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Abstract

Climate projections simulated by Global Climate Models (GCM) are often used for
assessing the impacts of climate change. However, the relatively coarse resolutions of
GCM outputs often precludes their application towards accurately assessing the effects
of climate change on finer regional scale phenomena. Downscaling of climate variables5

from coarser to finer regional scales using statistical methods are often performed for
regional climate projections. Statistical downscaling (SD) is based on the understanding
that the regional climate is influenced by two factors – the large scale climatic state
and the regional or local features. A transfer function approach of SD involves learning
a regression model which relates these features (predictors) to a climatic variable of interest10

(predictand) based on the past observations. However, often a single regression model
is not sufficient to describe complex dynamic relationships between the predictors and
predictand. We focus on the covariate selection part of the transfer function approach and
propose a nonparametric Bayesian mixture of sparse regression models based on Dirichlet
Process (DP), for simultaneous clustering and discovery of covariates within the clusters15

while automatically finding the number of clusters. Sparse linear models are parsimonious
and hence relatively more generalizable than non-sparse alternatives, and lends to domain
relevant interpretation. Applications to synthetic data demonstrate the value of the new
approach and preliminary results related to feature selection for statistical downscaling
shows our method can lead to new insights.20

1 Introduction

Climate change is one of most challenging problems facing mankind whose impacts are
expected to influence policy decisions on critical infrastructures, management of natural
resources, humanitarian aid, emergency preparedness along with numerous regional scale
human economic and social activities. Therefore, it is imperative to accurately assess the25

impacts of climate change at regional scale in order to inform stakeholders for appropriate
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decision making related to mitigation policies. Global Climate Models (GCM) are the
most credible tools at present for future climate projections that accounts for the effects
of greenhouse gas emissions under different socio-economic scenarios. Although GCMs
perform reasonably well in projecting climate variables at a larger spatial scale (> 104 km2),
they perform poorly for regional scale climate projections. Such poor performance of the5

GCMs coupled with the importance of regional climate projections for impact studies have
led to development of Limited Area Models (LAM) or Regional Climate Models (RCM),
where finer spatial grids over a limited spatial area are embedded within a coarser GCM
grid. This method is also known as dynamic downscaling. However, these models are
complex, computationally expensive and requires rerunning for each new region. Moreover,10

regional models inherit the basic gaps in understanding of climate physics that limits the
performance of GCMs. A couple of recently published studies (Kumar et al., 2014; Knutti
and Sedláček, 2013) rigorously compared the projections of latest generation of climate
models (CMIP5) with the previous generation (CMIP3) but found no significant improvement
in majority of statistical performance metrics even with higher spatial resolutions and15

addition of new physical processes in the computational model. Uncertainties in sub-grid
scale cloud-microphysics and ocean eddy processes and poor understanding of the effect
of carbon cycle and other biogeochemical processes on climate systems still limits the
ability of the physics-based climate models to reliably project future climate (Bader et. al.,
2008), especially at regional scale.20

A complementary approach for regional projection is statistical downscaling that uses
statistical models to learn empirical statistical relationship between large scale GCM
features (predictors) and regional scale climate variable(s) (predictands) to be projected.
The statistical approaches of downscaling can be categorized into three broad classes
– weather typing, weather generators and the transfer function approaches (Wilby et al.,25

2004). Weather typing approaches have originally been developed for weather forecasting
and generally involves classifying days into similar clusters or weather states based on their
synoptic similarity. Typically, weather patterns are clustered based on their similarity with
nearest neighbors while the statistical models they use varies in their definition of similarity
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measure. On the other hand, weather generators replicates the statistical properties of
the daily predictand variable by using a stochastic model like Markov processes () that
uses wet–dry and dry–wet transition probabilities as input for training while conditioning its
parameters on large-scale predictors.

In this paper, however, we are interested in transfer function based regression models5

that learn a linear or nonlinear mapping between large scale predictors and regional scale
predictand variables. Regression models are conceptually simplest among the three since
they provide a direct mapping between the predictor and predictand values. However, the
success of the regression models depends on the accurate choice of predictors. Sparse
regressions based on constrained L1-norm (Tibshirani, 1994) of the coefficients became10

popular due to their ability to simultaneously select covariates and fit parsimonious linear
models that are better generalizable and easily interpretable. Although, sparse regression
models have been applied widely in many disciplines, it’s application to climate has
remained very limited, especially to statistical downscaling. In a recent paper (Ebtehaj
et al., 2012), sparse regularization has been shown to be effective for downscaling15

rainfall fields for weather forecasting, whereas sparse variable selection has been used for
statistical downscaling of climate variables (Phatak et al., 2011) in a separate paper. To our
knowledge, there is no other published work on use of sparse regularization for statistical
downscaling.

