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Abstract. The statistical distribution of values in the signal
and the autocorrelations (interpreted as the memory or persis-
tence) between values are attributes of a time series. The au-
tocorrelation function values are positive in a time series with
persistence, while they are negative in a time series with anti-5

persistence. The persistence of values with respect to each
other can be strong, weak, or nonexistent. A strong correla-
tion implies a “memory” of previous values in the time se-
ries. The long-range persistence in time series could be stud-
ied using semivariograms, rescaled-range, detrended fluctu-10

ation analysis and Fourier spectral analysis, respectively. In
this work, persistence analysis is to study IMF time series.
We use data from the IMF GSM-components with time res-
olution of 16 s. Time intervals corresponding to distinct pro-
cesses around 41 MCs in the period between March 199815

and December 2003 were selected. In this exploratory study,
the purpose of this selection is to deal with the cases present-
ing the three periods: plasma sheath, MC and post-MC. We
calculated one exponent of persistence (e.g., α, β, Hu, Ha)
over the previous three time intervals. The persistence expo-20

nent values increased inside cloud regions, and it was possi-
ble to select the following threshold values: 〈α(j)〉= 1.392;
〈Ha(j)〉= 0.327; 〈Hu(j)〉= 0.875. These values are useful as
another test to evaluate the quality of the identification. If the
cloud is well-structured, then the persistence exponent values25

exceed thresholds. In 80.5 % of the cases studied, these tools
were able to separate the region of the cloud from neighbor-
ing regions. The Hausdorff exponent (Ha) provides the best
results.

30

1 Introduction

Coronal Mass Ejections (CMEs) are massive expulsions of
magnetized plasma from the solar atmosphere (see e.g. Dasso
et al., 2005, and references therein). As a consequence of this
ejection, CMEs can form confined magnetic structures with35

both extremes of the magnetic field lines connected to the
solar surface, extending far away from the Sun into the so-
lar wind (SW). Solar Ejecta (also known as Interplanetary
Coronal Mass Ejections, ICMEs) are the interplanetary man-
ifestation of CME events (see e.g. Dasso et al., 2005, and40

references therein). The important subset of ICMEs known
as interplanetary magnetic clouds (MCs), a term introduced
by Burlaga et al. (1981), is characterized fundamentally by
enhanced magnetic field strengths with respect to solar wind
ambient values (Klein and Burlaga, 1982; Burlaga, 1991).45

A comprehensive study about the properties of MCs at 1 as-
tronomical unit (AU) was approached by Ojeda et al. (2013),
Ojeda et al. (2014), and Klausner et al. (2014).

The test for independence and search for correlations in
a time series can be carried out using an analytical tool from50

nonlinear dynamics, the estimation of the Hurst exponent
(Hurst et al., 1965). Mandelbrot and Wallis (1969) first used
it to study a series of monthly sunspot of 200−years. It had
a Hurst exponent (with rescaled range – R /S) significantly
larger than 0.5. On others papers such as Ruzmaikin et al.55

(1994), they showed that solar activity has long-term per-
sistence when exploring time series of 14C (Carbone-14).
Calzadilla and Lazo (2001); Wei et al. (2004) studied time
series ofDst geomagnetic index, which showed chaotic prop-
erties in association with self-affine fractals. The Dst index60
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can be viewed as a self-affine fractal dynamic process, as re-
sult of SW–magnetosphere interactions. In fact, the behavior
of theDst index, with a Hurst exponent Hu≈ 0.5 (power-law
exponent β ≈ 2) at high frequency, is similar to that of Brow-
nian motion. Therefore, perhaps the dynamical invariants of65

some physical parameters of the solar wind, specifically the
MCs, may have spectral characteristics similar to Brownian
motion.

