number of side tributaries of order ω−k joining

a stream of order ω. Equation (17) has been solved rigorously under the assumption that Tk’s obey

Tokunaga self-similarity. The solution is given by Eq. (4). Because the recursion equation (Eq. 17)
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for Qω is the same as the ones for Aw, we assert from the arguments given in Sect. 2.1 that470

RQ = lim
Ω−ω→∞

Qω+1

Qω
=RB = lim

Ω−ω→∞

Nω
Nω+1

=RA = lim
Ω−ω→∞

Aω+1

Aω
(18)

and

RQ =RB =RA =
(2 + a+ c) +

√
(2 + a+ c)2− 8c

2
.

Equation (18) implies that Qω = RAω that is used in defining the first dimensionless number in475

Sect. 4. It follows from the definitions of Horton ratios, and from the equality, RQ =RB that,

Qω+1Nω+1 =QωNω, as Ω−ω→∞. (19)

This is a foundational result governing mass conservation in self-similar Tokunaga networks. Even

though, Eq. (19) is valid in the limit of large network order, the result holds for small values of ω as

explained in Sect. 2.1. It should be noted that if one substitutes Aω for Qω in Eq. (19), then it loses480

its physical interpretation. The reason is that Qω is a dynamic variable but Aω is a fixed geometrical

variable. Moreover, a power law relation between these two variables plays a fundamental role in

the H-G investigations as explained above in Sect. 2 and later in Sect. 8.3.

West et al. (1997) used mass conservation equation for perfect branching biological networks in

which no side tributaries are present and each parent branch bifurcates into two branches. In that485

case, it is simple to write down Eq. (19) as a special case of mass conservation without involving any

limit. West et al. (1997) used it to obtain some remarkable results governing allometry in biological

networks.

We apply Eq. (19) to extend the geometric and topological Horton laws in self-similar Tokunaga

networks to include the H-G variables. Figure 2 shows a Horton law for channel widths in a drainage490

network that was mentioned along with other H-G variables in Sect. 2. As mentioned there, the key

equation providing this link is a power-law relation between discharge and drainage area, and a

Horton law for drainage areas (Leopold and Miller, 1956, p. 19-20). Both these features are derived

above for Tokunaga networks. It is discussed in greater detail in the context of H-G data from two

field studies in Sect. 8.4, which shows deviations between theoretical predictions and observations.495

6 Derivation of Horton Law and the exponent of width using SS-1

6.1 Horton laws for channel width, depth and velocity

It follows from the definition of Π1 (Eq. 8) and the fact that RQ =RA (Eq. 18),

lim
Ω−ω→∞

Π1(ω+ 1)

Π1(ω)
=RΠ1

= 1, ω = 1,2, . . .� Ω. (20)

This important result comes from the self-similarity of Tokunaga networks and the assumption of500

spatial homogeneity of runoff R. It probably is a valid assumption for widely varying climatic re-

gions and a broad range of spatial scales. For example, the three river basins, one from the United
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States (US) and two from New Zealand (NZ) that we use to test the predictions of our theory have

different climates, and different sized drainage areas as described in Sect. 3. We also test ifRQ =RA

holds for one of the NZ basins in Sect. 8.3.505

All the five H-G variables, U ,W ,D, S and the Manning’s friction coefficient n′ considered in this

paper vary as discharge Q varies. Therefore, we assume that all the H-G variables are homogeneous

functions of Q. This is the simplest mathematical assumption because it means that the functions

do not depend on any other parameter except Q. It is widely used in the H-G literature reviewed in

Sect. 2. We can write it as U = f1(Q), W = f2(Q) etc. To determine the form of these functions,510

one needs a functional equation depending on the physical context. Peckham (1995b, p. 53) has

reviewed four functional equations with solutions known as Cauchy equations that repeatedly come

up in similarity type investigations. Of these four, the most pertinent in our context is the functional

equation based in self-similarity. Consider U = f1(Q). Self-similarity can be represented by the

functional equation f1(Q1 ∗Q2) = f1(Q1)f2(Q2) (Gupta and Waymire, 1998, p. 102–103), whose515

solution is a power law.

U = f1(Q)∝Qm.

The above argument applies to all the functions. Therefore, the H-G variables can be written as

power law functions of discharge, something that has been widely used and was introduced in Eq. (7).