However, large complex climate datasets often exhibit dynamic behavior (Kannan and20

Ghosh, 2010) which may not be modeled well by a single regression model. Here we
propose a nonparametric model for mixture of sparse regressions that can accommodate
multiple sparse linear relationship inherent in the dataset. Nonparametric models are more
flexible than the finite mixture models (Bishop and Svenskn, 2002) since they assume no
prior knowledge about the number of distinct components in the data. We used a Dirichlet25

process mixture (DPM) (Antoniak, 1974) with stick-breaking construction (Ishwaran and
James, 2001) to accommodate an unknown number of sparse regression models in the
data. DPMs start by assuming infinite components in the data but ends up discovering
a finite number of components supported by the data. We used the Bayesian version of
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sparse regression (Park and Casella, 2008) to smoothly integrate the sparse regression
model with the DPM, which is a nonparametric Bayesian approach where each component
is represented by a set of distribution parameters specific to the corresponding component.

Although the number of different components may not be known, prior knowledge often
exists about whether a pair of observations belong to the same component. For example,5

it is reasonable to assume that two observations close in time from the same location may
exhibit similar behavior. We allow soft “must link” constraints between pairs of data-points
that encourage the pair to belong to the same mixture component. Such constraints are
incorporated in our Bayesian model with the help of a Markov random field (MRF) prior over
the cluster indicator variables (Ross and Dy, 2013; Basu et al., 2006).10

Variational Bayesian inferences has been shown to be much faster than stochastic
alternatives for nonparametric Bayesian models (Blei and Jordan, 2006). The major
contribution of this paper is to develop a fully Bayesian formulation for nonparametric
mixture of sparse regression model and designing an efficient variational inference
algorithm to obtain posterior distributions over the regression coefficients of potentially15

multiple regression components as well as the component membership probabilities of each
data-point.

We have extensively demonstrated the performance of our algorithm on synthetic
data. We have also applied our method for the feature selection problem for statistical
downscaling of annual average rainfall over two regions in the west coast of United States.20

Preliminary results from the application of our algorithm to select features for regression
based statistical downscaling shows that our method may lead to improved prediction and
discovery of new insights.

2 Background

In this section, we provide brief descriptions of the methods in the context they were used25

to build our model.
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2.1 Bayesian sparse regression

Let us assume that we are given a dataset D = {xn,yn : n= 1, ...N} which has been
generated from a linear model identified by sparse coefficients vector β. In a non-Bayesian
setting, sparsity is enforced by a constraint on the L1-norm of the coefficients which is given
by5

yn = β>xn + ε, subject to ||β||11 ≤ t (1)

where ε∼N (µ,τ−1).
However, in a Bayesian setting, the sparsity can be imposed by a Laplace prior (also

known as double exponential distribution) on β which is given by Park and Casella (2008)

p(β|γ, τ) =
D∏

j=1

√
γjτ

2
exp
(
−√γjτ |βj |

)
(2)10

However, due to the analytical intractability of the Laplace prior, it is often represented in
the following scale-mixture (of Gaussians) form using an additional random variable α.

p(β|τ,γ) =
D∏

j=1

√
γjτ

2
exp
(
−√γjτ |βj |

)
=

D∏
j=1

∫
N
(
βj ;0, τ

−1α−1
j

)
InvGa

(
αj ;1,

γj

2

)
dαj

For a fully hierarchical Bayesian setting, Gamma prior is imposed on parameter τ as well
as on individual penalty parameters γj . So the joint distribution over all the parameters can15

be given by

p(β, τ,α,γ) = Ga(τ ;c0,d0)
D∏

j=1

{
N
(
βj ; ,0, τ

−1α−1
j

)
× InvGa

(
αj ;1,

γj

2

)
Ga(γj ;a0, b0)

}
(3)
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2.2 Markov random fields

A Markov random field (MRF) is represented by an undirected graphical model in which
the nodes represent variables or groups of variables and the edges indicate dependence
relationships. An important property of MRFs is that a collection of variables is conditionally
independent of all others in the field given the variables in their Markov blanket. The5

Hammersley–Clifford theorem states that the distribution, p(Z), over the variables in a MRF
factorizes according to

p(Z) =
1

Z
exp

(
−
∑
c∈C

Hc(zc)

)
(4)

where Z is a normalization constant called the partition function, C is the set of all cliques10

in the MRF, zc are the variables in clique c, and Hc is the energy function over clique
c (Geman and Geman, 1984). Cliques are sets of variables or nodes in the graphical model
that are fully connected and the smallest clique is an edge. The energy function captures
the desired configuration of local variables. Partition function Z normalizes the probability
measure and it is computed by summing the exponentiated energy functions of all possible15

configurations.