Price and Newman (2001) analyzed the behavior of solar
wind dataset (IMF and solar wind speed) with 1min reso-70

lution from September 1978 to July 1979 using the ISEE-3
spacecraft. They showed the time series, the power spectrum
and the R /S analysis for the IMF Bz component for the
month of March 1979. The Bz time series was self-similar
for all time scales, highly coherent for time scales less than75

one day, and only slightly coherent for time scales greater
than one day. In addition, they found self-similarity and co-
herence properties when calculating β-power spectrum val-
ues to vBz , AE index, and the horizontal (H) component of
the Earth’s magnetic field.Tsurutani et al. (1990) studied the80

nonlinear response of AE to the IMF Bs driver, for this, the
similarities between the power spectrums of the two mea-
surements are analyzed. Sharma and Veeramani (2011) anal-
ized long-range correlations, using DFA based on autocorre-
lations functions, in AL index data for the period 1978-1988.85

This paper is a detailed study of persistence in magnetic
clouds. The manuscript is divided in five sections. A review
about persistence analysis is presented in the Sect. 2. Sect. 3
presents the dataset and the analyzed periods. Sect. 4 presents
the methodology implemented. In Sect. 5, the results are dis-90

cussed. In Sect. 6, the conclusions are shown.

2 Persistence in time series

In this work, persistence analysis is used to study IMF time
series. The purpose throughout this section is to review the
physical-mathematical concepts of these tools.95

The main attributes of a time series include the statistical
distribution of values in the signal and the autocorrelations
(interpreted as the memory or persistence) between values.
Positive values of autocorrelation function, rk = Ck/C0, in-
dicates persistence while negative value indicate antipersis-100

tence. For example, in a Gaussian white noise, if each time
series value is independent of other values, then the correla-
tion and persistence are zero. Time series of Brownian mo-
tion is derived from a running sum of a Gaussian white-noise
sequence. If the values in a time series of a Brownian motion105

are well-correlated, then this time series exhibits long-range
persistence. In summary, the persistence can be grouped in
three categories: strong, weak, or nonexistent.

The word “memory” is the common term to explain and
understand persistence concept in a time series. The values in110

the time series could be considered “intelligent entities” that
have “knowledge” or “memory” of the existence of other “in-

dividuals” (values). The ideal case of maximum persistence
is when each value has memory of all previous values of the
time series. Thus, a strong correlation implies a “memory”115

of previous values in the time series. Persistence is a math-
ematical number to measure how good the “mean memory”
is in a time series. The long-range persistence in a time se-
ries could be studied using semivariograms, rescaled-range,
detrended fluctuation analysis, Fourier spectral analysis, and120

wavelet variance analysis respectively (e.g., Malamud and
Turcotte, 1999).

A statistically self-similar fractal can be define with the
function f(rx,ry) (with scaling factor r) in two-dimensional
xy space. This fractal is by definition isotropic and the pre-125

vious function is statistically similar to f(x,y). It is quanti-
fied by the fractal relation Ni ∼ r−Di where the number of
objects, Ni, and the characteristic linear dimension, ri, are
related by a power law, and the constant exponent, D, is the
fractal dimension (Turcotte, 1997).130

A statistically self-affine fractal can be define with
the function f(rx,rHay) (generally not isotropic) in two-
dimensional xy space, where Ha is called Hausdorff expo-
nent. The previous function is statistically similar to f(x,y)
(Mandelbrot, 1983; Voss, 1985b) and the relationship be-135

tween Ha and D is Ha = 2−D (e.g., Malamud and Tur-
cotte, 1999). If Ha = 1 then the self-affine fractal is at the
same time self-similar. Brownian motion is an example of
self-affine time series.

The power spectrum (Priestley, 1981), a measure of long-140

range persistence and antipersistence, is used frequently in
the analysis of geophysical time series (e.g., Pelletier and
Turcotte, 1999). The periodogram is a plot of power-spectral
density (PSD) of a signal S(f) vs. frequency f , and it is an
estimate of the spectral density of a signal. For a time se-145

ries that is self-affine, S(f)∼ f−β (e.g., Voss, 1985a), the
slope of the best-fit straight line from log(S(f)) vs. log(f) is
a constant called β-power spectrum exponent. The relation-
ship between β, Ha, and D was obtained by Voss (1986):