Equation (18) showed that the ratio, Qω+1/Qω , converges to RQ, and thereby obeys a Horton law.520

To extend the Horton laws to the H-G variables, let us consider velocity

lim
Ω−ω→∞

Uω+1

Uω
=
Qmω+1

Qmω
=RmQ =RU , (21)

which follows from the fact that the ratios are positive and monotonic in ω as shown in (Eq. 7)

(Rudin, 1976, p. 44).

Similarly,RW =RbQ andRD =RfQ. By definition,Qω = UωWωDω . Therefore, the Horton ratios525

for velocity, width and depth can be written as,

RU =RmQ , RW =RbQ, RD =RfQ, m+ b+ f = 1. (22)

The derivation of Eq. (22) required that, (i) Horton laws for channel widths, depths and velocities

hold in Tokunaga self-similar networks, (ii) runoff generation R is spatially homogeneous, and (iii)

channel width, depth and velocity depend monotonically on channel order.530

6.2 Prediction of the width exponent and Reynolds number exponent

We will now use the above results to show that the Horton laws for the topologic and geometric

variables explained in Sect. 2.1 extend to channel widths. Our arguments are based in dimensional

analysis as explained in Sect. 2.2. Consider the dimensionless number Π2(ω) defined by Eq. (9), and

the ratio given by,535

RΠ2(ω) =

√
Aω+1√
Aω

× DωUω
Uω+1Dω+1

. (23)
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Substituting, DωUω =Qω/Wω , in the above expression gives,

RΠ2
(ω) =

√
Aω+1√
Aω

× QωWω+1

Qω+1Wω
. (24)

We have already shown that the right hand side converges to a constant in Sect. 6.1. It follows that

the left side of Eq. (24) also converges to a constant. Stated mathematically,540

lim
Ω−ω→∞

√
Aω+1√
Aω

QωWω+1

Qω+1Wω
=
R

1/2
A RW
RQ

= lim
Ω−ω→∞

RΠ2
(ω) =RΠ2

. (25)

The asymptotic constancy of the ratio RΠ2
(ω) of the dimensionless number Π2 across different

Strahler orders holds in Tokunaga networks. Since, RQ =RA, Eqs. (25) and (22) can be combined

to obtain,545

RW =RΠ2R
1/2
Q =RbQ. (26)

Therefore, RΠ2
= 1, and the channel width H-G exponent is,

RW =R
1/2
Q , b= 1/2. (27)

It directly follows from Eqs. (12), (22) and (27) that a Horton law for Reynolds number can be

written as,550

RΠ5
=RURD =Rm+f

Q =R
1/2
Q . (28)

We now test these predictions against data from three field studies described in Sect. 3. The first

test of the theory is for the Brandywine creek (Leopold et al., 1964, Table 7.5, p. 244). The empirical

values of width, depth and velocity do not satisfy b+f+m= 1, instead they add to 0.92. Assuming

that depth and velocity exponents are correct as per our discussion in Sect. 8.3, b= 1−f−m= 1/2555

agrees with our theoretical prediction. Likewise, f +m= 1/2 also agrees with our predictions.

The second test of the theory is in Taieri River Basin (Ibbitt et al., 1998) (see Sect. 3 and Table 1).

The empirical width exponent interval is (0.501,0.533). The predicted value b= 1/2 is very close

to the empirically estimated lower bound. For the computation of the error in m+ f we assume

independence and use the well-known formula that the variance of a sum is the sum of variances. It560

is used whenever there is a linear function of the exponents. Using the formula, the empirical depth

plus velocity exponent interval is (0.457,0.513). The predicted value m+f = 1/2 lies in this range.

Both these predictions support our theory in the Taieri basin.

The third test is in the Ashley river basin (McKerchar et al., 1998) described in Sect. 3. The

empirical width exponent interval is (0.424,0.456). The predicted value b= 1/2 lies outside this565

range. Similarly, the empirical depth plus velocity exponent interval is (0.537,0.583). The predicted

value m+ f = 1/2 lies outside the range. Clearly there is a discrepancy between the observed and

the predicted values.
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Comparing the field-measured values of the H-G exponents in the Taieri basin and the Ashley

basin, which have similar scales and climates, f and z are comparable as one expects, but not of b570

and m. It suggests a physical reason for the discrepancy that is not included in our theory, which is

discussed in Sect. 8.4.

7 Predictions of Horton Laws and the H-G exponents assuming SS-1, and comparison with

OCN model exponents

In the following developments, we tentatively assume that SS-1 applies to slope, Sω , and that the575

Horton ratio for slope converges to RS following a similar reasoning as given in Eq. (21). From that

assumption we predict the Horton laws for width, depth, velocity and slope and test our predictions of

their exponents against the optimal channel network (OCN) model of Rodríguez-Iturbe et al. (1992).