2.3 Dirichlet process mixture

The Dirichlet Process (DP) was first introduced in statistics literature as a measure on
measures (Ferguson, 1973). It is parameterized by a base measure, G0, and a positive
scaling parameter λ:20

G|{G0,λ} ∼ DP(G0,λ) (5)

The notion of a Dirichlet process mixture (DPM) arises if we treat the kth draw from G
as a parameter of the distribution over some observation (Antoniak, 1974) representing
a particular mixture component. DPMs can be interpreted as mixture models with an
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infinite number of mixture components in the sense that data exhibits a finite number
of components but previously unseen components represented by new data can still be
accommodated. More recently, a variational inference algorithm for DPMs was introduced
(Blei and Jordan, 2006) using the stick-breaking construction (Sethuraman, 1994) which
uses two infinite collections of random variables Vk ∼ Beta(1,λ) and η∗k ∼G0 to construct5

G as

θk = Vk

k−1∏
j=1

(1−Vj)

G(η)∼
∞∑

k=1

θkδ(η,η
∗
k).

(6)

For a mixture of sparse regression models, if the parameters for each components are given
by ηk, the subsequent data generation process for such a mixture model can be described10

in the following steps using a stick-breaking construction:

1. Draw vk ∼ Beta(1,λ) k = {1,2, ...∞}.

2. Draw ηk ∼G0, k = {1,2, ...∞}.

3. Generate θk = vk

k−1∏
m=1

(1− vm).

4. For each data point n:15

(a) Draw zn ∼ Mult(θ).

(b) Draw yn ∼N (yn;xn,ηzn
).

We can truncate the construction process at k =K by enforcing Vk−1 = 0 which forces
all θk for k >K to be zero (see step 3). The resulting construction is called a truncated
Dirichlet process (TDP) which can be shown to approximate the true Dirichlet process quite20

well given K is large relative to the number of the data-points (Ishwaran and James, 2001).
8
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3 Methodology

Now, let us assume that we are given a dataset D = {xn,yn : n= 1, ...N} which has been
generated from a mixture of K different sparse models identified by sparse coefficients
β(1),β(2), ...,β(K). Let us also assume that the number of components K is unknown.
We use a Bayesian formulation of the sparse regression model for each component β(k),5

with k = 1,2, ...K. Let us first state the Bayesian version of the kth sparse model. The
linear regression model of the kth component can be represented by the following Gaussian
distribution.

p
(
yn|xn,β

(k)
)
∼N

(
yn;β(k)>xn, τ

−1
k

)
(7)

3.1 Mixture of sparse regressions10

We introduce K-dimensional latent indicator variables {zn : n= 1, ...N} to represent the
component membership of each data-point {xn,yn}. If the data-point belongs to the kth
component, then znk will be 1 and all other elements of zn will be 0. We further denote
Z = [z1 z2 . . . zn]. We can now rewrite Eq. (7) in terms of zn as

p
(
yn|xn,{β(k)}

)
∼

K∏
k=1

{
N
(
yn;β(k)>xn, τ

−1
k

)}znk

(8)15

For this mixture of sparse regression model, each component has separate parameter
set {β(k), τk}. Moreover, after adding the parameters related to the scale-mixture
representation of the Laplace prior on β(k) (refer Sect. 2.1), the set of parameters is finally
given by ηk = {β(k), τk,αk,γk}. The prior distribution G0 from which these parameters
can be drawn jointly is given in Eq. (3). We can now use the stick-breaking construction20

described in Sect. 2.3 to formulate our mixture model. The overall generative process is

9
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then:

p(y,Z,v,{β(k)},τ ,{α(k)},{γ(k)},λ|X) = p(y|X,{β(k)},τ )p(Z|v)p(v|λ)p(λ|m0)

× p({β(k)}|τ ,{α(k)})p({α(k)}|{γ(k)})
× p({γ(k)}|a0, b0)p(τ |c0,d0) (9)

5

The graphical model that represents the dependence relationships between all the
parameters involved in this current mixture model is shown in Fig. 1. The shaded circles
denote observed variables whereas the unshaded circles denote unobserved variables.
We have used a Gamma prior on λ having a hyper-parameter m0. We have omitted the
hyper-parameters a0, b0, c0, d0, and m0 from the list of conditioning variables in the left side10

to avoid clutter. The individual distributions in Eq. (9) are given below

y|X,{β(k)},τ ∼
N∏

n=1

K∏
k=1

{
N
(
yn;x>n β(k), τ−1

k

)}znk

(10a)

Z|v ∼
N∏

n=1

K∏
k=1

vk

k−1∏
j=1

(1− vj)


znk

(10b)

v|λ∼
K∏

k=1

Beta(vk;1,λ) (10c)

λ∼ Ga(λ;m0,1) (10d)15

{β(k)}|τk,{α(k)} ∼
K∏

k=1

D∏
j=1

N
(
β

(k)
j ;0,

(
τkα

(k)
j

)−1
)

(10e)

τ ∼
K∏

k=1

Ga(τk;c0,d0) (10f)

10
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({α(k)},{γ(k)})∼
K∏

k=1

D∏
j=1

InvGa

(
α

(k)
j ;1,

γ
(k)
j

2

)
×Ga

(
γ

(k)
j ;a0, b0

)
(10g)