β = 2Ha + 1 = 5− 2D (1)150

In the paper of Malamud and Turcotte (1999), validation
intervals for a self-affine fractal were derived: 0≤ Ha≤ 1,
1≤D ≤ 2, and 1≤ β ≤ 3. Then, in a time series of a Brow-
nian motion the exponent values are Ha = 1/2, D = 3/2,155

β = 2 while a white noise has β = 0. Hausdorff exponent
is only applicable for self-affine time series with validation
intervals from 0≤ Ha≤ 1, however β is a measure of the
strength of persistence valid for all β, not just 1≤ β ≤ 3
(Malamud and Turcotte, 1999). An antipersistent time series160

has β < 0 and persistent time series has β > 0, respectively.
Mandelbrot and Ness (1968) developed a method to study

a self-affine time series, the semivariogram, γk, scale with k,
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the lag, such that γk ∼ k2Ha, that is:

γk = 2−1(N − k)

N−k∑
n=1

(yn+k − yn)2. (2)165

For the uncorrelated Gaussian white noise (β = 0), the
semivariogram is about γk = 1, the same as the variance,
Va = 1. For β = 1, 2 and 3, good correlations are obtained
by Malamud and Turcotte (1999, p. 40) with the expression170

γk ∼ k2Ha.
Following Malamud and Turcotte (1999), another alterna-

tive method to measure the persistence in time series was
developed by Hurst (1951); Hurst et al. (1965). They studied
the Nile River flow as a time series to introduce the concept175

of rescaled-range (R /S) method used to calculate the scal-
ing exponent (Hurst exponent), Hu, to give quantitative mea-
sure of the persistence of a signal. Hurst (1951); Hurst et al.
(1965) found empirically the power–law relation:[
R(τ)

S(τ)

]
av

=
(τ

2

)Hu
(3)180

where the successive subintervals τ varies over all N values
in the time series, yn. The running sum, ym, is:

ym =

m∑
n=1

(yn− yN ). (4)
185

The range is defined byRN = (ym)max−(ym)min with SN =
σN where yN and σN are the mean and standard deviation of
allN values in the time series, yn. The R /S analysis is a sta-
tistical method to analyze long records of natural phenomena
(Vanouplines, 1995).190

Tapiero and Vallois (1996) found that 0.5< Hu≤ 1.0 im-
plies persistence and that 0≤ Hu< 0.5 implies antipersis-
tence. This would imply that (Tapiero and Vallois, 1996;
Malamud and Turcotte, 1999):

β = 2Hu− 1 = 2Ha + 1 (5)195

The Eq. (5) only has a small validation region (see Mala-
mud and Turcotte, 1999, Figs. 17 and 25). This result should
be considered when an exponent is derived from another.

Other technique (called detrended fluctuation analysis200

(DFA)) to study persistence in time series was introduced by
Peng et al. (1994). This tool could also be used to study per-
sistence on IMF time series.

The fluctuation function F (L) is construct over the whole
signal at a range of different window size L where F (L)∼205

Lα. The obtained exponent, α, is similar to the Hurst expo-
nent, but it also may be applied to non-stationary signals, this
is a great advantage. DFA measures scaling exponents from
non-stationary time series for determining the statistical self-
affinity of an underlying dynamical non-linear process (e.g.,210

Veronese et al., 2011). It is useful to characterize temporal

patterns that appear to be due to long-range memory stochas-
tic processes (Veronese et al., 2011).

Bryce and Sprague (2012) reported that DFA asymptoti-
cally provides good results for stationary time series, which215

is a characteristic of several techniques of time series analy-
sis, nonstationarity remains as the biggest problem in time se-
ries analysis. However, DFA is a commonly used technique,
in the context of persistence analysis, to work with nonsta-
tionarity time series. Furthermore, they found a little prob-220

lem when applies DFA in time series with nonlinear trends;
and other limitation in the partitioning scheme of the DFA
for short data sets is reported. The weak point in the previous
work was that they do not offer a clear solution to the re-
ported limitations. And it are not included in this study. For225

a detailed description of this method, step by step, see Peng
et al. (1994), Little et al. (2006), Baroni et al. (2010), and
Veronese et al. (2011).