We show that the four predicted scaling exponents based in this tentative assumption agree with the

OCN model. However, our theory differs from it in a fundamental manner because we predict Horton580

laws for these variables, but the OCN model does not address this issue. Moreover, our analysis uses

self-similarity, but OCN uses ’optimality’. SS-1 in the H-G context is not the correct assumption

as explained in the next section. It is being made here only to compare the predictions of the H-G

exponents from our theory with the OCN model.

Define the Horton ratio for the Basin Froude number from Eq. (10). Following similar arguments585

as given in Eq. (21), and given about the length ratio in Sect. 2.1. We assert the convergence of the

Basin Froude number because the Horton ratio of each term in it converges.

lim
Ω−ω→∞

Π3(ω+ 1)

Π3(ω)
=RΠ3

=
RU√
RLRS

. (29)

From Eq. (7)RS =RzA =RzQ. Invoking,RL =R
1/DT

A =R
1/DT

Q from Sect. 2.1 and assuming that

the Tokunaga network is space filling as discussed there for the OCN model, it follows that DT = 2.590

Substituting RU =RmQ from Eq. (21) into Eq. (29) gives,

RU =RmQ =RΠ3R
1/4
Q R

z/2
Q . (30)

Equation (30) predicts that RΠ3 = 1, and

m=
1

2
(z+ 1/2). (31)

Similarly, consider the Horton ratio for the dimensionless number proportional to the Darcy–595

Weisbach resistance coefficient given by Eq. (13), and take limit. We have demonstrated the conver-

gence of each term in it. Therefore,

lim
Ω−ω→∞

Π6(ω+ 1)

Π6(ω)
=RΠ6

=
R2
U

RDRS
. (32)

We get an expression for the depth exponent by rewriting Eq. (32) as

RD =RfQ =
R2
U

RΠ6
RS

=
R2m
Q

RΠ6
RzQ

. (33)600
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It predicts, RΠ6
= 1, and

f = 2m− z. (34)

Solving Eqs. (31) and (34) gives, f = 1/2,m= 0, z =−1/2, which also satisfy the constraint that

m+ f = 1/2. Our predictions may be summarized as: (1) Horton laws hold for the H-G variables

in self-similar Tokunaga networks, (2) the H-G exponents are, b= 1/2, m= 0, f = 1/2, z =−1/2.605

Our second prediction agrees with the OCN model Rodríguez-Iturbe et al. (1992). We have already

mentioned that the OCN model does not consider Horton laws for the H-G variables. That the expo-

nents match is not a surprise because our theory is built on dimensional analysis. In conclusion, we

state that our theory is fundamentally different from the OCN model.

To test the OCN predictions we used the data sets reported in Sect. 3. Except for the Brandywine610

and the Taieri basins that support b= 1/2, other measured H-G exponents don’t agree with theoret-

ical predictions. The deviations are substantial suggesting that H-G in network does not obey SS-1.

We address this foundational issue in the next section.

8 Application of SS-2 to predict Horton Laws and Exponents for the H-G variables

Slope appears in dimensionless numbers given by Eqs. (10), (11) and (13). The stream drop in615

Eq. (11) is bounded but stream length increases with order. Therefore, slope Sω→ 0 as Ω−ω→∞.

Moreover, slope cannot be eliminated from the asymptotic limit. Therefore, a generalization of the

dimensional analysis as explained in Sect. 2.2 is required to develop the H-G theory. It is the focus

of this section.

8.1 Horton laws and theoretical expressions for the H-G exponents620

Following Barenblatt, we define two “renormalized dimensionless numbers” in which slope appears.

Equations (10) and (13) modify to,

Π∗3(ω) =
Uω√
gLωSαω

, (35)

Π∗6(ω) =
U2
ω

gDωS
β
ω

. (36)
625

Here α and β are “anomalous scaling exponents” that cannot be predicted from dimensional analysis.

In principle they can be predicted from physical arguments involving sediment transport. This is

a task for future research as explained in Sect. 9.