3.2 Accommodating “must link” constraints

Prior knowledge about must link constraints between pairs of data-points can be enforced
via a MRF prior on the indicator variables zn where each data point is considered a node5

and each constraint between a pair of data point is regarded as an edge between the
respective nodes. We denote the collection of edges by C and the MRF prior is given by
Eq. (4). We define the energy function as:

H(zi,zj) =

{
−1, z>i zj = 1 and (i, j) is ML

0, otherwise
(11)

10

Here ML means must link. This prior encourages similar values of indicator variables zi and
zj if they happen to share a “must link” edge. Since the MRF prior is assigned only on the
indicator variables Z, it only alters Eq. (10b) and the new prior on Z is given by

Z|v ∼ 1

Z
exp

− ∑
(i,j)∈C

H(zi,zj)

×
N∏

n=1

K∏
k=1

vk

k−1∏
j=1

(1− vj)


znk

(12)

15

3.3 Variational inference

Let us consider all the unknown parameters in our model as latent variables and denote all

the latent variables by H =
{
Z,v,{β(k)},τ ,{α(k)},{γ(k)},λ

}
. Moreover, from now on, we

will ignore feature variables X from the list of conditioning variables as they are observed.
Using Jensen’s inequality, we can find a lower-bound of the log-marginal lnp(y) which is20

given as

lnp(y)>

∫
q(H) ln

{
p(y,H)

q(H)

}
dH (13)

11
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For any arbitrary distribution q(H). The variational inference is performed by restricting
q(H) within a parametric family so that the maximization of the lower bound given in
Eq. (13) is tractable. We consider only those q(H) which factorize over some disjoint groups
of the component random variables of H in the following way

q(H) =
L∏

j=1

qj(hj) (14)5

We can now maximize the lower bound given in Eq. (13) with respect to each components
qj(hj) in Eq. (14) and obtain the parametric form of qj(hj) given by

q∗j (hj) =
exp(Ei6=j [lnp(y,H)])∫

exp(Ei6=j [lnp(y,H)])dhj
(15)

where the expectation is taken with respect to all the other factors {qi} for i 6= j. It can
be shown that the q(H) obtained this way is the closest approximation of the actual10

posterior p(H|y) in terms of KL-divergence out of all possible alternatives of the form
Eq. (14). Therefore this is a deterministic but approximate posterior inference method unlike
stochastic inference methods like MCMC which samples from the actual posterior. However,
variational inference is much faster and approximates the true posterior reasonably well for
practical purposes.15

Once we apply Eq. (15) to the joint distribution described in Eqs. (9) and (10), we can
get the update equations for the approximate posterior distributions for each of the latent
variables involved.

1. Distribution of z:

qZ(Z) =
∏
V ∈V

[
1

ZV
exp

− ∑
(i,j)∈C
i,j∈V

H(zi,zj)

∏
n∈V

K∏
k=1

ρznk
nk

]
(16)20

12
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with

ρnk =
rnk∑
k rnk

(17)

lnrnk =
1

2
〈lnτk〉−

1

2
ln2π− 〈τk〉

2

(
y2

n− 2〈β(k)〉>xnyn +x>n 〈β(k)(β(k))>〉xn

)
+ 〈lnvk〉+

k−1∑
j=1

〈ln(1− vj)〉 (18)

5

2. Distribution of {β(k)}:

qβ({β(k)}) =
K∏

k=1

N
(
{β(k)};µk,Σ

(k)
)

(19)

with

Σ(k) =

(
〈τk〉

N∑
n=1

xnx>n E[Z]nk + 〈τk〉diag
(
〈α(k)〉

))−1

(20)

µk = Σ(k)

(
N∑

n=1

xnynE[Z]nk

)
〈τk〉 (21)10

Here diag(〈α(k)〉) corresponds to the LASSO (Tibshirani, 1994) shrinkage. The
moments are given by1

〈β(k)〉= µk;

〈(
β(k)

p

)2
〉

= Σ (k)
pp +µ2

kp

〈β(k)(β(k))>〉= Σ(k) +µkµ
>
k15

1〈f(s)〉 means expected value of f(s) with respect to the distribution of s.

13
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3. Distribution of τ :

qτ (τ ) =
K∏

k=1

Ga(τk;ck,dk) (22)5

with

ck = c0 +
1

2

(
N∑

n=1

E[Z]nk + p

)
(23)

d= d0 +
I

2
+
J

2
(24)

where10

I =
N∑

n=1

(
y2

nE[Z]nk − 2E[Z]nkx
>
n yn〈β(k)〉+E[Z]nkx

>
n 〈β(k)(β(k))>〉xn

)
J =

D∑
p=1

〈
α(k)

p

〉〈(
β(k)

p

)2
〉

The relevant moments are

〈τk〉= ck/dk and 〈lnτk〉= ψ(ck)− ln(dk)15

4. Distribution of v

qv(v) =
K∏

k=1

Beta(vk;ξk,κk) (25)

14
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with

ξk = 1 +
N∑

n=1

E[Z]nk and κk = 〈λ〉+
K∑

j=k+1

N∑
n=1

E[Z]nj

Relevant moments are given by 〈lnvk〉= ψ(ξk)−ψ(ξk+κk) and 〈ln(1−vk)〉= ψ(κk)−
ψ(ξk +κk).