Based on the Wiener–Khinchin theorem (Kay and Marple,
1981), it is possible to show that the two exponents β (from230

PSD) and α (from DFA) are related by:

β = 2α− 1. (6)

For fractional Brownian motion we have 1≤ β ≤ 3, and then
1≤ α≤ 2. The exponent of the fluctuations can be classi-235

fied according to a dynamic range values (Kantelhardt et al.,
2002; Bashan et al., 2008; Zheng et al., 2008):

– α < 1
2 : anti-correlated, antipersistence signal.

– α∼= 1
2 : uncorrelated, white noise, no memory.

– α > 1
2 : long-range persistence.240

– α∼= 1: 1/f noise or pink noise.

– α > 1: non-stationary, random walk like, unbounded.

– α∼= 3
2 : Brownian noise or red noise.

Polynomial of different order could be used during com-
putational implementation of the DFA method. For example,245

DFAn uses polynomial fits of order n (Buldyrev et al., 1995).
DFA1 (used in this work) only removes constant trends in
the time series, and it is equivalent to Hurst R /S analy-
sis. The effect of trends on DFA was studied in Hu et al.
(2001), and the relation to the power spectrum method is250

presented in Heneghan and McDarby (2000). Veronese et al.
(2011) showed that DFA method is especially useful for short
records of stochastic and non-linear processes.

The four techniques explained previously are used in this
work. Some models were tested to successfully reconstruct255

the magnetic structure of MCs (Dasso et al., 2005; Ojeda
et al., 2013), which imply that a memory exists in the time
series of IMF. We hypothesize that the magnetic field inside
of these structures has greater persistence than ambient solar
wind. If the previous hypothesis is true, then the persistence260

exponent could be transform in an auxiliary tool to study
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MCs. We decided to test the four techniques because there
is only a small validation region between them (see Mala-
mud and Turcotte, 1999, Figs. 17 and 25). The ideal is to use
as many as possible techniques to measure the persistence,265

and to compare them.

3 IMF dataset

In this work, we use data from the IMF GSM-components
(ACE spacecraft/MAG instrument) with time resolution of
16s. We work with 41 of 80 events (73 MCs and 7 cloud270

candidate) identified by Huttunen et al. (2005). These events
in chronological order are shown in Table 11 (see more de-
tails in Ojeda et al., 2013, 2014, where the same dataset was
studied with other techniques: the spatio-temporal entropy
and discrete wavelet transform). The columns from the left275

to the right give: a numeration of the events, year, shock time
(UT), MC start time (UT), MC end time (UT), and the end
time (UT) of the third region, respectively. In this exploratory
study, the purpose of this selection is to deal with the cases
presenting the three periods (clear Pre-MC or Plasma Sheath,280

MC, and Post-MC).

4 Methodology

To calculate the persistence exponents, the following compu-
tational programs are used:

1. If we installed GNU/Octave then a hurst(x)285

function is created for example in
/usr/share/octave/3.0.1/m/signal/. The function is
used to calculate the Hurst exponent (Hu).

2. Following the work of Malamud and Turcotte (1999),
we did a program in GNU/Octave to calculate the Haus-290

dorff exponent (see Appendix A).

3. A program using GNU/Octave by McSharry and Mala-
mud (2010) is implemented to calculate the β exponent.

4. A fast Matlab implementation1 of the DFA algorithm by
Little et al. (2006) is performed.295

The behavior of the persistence in time series of the IMF
components, measured by the ACE spacecraft with a time
resolution of 16 s is explored. We study the persistence be-
tween time series corresponding to sheaths, MCs, and a quiet
SW after the MC (post-MC) with equivalent time duration300

to it. We calculate one exponent of persistence (e.g., α, β,
Hu, Ha) over each of three time intervals corresponding to
distinct processes. For example, persistence in the case num-
bered as 1 in Table 11 is studied. The interval from 6 January
13:19 UT to 7 January 02:59 UT was classified as the sheath305

1http://www.maxlittle.net/software/.

region. In the sheath, the persistence exponents to Bx com-
ponent are calculated. These values are: α= 1.27, β = 1.71,
Hu = 0.86, Ha = 0.31, respectively.