Following similar arguments as given in Sect. 6 to justify Eq. (21), we assert the convergence of

the normalized dimensionless numbers,630

lim
Ω−ω→∞

Π∗3(ω+ 1)

Π∗3(ω)
=RΠ∗3

=
RU√
RLRαS

. (37)
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and,

lim
Ω−ω→∞

Π∗6(ω+ 1)

Π∗6(ω)
=RΠ∗6

=
R2
U

RDR
β
S

. (38)

Recall from Sect. 2.1 that RL =R
1/DT

A =R
1/DT

Q and from Sect. 6 that, RS =RzA =RzQ, and

RU =RmQ . Therefore, Eq. (37) gives,635

RU =RmQ =R∗Π3
R

1/2DT

Q R
zα/2
Q . (39)

Equation (39) predicts that R∗Π3
= 1, and

m=
1

2
(zα+ 1/DT). (40)

Since m+ f = 1/2, an expression for the depth exponent follows directly from Eq. (40),

f =
1

2
(1− zα− 1/DT). (41)640

We get a second expression for the depth exponent by rewriting Eq. (38) as

RD =RfQ =
R2
U

RΠ∗6
RβS

=
R2m
Q

R∗Π6
RzβQ

. (42)

It predicts, RΠ∗6
= 1, and, in view of Eq. (40),

f = 2m− zβ = z(α−β) + 1/DT. (43)

Equating the expressions for f from Eqs. (43) and (41), we obtain an expression for the slope scaling645

exponent as,

z(3α− 2β) = 1− 3/DT. (44)

Equations (40) and (44) together generalize the H-G theory for a channel network based on an

application of the renormalization group theory, and SS-2.

To summarize, given the topological fractal dimension DT, and prediction of the width exponent,650

b= 1/2 by Eq. (28), we have two Eqs. (40), (44) that give theoretical expressions for H-G exponents

m, z in terms of two unknown parameters, α, β. Our theoretical expressions for the H-G exponents

can be written as,

b= 1/2

z = (1− 3/DT)/(3α− 2β)655

m= (zα+ 1/DT)/2 (45)

f = 1/2−m.
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8.2 Horton law for the Manning’s friction and a theoretical expression for its exponent

The scaling exponents α and β are free parameters, which are not predicted by our theory. It implies660

that m, f = 1/2−m and z are not predicted and tested against data in this paper. This poses a big

challenge for our work. To make progress on this crucial aspect of the theory we consider Manning’s

friction coefficient that can be estimated from the observed values of depth and slope. We derive

a theoretical expression for the Manning’s friction exponent here, and test it against data in the next

subsection.665

Rewrite Π∗6(ω) given by Eq. (36) as,

Π∗6(ω) = 1 =
U2
ω

gDωS
β
ω

=
U2
ω

gDωSωS
−1+β
ω

, (46)

so it may be expressed in the form of the well-known Chezy’s equation,

Uω = (gDωSω)1/2S(−1+β)/2
ω . (47)

Therefore an expression for the Chezy’s friction parameter is given as,670

C∗ω = (g)1/2S(−1+β)/2
ω , (48)

provided, β < 1. This constraint is mentioned because the slope exponent must be negative to be

consistent with data. Manning’s friction coefficient n′ω is related to Chezy’s by means of (Leopold

et al., 1964, p. 158),

Uω = C∗ω
√
DωSω =

1.49

n′ω
D2/3
ω S1/2

ω =
1.49

n′ω
D1/6
ω

√
DωSω.675

Therefore,

n′ω = 1.49D1/6
ω /C∗ω. (49)

It can be expressed as the ratio using Eqs. (48) and (49) as,

C∗ω+1

C∗ω
=

[
Dω+1

Dω

]1/6 [
n′ω
n′ω+1

]
. (50)

Taking the limit as, Ω−ω→∞, gives680

Rn′ =R
1/6
D R

−(−1+β)/2
S . (51)

Equation (7) defined Rn′ =RyQ. Using RS =RzQ as before gives an expression for the H-G scaling

exponent related to the Manning’s equation,

Rn′ =RyQ =R
f/6
Q R

−z(−1+β)/2
Q , (52)

which gives a theoretical prediction for the Manning friction exponent as,685

y = f/6− z(−1 +β)/2 (53)
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provided, β < 1. There are no adjustable parameters in this expression once β is estimated as ex-

plained in the next subsection. We use the same sets of field data for channel networks to support

that estimated β < 1, and β < 3α/2 from Eq. (44).

Mantilla et al. (2006) have described the H-G form of Chezy’s friction coefficient that they de-690

duced from empirical observations. They showed that the expression for Chezy’s friction coefficient

played a key role in testing the presence of statistical self-similarity involving Hortonian relationship

in peak flows in the Walnut Gulch basin, Arizona.