5. Distribution of {α(k)}:5

qα({α(k)}) =
K∏

k=1

D∏
p=1

InvGaussian
(
α(k)

p ;gk
p ,h

k
p

)
(26)

with

gk
j =

√√√√√√
〈
γ

(k)
j

〉
〈τk〉

〈(
β

(k)
j

)2
〉

hk
j =

〈
γ

(k)
j

〉
10

where InvGaussian
(
α

(k)
j ;gk

j ,h
k
j

)
denotes inverse Gaussian distribution with mean gk

j

and shape parameter hk
j having the following density function.

pIG

(
α

(k)
j ;gk

j ,h
k
j

)
=

√√√√√ hk
j

2π
(
α

(k)
j

)3
× exp

−hk
j

(
α

(k)
j − gk

j

)2

2
(
gk
j

)2
α

(k)
j

(α(k)
j > 0

)
The relevant moments are given by〈
α

(k)
j

〉
= gk

j and

〈(
α

(k)
j

)−1
〉

=
(
gk
j

)−1
+
(
hk

j

)−1
15

15
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6. Distribution of {γ(k)}:

qγ({γ(k)}) =
D∏

p=1

Ga
(
γ

(k)
j ;ak

j , b
k
j

)
(27)

with

ak
j = a0 +1

bkj = b0 +
1

2

〈(
α

(k)
j

)−1
〉

5

and the relevant moment is 〈γ(k)
j 〉= ak

j /b
k
j

7. Distribution of λ:

qλ(λ) = Ga(λ;u,w) (28)10

where

u=m0 +K; w =−
K∑

k=1

〈ln(1− vk)〉

Relevant moment is 〈λ〉= u
w .

The first part of the variational posterior of qZ(Z) in Eq. (16) arises from the MRF prior15

and contributes towards enforcing “must link” constraints. Note that V in Eq. (16) is a set of
sets and V is a component set of connected nodes within V . Basically, V denotes the set
of connected components within the constraint graph described in Sect. 3.2. Therefore the
partition function ZV needs to be computed only for the connected components, not for the

16
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entire graph. Computing ZV becomes tractable if the connected components are small, i.e.
the constraint set is sparse.

In order to automatically generate a sparse constraints set, we first implemented all the
constraints in form of edges and then used a graph partitioning algorithm (Hespanha, 2004)
to partition the constraint graph in such a way that none of the partitions are left with more5

than a predefined number of nodes. At the time of inference we used a “backtracking”
algorithm (Tarjan, 1972) to find the strongly connected components within the graph. To
compute the expectation E[z], we first computed the multinomial probabilities ρnk and
then did an MRF update on each connected component by computing the probabilities
of each possible state combination and summing the probability-weighted state matrices.10

The partition function is computed by summing the exponentiated sum of energy function
of each state matrix. Note that, isolated nodes (not part of the any connected components)
will not need their ρnk updated.

The parameters of each of the distributions has dependency on moments of one or more
of the other variables. We therefore find a locally optimum solution via an iterative process15

that starts with random initial values of the relevant moments and stops when the indicator
variables Z stop changing any more. Note that, once the approximate solution is reached,

we can compute the marginal distributions over coefficients β(k)
p which is a Gaussian with

mean µ
(k)
p and variance Σ

(k)
pp for each k. We can thereby perform a t test to determine

whether the corresponding feature has a non-zero coefficient.20

3.4 Computational considerations

One computational bottleneck of the proposed VB algorithm is the inversion of the D×D
matrix in Eq. (20). If D <N , then faster matrix inversion can be achieved by first applying
a Cholesky decomposition and then inverting the resulting upper triangular matrix. However

if D >N , we can first apply a fast (approximate) singular value decomposition on Σ(k)−1
25

and then use Woodbury matrix inversion identity so that we now have to invert a N ×N
matrix instead.
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We have truncated the infinite Dirichlet Process at K = 20 for most of our experiments.
The speed of the algorithm can be further improved by parallelizing the updates for each
of K components which is straightforward as they are updated independent of each other.
Another major computational challenge was the MRF updates. Apart from controlling the
maximum size of the connected components, we parallelized the MRF updates over each5

subgraph by making the state generation independent of the previous state.

4 Experiments

We have evaluated our method both on synthetic and climate datasets. Typical values used
for the hyper-parameters were a0 = b0 = c0 = d0 = 0.01 and λ= 1. Selecting these values
within a reasonable range does not affect the results significantly. We made sure that the10

cardinality of the largest connected component in the constraints graph never exceeds 8.