The interval from 7 January 03:00 UT to 8 January
09:00 UT is the MC region. The post-MC region was selected310

from 8 January 09:01 UT to 9 January 15:00 UT. The persis-
tence exponents are shown in Table 12 rows 4 and 5, respec-
tively.

The previous methodology is extended for the other two
components, i.e., By and Bz , respectively. The results are315

shown in Table 12, rows 6–13 .
MCs exhibit flux-rope characteristics: a large-scale wind-

ing of a closed magnetic structure that is nearly force-free.
It is possible to see anisotropy of magnetic field fluctuations
in an average interplanetary MC at 1 AU (Narock and Lep-320

ping, 2007; Ojeda et al., 2013, 2014). We do not expect to
find the same behavior in all three components by the exis-
tence of anisotropy. The anisotropic behavior, in our opinion,
is caused by the geometry of flux-rope and the axis inclina-
tion angle. We are interested in a single value to characterize325

the persistence in the IMF. For this reason, a mean persis-
tence value using the three IMF components was calculated
at each time. It is the only form that we found to quantify the
persistence in all structure and to minimize the anisotropy in
the calculation. The mathematical expressions can be gener-330

alized in the following equations:

〈β(j)〉=
1

3

3∑
i=1

β
(i)
(j). (7)

〈α(j)〉=
1

3

3∑
i=1

α
(i)
(j). (8)

〈Hu(j)〉=
1

3

3∑
i=1

Hu(i)
(j). (9)

〈Ha(j)〉=
1

3

3∑
i=1

Ha(i)
(j). (10)335

The angle brackets 〈· · · 〉 denote an average of the IMF com-
ponents (i= 1,2,3 =Bx,By,Bz), also the standard devia-
tion is calculated. Each of the three regions are represented in
one j value: j = 1≡ sheath, j = 2≡MC, j = 3≡ post-MC.340

In Table 12, the average and standard deviation values
for all persistence exponents are shown. In Table 12, as we
thought, the persistence values increase inside the MC. This
increase, according to the hypothesis raised in the end of
Sect. 2, was expected. The previous idea is not always true345

when using the spectral-power β exponent. However, one of
the main problems in using a discrete Fourier transform is
spectral variance and leakage (Priestley, 1981; Percival and
Walden, 1993). This shows a range of uncertainty in the val-
ues of β. The other problem is the nonstationarity of the IMF350

components. The previous study was generalized for a group
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of 41 events shown in Table 11; and will be discussed in next
section.

5 Results and discussion

Initially, the persistence analysis was done to establish a pre-355

liminary categorization of the periods in the SW related to
the MC occurrences.

5.1 Persistence analysis on the IMF variation

The methodology that uses the persistence exponents (see
Sect. 4) is applied to 41 events. Using Eq. (7) the 〈β(j)〉360

values are calculated. To make a comparison between all
events, it is necessary to build a histogram. Fig. 11a, is a
histogram built from a frequency table of 〈β(j)〉 values plot-
ted in Fig. 12a. The 〈β(j)〉 values for the sheath, MC, and
post-MC regions were plotted as gray, black, and white bars,365

respectively. The bars have an uniform distribution from
1.5< 〈β(j)〉< 1.8. For 〈β(j)〉< 1.5, there are 7/41 sheath,
2/41 MC, and 15/41 post-MC events, while for 〈β(j)〉> 1.8
there are 3/41 sheath, 9/41 MC, and 3/41 post-MC events
respectively. As previously stated, 〈β(j)〉 exponent is not suit-370

able to measure the persistence in the dataset used in this
work. Nevertheless, the largest values of 〈β(j)〉 were found
in the MCs.