8.3 Test of Manning Scaling exponent for Three Field

Studies695

As mentioned in Sect. 8.2, we predict the Manning’s exponent y using the empirical values of f

and z for three field studies described in Sect. 3, and test our prediction against the empirical values

of y as a second test of our theory. Despite the appearance of DT in Eqs. (45) and (53), and the

regularity of its observed values between 1.7 and 1.8 (La Barbera and Rosso, 1989), given f and z,

the exponent β does not depend onDT, i.e., our test becomes independent ofDT. To see this feature,700

notice from from Eqs. (45) that one gets after straightforward algebra, β = (1− 3f)/z. Therefore,

y, can be rewritten strictly as a function of f and z,

y = f/6− z(−1 +β)/2 = 5f/3 + z/2− 1/2. (54)

The above argument does not imply that the set of scaling exponents is independent of DT. As

Eq. (45) shows, the depth and slope exponents f and z depend on α, β and DT. Whatever influence705

DT has on the scaling exponents comes through f and z.

The first test of the theory is for the Brandywine creek (Leopold et al., 1964, Table 7.5, p. 244).

The observed values of the H-G exponents were given in Sect. 3 and are also presented in Table 1.

Eq. (54) correctly predicts the empirical value of the Manning’s exponent, y =−0.285. This predic-

tion also supports our assumption made in Sect. 6.2 that depth and velocity exponents are correct,710

because they lead to a correct prediction of the Manning’s exponent.

The second test is conducted in the Taieri River Basin. Ibbitt et al. (1998) do not give an empirical

value of Manning’s friction exponent, but it can be computed from the empirical Manning equation

using the exponents f and z. We first use the values of the exponents given Sect. 3, and then incorpo-

rate the errors in these exponents to compute an interval for y. The exponents along with the errors715

are listed in Table 1.

Uω = 1.49D2/3
ω S1/2

ω /n′ω,

as,

y = (2/3)(0.247) + (1/2)(−0.315)− 0.238 =−0.231. (55)
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The measurement errors in the exponents listed in Ibbitt et al. (1998) give the range, (−0.259,−0.203)720

for y.

To make a theoretical prediction of y, using the empirically computed values of the scaling ex-

ponents f and z, the predicted value of the Manning-scaling exponent from Eq. (54) is −0.246.

The measurement errors in the exponents f and z listed in Ibbitt et al. (1998) and in Table 1 lead

to the prediction of the range (−0.276,−0.216). This predicted interval overlaps with the empirical725

interval of y computed above. It supports our theory in the Taieri basin.

The third field test is for the Ashley River Basin (McKerchar et al., 1998). The exponents are given

in Sect. 3 and in Table 1 that lists the errors. McKerchar et al. (1998) do not give an empirical value

of the Manning’s friction exponent, but it can be computed from above exponents and the empirical

Manning equation. The value is,730

y = (2/3)(0.242)− 0.318− (1/2)(0.317) =−0.315. (56)

Using the observed values of f and z, the predicted value of the Manning scaling exponent using

Eq. (54) is,

y = 5(0.242)/3 + (−0.317)/2− 1/2 =−0.255. (57)

The measurement errors in the exponents listed in (McKerchar et al., 1998) give the range for735

the empirical Manning friction exponent y as, (−0.338,0.292). Using the observed values with

errors in f and z, the range of the predicted scaling exponent y is (−0.281,−0.230). Clearly the

predicted interval does not overlap with the empirical interval. There is some discrepancy between

the observed and the predicted values. It seems to come from the observed exponents of width and

velocity. The discrepancy in the width exponent noted in Sect. 6.2 affects the velocity exponent,740

which in turn affects the Manning friction exponent. This important topic is the focus of the next

section.

Table 1 presents a summary of the observed and predicted H-G scaling exponents for the three

basins considered above. Predicted values for the exponent y from Eq. (53), for the exponent b= 1/2

from Eq. 45, and for the exponent m+ f = 1/2 from Eq. 28 are given in the Table.745

8.4 Test of Horton laws and RQ = RA relationship for the Ashley basin

Mantilla (2014) is testing the presence Horton laws for the H-G variables in the two NZ basins

considered here and a few others basins like the Whitewater for which he has data. He has kindly

shared some of his analysis with us for the Ashley basin that has Ω = 6. He extracted the Ashley

basin geomorphology from the Digital Elevation Model (DEM) data using the software CUENCAS750