4.1 Synthetic dataset

We compared the performance of both constrained and unconstrained version of our
method with non-parametric mixture of linear regression (NPMLR) model without any
regularization. We set-up three experiments: (1) to test whether or not our algorithm can15

learn the number of clusters; (2) to evaluate the efffect of constraints; and (3) to check the
sensitivity of our approach to noise.

For all our experiments involving synthetic data, we used N = 1000 data points and D =
30 features. In our first set of experiments we tested our method for K = 2 . . . 5 actual
clusters. Each column of the N ×D input matrix X is generated from a uniform distribution.20

For each value of K, we partitioned the input matrix X in K equal parts X1 . . . XK . Then for
each partition Xk (k = 1 . . .K), we generate sparse coefficients βk by randomly selecting 10
out of 30 components to be non-zero. We assign a value of 5k (where k is the index of the
cluster, k = 1, . . . ,K) to the non-zero components within the k-th cluster so that two clusters
are distinctly identifiable in case the indices of non-zero components of the clusters are the25

same. We then generate the output yk for the kth cluster using the linear regression model
18
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of (1). The fixed noise variance τ−1
k for the first experiment was generated by randomly

choosing a number between 0 and 0.1 to introduce diversity. A final dataset was obtained
by merging {Xk,yk} for all k = 1 . . .K. The process is repeated 30 times and mean and
variance of the evaluation metrics were reported in the form of errorbars for each value of
K in Fig. 2. For all these experiments, the total number of constraints were kept at 20 per5

cluster while the size of the largest subgraph was kept below 7.
The second experiment was performed to evaluate the effect of number of “must link”

constraints on the performance of the constrained version of the algorithm. Here, the actual
number of clusters were fixed at K = 3 along with the base noise variance (0.1) and the
number of constraints per clusters were varied from 0 to 30 incremented by 5, although the10

actual number of constraints may be less since we removed some constraints to achieve
sparsity in the constraint graph. The result is reported in Fig. 3.

In our third experiment, we evaluated the effect of noise on the performance of our
algorithm. Again, we kept the number of clusters fixed at K = 3 and number of constraints
fixed at 20 per cluster (for the constrained version). We varied the base noise level in each15

cluster from 0 to 0.5 and added a randomly generated value between 0 to 0.1 with the base
noise level for each cluster to maintain diversity among the clusters. Average and variance
of 30 repetitions are reported in Fig. 4.

4.1.1 Evaluation metrics

We measured two aspects of the performance of our algorithm. First, whether it can cluster20

the datapoints correctly. We put a data point into one of the possible 20 components
(since we truncated the infinite Dirichlet process at K = 20 for all experiments) depending
on the value of the row E[Z]n (a vector) in the N × 20 matrix E[Z] estimated by the
variational inference algorithm. The estimated cluster membership ĉn (a scalar) is given
by ĉn = argmax

k
E[Z]nk. We retain all the valid components out of 20 possible, which have25

at least one member initially. Then we run an update algorithm to merge very small clusters
with the closest larger ones. Note that, the estimated cluster indices (a value between 1 and
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20) may not correspond directly to the actual cluster indices (a value between 1 to actual
value of K) since the variational inference algorithm is not aware of the actual order of the
cluster indices (e.g. actual cluster index 1 may correspond to estimated cluster index 9).
So we use a metric called normalized mutual information (NMI) that evaluates the match
between estimated cluster memberships ĉ and actual ones c without needing there be5

direct correspondence. NMI is given by NMI(c, ĉ) = H(c)−H(c|ĉ)√
H(c)H(ĉ)

, where H(·) is the entropy.

Higher NMI values mean that the clustering results are more similar to ground-truth. The
metric reaches its maximum value of one when there is perfect agreement.

A second metric is used to evaluate the quality of the sparse regression model estimated
within each discovered cluster. Here we are only interested in finding whether our algorithm10

picks the non-zero coefficients correctly. We use F score to measure the match between
actual and estimated non-zero coefficients within each cluster. F score for the kth
component is given by Fk = 2PkRk

Pk+Rk
where Pk is the precision and Rk is the recall of the

estimated coefficients for the kth component. We reported the average of Fk values over all
components discovered by our algorithm. Unlike the previous metric, here we need to know15

the direct correspondence between the cluster indices so that we can match the actual and
estimated coefficient vectors. We developed an algorithm to find such a correspondence.

4.1.2 Discussion of results

We can see the performance of all three algorithms are comparable in terms of identifying
the clusters correctly, although the NMI value of NPMLR degrades significantly for K = 5.20

However, as desired, our method outperforms NPMLR in terms of correctly retrieving the
sparse structure of regression coefficients within each cluster. There is general downward
trend of performance for all algorithms with increasing number of actual components in the
data. This is an inherent problem with the DPM models as it tends to attach each new data-
point to the largest current component and thereby favoring models with less components.25

Also, as the number of actual components grow, the probability of two components to be
similar increases.
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The increased flexibility of non-parametric methods comes at a cost of hitting local optima
more likely and finding solutions that are not interpretable. Adding more constraints may
decrease this probability but at the same time restricts the variational method from finding
solutions leading to a larger lower bound, especially in the presence of more components
in the data. Therefore increasing the number of constraints may result more interpretable5

solutions, but not improved accuracy. It is also encouraging to see that our method is
relatively robust to added noise, a major challenge with the real datasets, especially in
terms of correctly identifying the sparse structure.