(Mantilla and Gupta, 2005). His first set of results pertains to the Horton laws for drainage area

and stream numbers as shown in Figs. 3 and 4. The Horton laws hold quite well, and the observed

RA = 4.47 agrees well with RB = 4.5 as predicted for the Tokunaga network in Sect. 2.1.
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Next, the Horton law for the width is shown in Fig. 5. In making this plot, the theoretical condition

Ω−ω→∞ is incorporated by omitting order 6 and 5 streams from the analysis. Mantilla (2014)755

found that the basin has a large number of the 1-st order streams that are mostly missed in the map

that McKerchar et al. (1998) presented. Therefore, the Horton plot is made for streams of order

ω = 2,3,4, shown in Fig. 5. Horton width ratio, RW = 1.61 is observed. Other H-G variables not

shown here support that the Horton laws for the H-G variable hold for the Ashley basin as predicted

in our work.760

Next mean stream flow is considered. Similar to the width, a Horton plot is made for streams

of order ω = 2,3,4 as shown in Fig. 6. RQ = 3.05 is observed. As a test of Eq. 22), we note that

3.050.44 = 1.63 is consistent with the observed value of RW = 1.61 that Mantilla (2014) obtained.

Other H-G variables not shown here support that the Horton laws hold as predicted in our work,

and RQ =RWRDRU = 2.96 is close to the value of RQ = 3.05. These results demonstrate the765

observed consistency between the scaling exponents and the Horton ratios for the H-G variables that

are derived in Sect. 6 and 8.

Next task is to test if RQ =RA given by Eq. 18 holds in the Ashley basin. Data shows that

logRQ/ logRA = 0.74. It can be written as,

RQ =RθA. (58)770

where θ = 0.74. Clearly, our theory’s prediction that RQ equals RA (see Eq. 18) is not supported by

this observation. The physical reason is that all the streams in a network do not contribute to stream

flows in the Ashley basin. Many physical processes play a role in runoff generation, like space-time

variable rainfall, state of dryness or wetness of soil in a basin at the time rainfall begins, which

governs infiltration into soil and evaporation from it and so on. The physical parameter, θ, represents775

the aggregate behavior of the physical processes governing runoff generation, and can take a values

less than or equal to 1.

Galster (2007) analyzed several basins to test the relationship Q= kAc. His results show that the

studied watersheds could be grouped into two broad categories based on their respective c values:

(1) those where c= 1 or nearly 1, and (2) those where c is significantly < 1 like 0.8 or 0.5. Other780

research efforts have been made on understanding the nature of the scaling exponent θ from physical

processes (Poveda et al., 2007; Gupta et al., 2010; Furey et al., 2013). The reader may note that our

exponent θ is equivalent to c. Moreover, the derivation in Eq. (18) that RQ =RA applies to category

(1) basins in Galster (2007), but not to category (2) like the Ashley. Therefore, our theory needs to

be generalized to incorporate such basins for which θ < 1.785

9 Future research problems: two examples

The above theory can be generalized along several lines. We illustrate two important problems. The

first is that the anomalous scaling exponents α and β need to be predicted using physical arguments.
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Two fundamental physical processes that shape the H-G of channels are transport of suspended

sediment load and the bed load that we have not considered so far. There is a huge literature on this790

subject (Leopold et al., 1964; Singh, 2003). Our ideas on how these two physical processes can be

used to determine α and β are rudimentary and are only meant for illustration.

The suspended load increases in proportion to discharge. Therefore, suspended sediment con-

centration, defined as the ratio of the two, does not change. Leopold et al. (1964, p. 269) gave an

expression for sediment concentration, C ∝ (UD)0.5S1.5/n4, constancy of C implies that 0.5m+795

0.5f+1.5z−4y = 0, or, 0.25+1.5z−4y = 0 since,m+f = 1/2. It gives the first equation in terms

of α and β.

The second equation can be developed from considering stream power per unit of bed area, $ =

ρgQS/W , which plays a basic role in the bed load transport (Molnar, 2001). Essentially all the

theories of bed load transport assume that there is a threshold shear stress, stream power, or mean800

flow speed, and no erosion occurs below it. During floods, these variables exceed the threshold, and

bed load is transported that creates erosion. We expect that a second equation can be obtained from

these considerations in terms of α and β. The two equations can be solved to compute α and β.

Tradionally Horton laws have been known in terms of statistical means. Peckham and Gupta

(1999) reformulated the Horton laws in terms of probability distributions and called them “gener-805

alized Horton laws”. Specifically, they gave observational and some theoretical arguments to show

that probability distributions of all drainage areas rescaled by their means, Aω/Aω collapse into

a common probability distribution. Let us consider drainage areas, Aω/Aω to illustrate generalized

Horton laws. There are two components to this argument.

i. A Horton law for the mean drainage areas, Aω of order ω, holds that can be written as,810

Aω =Rω−1
A A1, ω = 1,2, . . . , (59)

where RA, is the Horton’s area ratio. It is illustrated in the Whitewater basin, Kansas, USA in

Fig. 7.

ii. A generalized Horton law is defined as

Aω+1/Aω+1
d

=Aω/Aω, (60)815

or,

Aω+1
d

=
(
Aω+1/Aω

)
Aω, ω = 1,2, . . . (61)

where d
= means that the probability distributions of the rescaled areas on both sides of Eq. (61)

are the same. Since the Horton law holds for the mean areas given in Eq. (59), it follows from

Eq. (61) that,820

Aω+1
d

=RAAω, ω = 1,2, . . . (62)
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Mantilla and Gupta (2005) have shown the existence of generalized Horton law for the rescaled

drainage areas, Aω/Aω , because it is independent of ω. This feature is illustrated for the

Whitewater basin, Kansas, USA in Fig. 8.

Let us consider the dependence of channel widths on discharge. Both are treated as random vari-825

ables. Therefore the results obtained in Sect. 6.2 can be interpreted as that for the means and written

as, W (Qω) = cQ
b

ω . We conjecture that the generalized Horton law holds for the rescaled channel

widths, and write it as,

W (Qω+1) =

(
Qω+1

Qω

)b
W (Qω), ω = 1,2, . . . (63)

This is an equality among random variables as shown for drainage areas in Eq. (61). It means that the830

probability distribution of W (Qω+1) can be computed from the probability distribution of W (Qω)

provided a Horton law of mean widths and the value of b are known. Both these features are predicted

in Sect. 6 for self-similar Tokunaga networks. Our conjecture is made in the light of the result that

the Tokunaga networks are a special case of a subclass of RSN (Veitzer and Gupta, 2000). In view

of these arguments, we can write,835

Wω =Rω−1
W W1, ω = 1,2, . . . , (64)

where, RW =RbQ is the Horton ratio for the mean widths. We conjecture based on these arguments

that Horton laws hold for all the H-G variables measured in the two New Zealand basins that were

analyzed in the Sect. 8.3. We supported this conjecture for the validity of Horton laws for widths

and stream flows in the Ashley basin in Sect. 8.3. Both the NZ basins have the necessary data sets to840

test our conjecture regarding applicability of the generalized Horton laws for all the H-G variables

considered in this paper. Mantilla (2014) is conducting this research.

10 Conclusions

There has been important progress in topological and geometric theories to explain the related Hor-

ton’s law for stream bifurcation, drainage areas and stream lengths as asymptotic relations. But845

progress on Horton laws for the H-G variables has been long overdue. We made a contribution to

this important problem, and laid the theoretical foundations of a H-G theory in the self similar Toku-

naga networks. Our main findings are summarized below:

1. The theory used several disjoint theoretical concepts like, Horton laws of stream numbers and

areas as asymptotic relations in Tokunaga networks, dimensional analysis, Buckingham-Pi850

theorem, SS-1 and SS-2. A self-contained review of these concepts with examples was given

as ‘methods’ in Sect. 2.

2. The H-G data sets in channel networks from three published studies and one unpublished

study were summarized for testing theoretical predictions in Sect. 3.
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3. An important issue in estimating field values of the H-G exponents is the measurement errors,855

which affect the scaling exponents. Standard errors for each of the H-G exponents from the

two NZ basins are listed in Table 1.

4. We used the Buckingham–Pi theorem and identified six dimensionless basin numbers in Sect. 4,

which served as a basis to develop the theory in the subsequent sections.