4.2 Feature selection for downscaling rainfall

A grand challenge in climate science relevant for adaptation and policy remains our inability10

to provide credible stakeholder-relevant “statistical downscaling”, or developing statistical
techniques for more accurate, precise and interpretable high-resolution projections with
lower-resolution climate model data (Benestad et al., 2008). Regression models of
statistical downscaling (Benestad et al., 2008; Ghosh, 2010) works by first selecting
a set of climate variables that have information about the target variable, and then fitting15

a regression model to predict the target variable at higher resolution. In this application,
selecting the right set of predictors are as important as building a prediction model since
even a good prediction with a model that is physically not interpretable is less desirable
as it may not generalize well. We focus on the feature selection problem for statistical
downscaling of annual average rainfall. The use of annual averages reduce the amount20

of noise in the observed rainfall data, which enables us to examine the robustness of our
methods with less ambiguity.

Existence of multiple states or patterns is acknowledged in regression-based statistical
downscaling literature for rainfall (e.g. Kannan and Ghosh, 2010) where parametric methods
like K-means was used to find distinct clusters. Here we used our model to simultaneously25

find clusters, if any, and select features for the purpose of statistical downscaling of station
observed annual average rainfall over two climatologically homogeneous regions over the
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continental US. Figure 5 shows the climatologically homogeneous regions over United
States.

Since rainfall follows a log-normal distribution (), the target variable we used is logarithm
of annual average rainfall. In Fig. 6, we have shown the distribution of average rainfall over
all sites in western US before and after taking logarithm.5

Potential features used can fall under one of two broad categories – local atmospheric
variables and large-scale climate indices. Local covariates originate from each station and
exhibits both spatial and temporal variability. Annual and seasonal averages of maximum
temperature falls in this category along with elevation, sea level pressure (SLP) and
convective available potential energy (CAPE). A dependence on any of these variables10

roughly indicates dominance of local convective rainfall in the region. Daily rainfall station
data obtained from United States Historical Climatology Network (USHCN) (Easterling
et al., 1996). All other features are described in Table 1.

Climate indices are global variables that represent large-scale signals in climate
variables. A list of covariates used for each category is given in Table 1. A dependence15

on any of these variables roughly indicates rainfall due to large-scale circulation.
We could use the covariates between 1979 and 2011 as SLP and CAPE is available only

for that period. Also, if more than 50 % of the daily observations out of a year are found
to be missing for any of variables at a specific location, we simply discarded all variables
for that year and for that specific location. We averaged monthly climate indices and daily20

local variables over a year. Finally the annual/seasonal average time-series of predictors for
each station were merged for a homogeneous region under consideration. West (CA,NV)
and Northwest (WA, OR, ID) regions are shown by gray shaded areas over the US map in
Fig. 7 (left and right panels, respectively).

4.2.1 Results and discussion25

We applied spatial “must-link” constraints among pairs of data-points belonging from the
same location. Ideally, if there are n points in a cluster, we will be required to put

(
n
2

)
constraints to cover all pairs of data-points. To reduce complexity, initially we kept only
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those constraints that connect data-points from consecutive years. However, this reduced
set of constraints proved to be too restrictive and all data-points tended to merge into a
single cluster. So, we kept removing the constraints in an intuitive manner until more than
one cluster emerged for a region. We found more than one cluster for all regions except
the southern region. We stopped removing constraints until new clusters stopped emerging5

for a region. Here we show only the clusters in western and northwestern regions, since
majority of stations were mostly split into obtained clusters in these regions. In other regions,
almost all stations had mixed membership. We assign a station to a cluster if more than
80 % of its data-points belong to that cluster.

A quick look at the histogram of target variable (right panel in Fig. 6) also supports the10

possibility of two distinct rainfall modes in the region. As mentioned earlier, we obtained one
sparse linear model for each of the discovered components within a region. Since a non-
zero coefficient in the sparse model implies dependence on the corresponding covariate,
we can obtain interesting insights about the dependence of average rainfall on various
atmospheric and climate indices from the coefficients of the individual sparse models15

within each cluster. Interestingly in the north-west region there is only a single member
station in the first component which exhibits dependence on the local temperature variables
and SLP whereas the larger cluster shows dependence on a larger number of climate
indices. In the western region, the first cluster shows dependence on local temperature
variables and the second cluster shows more dependence on large scale variables. Both20

clusters show dependence on elevation. While dependence on large scale indices are not
surprising for both these regions due to the known effect of westerlies in these coastal
regions, dependence of smaller clusters (especially in the northwest) on local variables
may hint towards existence of some regional small scale atmospheric mechanisms. While
spatially coherent clusters are more likely to occur in nature, geographical features such as25

mountains and lakes and even man-made structures such as large dams and reservoirs
may abruptly disturb the spatial smoothness of clusters, since their presence may alter the
climate pattern of the nearby areas with respect to the surrounding regions. However, before
we can build statistical downscaling models, more rigorous statistical and physical analysis
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is required based on these preliminary insights obtained using our method. The clusters
discovered here, and the corresponding covariates, can be utilized to develop individual
non-linear prediction models per cluster.

DPMs automatically find the number of clusters K and adapts to varying values of K.
However, DPMs prevent the model to “learn” an unnecessarily large value of K, if a smaller5

K is sufficient to describe the model, thus managing complexity. Based on the results of
experiments on the synthetic dataset shown in figure 2, we found that the performance
of the method degrades as the number of components K grows larger. We believe it
is reasonable to expect that there will only be a limited number of distinct relationships
between average rainfall and their covariates when we apply our method at the regional10

scale. However, even in situations where a large number of relationships exist within a
particular region, our method may not be able to identify all of the distinct methods, but it
can nevertheless be expected to outperform the use of a single model. The single model will
attempt to learn a relationship that is the average of all distinct relations, which our approach
will still attempt to distinguish among major categories of relationships even though some15

of them may be lumped together.

5 Conclusions

In this paper, we proposed a nonparametric Bayesian mixture of sparse regression models
for simultaneous clustering and discovery of covariates within each cluster using Dirichlet
process mixture model. Moreover, our model can accommodate prior knowledge about20

“must link” constraints between the pair of data-points using a Markov Random Field prior
on the cluster membership variables. Our major contribution is to develop an efficient
and scalable variational inference algorithm for inference on the fully Bayesian model. We
applied our method both on synthetic and real climate data and successfully discovered
multiple underlying behaviors in the data. Preliminary results of applying our method25

towards feature selection for statistical downscaling of rainfall shows promise towards
finding new climate insights with appropriate caveats. Going forward, we would like to
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incorporate priors for diversity among the clusters in order to discourage merging of close
but dissimilar clusters. We intend to further extend our model for predictive analysis and
build a full-scale statistical downscaling method using the features selected by the current
model.
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Table 1. Potential features used for statistical downscaling of rainfall.

Atmospheric: ( Easterling et al. , 1996; Mesinger et al. , 2006) Mean Annual Maximum
Temperature (MATmax), Mean Winter Maximum Temperature (DJFTmax), Mean Spring
Maximum Temperature (MAMTmax), Mean Summer Maximum Temperature (JJATmax), Mean
Autumn Maximum Temperature (SONTmax) (Easterling et al., 1996), Sea Level Pressure (SLP),
Convective Available Potential Energy (CAPE) (Mesinger et al., 2006)

Climate Indices: ( NOAA) North Atlantic Oscillation (NAO), East Atlantic Pattern (EA), West
Pacific Pattern (WP), East Pacific/North Pacific Pattern (EPNP), Pacific/North American
Pattern (PNA), East Atlantic/West Russia Pattern (EAWR), Scandinavia Pattern (SCA),
Tropical/Northern Hemisphere Pattern (TNH), Polar/Eurasia Pattern (POL), Pacific Transition
Pattern (PT), Nino 1+2, Nino 3, Nino 3.4, Nino 4, Southern Oscillation Index (SOI), Pacific
Decadal Oscillation (PDO), Northern Pacific Oscillation (NP), Tropical/Northern Atlantic Index
(TNA), Tropical/Southern Atlantic Index (TSA), Western Hemisphere Warm Pool (WHWP),
Global Mean Temperature Anomaly (GlobalMeanTemp) (NOAA)
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Figure 1. Graphical representation of the of complete Bayesian hierarchical model.
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Figure 2. Left: ability of nonparametric unregularized and sparse regressions (unconstrained and
constrained) to correctly identify clusters in presence of increased number of actual components in
the data. Right: ability of nonparametric unregularized and sparse regressions (unconstrained and
constrained) to correctly retrieve the sparse structure within each cluster.
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Figure 3. Performance of the constrained version of the algorithm (in terms of NMI (more the better))
with number of “must link” constraints.
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Figure 4. Left: ability of nonparametric unregularized and sparse regressions (unconstrained and
constrained) to correctly identify clusters (indicated by NMI) with increasing noise. Right: ability of
nonparametric unregularized and sparse regressions (unconstrained and constrained) to correctly
retrieve the sparse structure within each cluster (indicated by average F score).
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Figure 5. Map showing climatologically homogeneous regions over continental United States.
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Figure 6. (Left) Distribution of average rainfall over all sites in the western US. (Right) Distribution
of average rainfall after transformation.
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Figure 7. Left: location of stations and their cluster membership in the western region. Right: location
of stations and their cluster membership in the northwestern region.
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