5. A mass conservation equation was specified in Strahler ordered networks. A link-based equa-860

tion as a special case of our equation has been known (Gupta et al., 2007). We solved it in

Tokunaga networks using the results from Mcconnell and Gupta (2008) and derived a mass

conservation equation in the limit as, Ω−ω goes to infinity in terms of Horton bifurcation and

discharge ratios in Sect. 5. We also derived that Horton discharge ratio is equal to the Area

ratio.865

6. We gave an analytical derivation of the H-G relations as power-law functions of discharge.

The derivation is based on the assumptions that the H-G variables are homogeneous and self-

similar functions of discharge. The Horton laws are extended to width, depth and velocity in

Tokunaga networks using the results from Sect. 5. Within the dimensional analysis framework,

the SS-1 given in Barenblatt (1996) is used to predict the width exponent, b= 1/2, and the870

Reynold’s number exponent m+f = 1/2. These predictions are tested against data sets given

in Sect. 3 including the standard errors listed in Table 1. These results are given in Sect. 6.

7. Tentatively assuming that SS-1 holds for slope, we predicted the Horton’s laws for S, U and

D, and their exponents. Our predictions agree with the exponents given in the optimal channel

network (OCN) model (Rodríguez-Iturbe et al., 1992), but OCN does not consider Horton875

laws. Our theoretical framework is based in self-similarity, and does not use any optimality

assumptions. Published data in Sect. 3 showed that most of the OCN predictions do not agree

with observations. These results are given in Sect. 7.

8. SS-2 is required to deal with the case when one or more dimensionless numbers go to zero in

the limit. In the present context, slope goes to zero in the limit of large basin order. Therefore,880

SS-2 is needed, which gives rise to two anomalous scaling exponents, α and β that come from

two dimensionless numbers in Sect. 4. We derived Horton’s law for S, D, and U in Sect. 8,

but the H-G exponents become functions of α and β.

9. We do not give a physical prediction of α and β. To make progress on testing our theory,

Manning’s friction exponent y is considered because it could be estimated from data on slope,885

velocity, width and depth, as well as predicted from our theory using the observed exponents

for D and S. Standard errors in the exponents are considered in carrying out these tests of the

theory. The predictions are excellent for two of the three basins but show some discrepancy in

the Ashley basin given in Sect. 8.3.
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10. The validity of the Horton laws in the Ashley basin was tested using results from Mantilla890

(2014) that is work in progress. We showed some results for the existence of Horton laws for

widths and stream flows.

11. Test of RQ =RA showed that this prediction does not hold in the Ashley basin, because some

of the assumptions leading to Eq. (17) do not hold. To incorporate this hydrologic feature in

Tokunaga networks, the generator expression given in Eq. (2) needs to be modified so that all895

the streams that don’t contribute to stream flows are removed in the derivation of Eq. (17).

12. The estimation of the anomalous exponents from physical principles using considerations of

sediment transport are briefly discussed. Further development is needed on this front for a def-

inite test of the theory.

13. Two NZ basins analyzed here show statistical variability in the H-G variables that is differ-900

ent from the measurement errors. Generalized Horton laws are explained and illustrated for

the White water basin, KS, USA. It needs to be tested for the H-G variables for a further

development of this theory. This important research is in progress (Mantilla (2014)).
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Figure 1. Reproduction of the original figure of Ibbitt et al. (1998, Fig. 1) showing the river network of the

Taieri basin in New Zealand along with measurements sites in the network.
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Figure 2. Reproduction of the original figure of Leopold and Miller (1956, Fig. 19, p. 23) showing the relation

of stream width to stream order in arroyos.

30



Table 1. Summary of observed and predicted H-G scaling exponents. The sources of the data are Ibbitt et al.

(1998) for the Taieri River Basin in New Zealand; McKerchar et al. (1998) for the Ashley River Basin in New

Zealand; Leopold et al. (1964, Table 7.5, p. 244) for the Brandywine creek, PA in the United States.

Basin

Variable Exponent Taieri Asheley Brandywine

Observed

U ∝Qm m 0.238± 0.023 0.318± 0.018 0.050

W ∝Qb b 0.517± 0.016 0.440± 0.016 0.420

D ∝Qf f 0.247± 0.016 0.242± 0.014 0.450

S ∝Qz z −0.315± 0.026 −0.317± 0.020 −1.070

n′ ∝Qy y −0.231± 0.028 −0.315± 0.023 −0.280

UD/ν ∝Qm+f m+ f 0.485± 0.028 0.560± 0.023 0.500

Estimated using DT = 7/4,f and z

α 0.208 0.175 0.441

β −0.822 −0.864 0.327

Predicted using Eqs. (28), (45) and (53)

UD/ν ∝Qm+f m+ f 0.500 0.500 0.500

W ∝Qb b 0.500 0.500 0.500

n′ ∝Qy y −0.246± 0.030 −0.255± 0.025 −0.285
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