Figure 11b has the same format as Fig. 11a, but for 〈α(j)〉
exponent. For 〈α(j)〉> 1.4, we have 6/41 sheath, 29/41 MC,375

and 3/41 post-MC events, respectively. Thus, we have many
MCs with the large alpha values. For 1.0< 〈α(j)〉< 1.3, the
number of events by regions are 21/41 in the sheath, 3/41 in
the MC, and 23/41 in the post-MC. In MC events, the sepa-
ration of the 〈α(j)〉 values to the right corner is an interesting380

result. In Fig. 11c and d, approximately 30/41 MC events
have the large values of the persistence exponents. One diffi-
culty in studying the persistence is the time series extension
(Veronese et al., 2011).

The 〈β(j)〉 values for the 41 events (Sheath, MC, and post-385

MC) are shown in Fig. 12a. The three intervals of time for
each event are plotted as “�”, “⊗”, and “4” symbols, re-
spectively. The error bar represents the standard deviation for
each value. It shows the power spectral density (PSD) scaling
exponent 〈β(j)〉 as a self-affine fractal (1< 〈β(j)〉< 2), but390

there is not a pattern that allows the separation of MC from
the other two cases; a total of 18/41 events exist where the
clouds do not have the larger values. We understand that in
non-stationary time series the Fourier transform is not suit-
able, because the core functions of the transform is composed395

of sines and cosines.
For short time series, DFA can detect the correlation

length more accurately than the PSD scaling exponent (β)
(Veronese et al., 2011). The alpha exponent value is not af-
fected by spectral variance and leakage, and it is possible to400

use in non-stationary time series. Figure 12b has the same

format as Fig. 12a, but was built for 〈α(j)〉 exponent using
the Eq. (8). The results show 〈α(j)〉 values from 1.00 to 1.60,
i.e., long-range persistence and some MCs with typical val-
ues of a Brownian noise (〈α(j)〉 ∼= 1.50).405

In 38 of the 41 events, the alpha (〈α(j)〉) value in the MC
(“⊗”) is larger than the one in the sheath (“�”), respectively.
It is noteworthy that there are some exceptions such as events
5, 20, and 25 in Table 11. However, in the context of the
present analysis, we did not investigate each of these cases410

in detail, because they are only a few of the 41 time series.
However, this is a study to be carried out later, because they
are important to redefine the boundaries of the clouds.

The Hurst exponent was presented in Sect. 4 as an useful
methodology to study MCs. Using Eq. (9), the 〈Hu(j)〉 ex-415

ponents in the three regions are calculated. Figure 12c has
the same format that Fig. 12a and b, respectively, but for
〈Hu(j)〉 exponent. Similar to Fig. 12b, the 〈Hu(j)〉 exponents
have larger values in the MC. Nevertheless, 4/41 MC (events
11, 19, 28, and 30) does not have large 〈Hu(j)〉 exponents in420

the MC region. None of these cases coincide with the three
events (5, 20, and 25) when the alpha exponent is used. This
causes a certain degree of distrust in the identification of
these clouds, but also suggests that all techniques must be
used together to increase the confidence level of the results.425

Nevertheless, in 34/41 events both exponents have large val-
ues in the cloud region.

The last tool we use is the Hausdorff exponent (Ha). To
calculate the mean Hausdorff exponents, Eq. (10) is used. In
Fig. 12d, the 〈Ha(j)〉 exponents have largest values in the430

MC regions, only 2/41 MC (events 10 and 28) do not have
largest 〈Ha(j)〉 exponents. Thus, this tool provides the best
results.

In conclusion, the PSD scaling exponent is not a suitable
tool to study persistence in IMF components in the SW. The435

three exponents report the largest persistence in 33 of 41 MC
regions. In 80.5 % of 41 cases, these tools are able to separate
the region of the cloud from neighboring regions.

In Fig. 13, the histogram shows the number of cases vs.
temporal extension (in hours) of MCs and plasma sheaths,440

respectively. The clouds extension is largest in the plasma
sheaths. However, there is a pattern in the persistence val-
ues between all MC events. We believe that these results are
valid, because we know that MCs are organized structures in
the plasma (Ojeda et al., 2005, 2013, 2014), which have an445

increase of “memory” in the time series.
We considered a better way to view these results. Thus,

the average values for each exponent from 41 events and for
each of the three regions are calculated. The equations for
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calculating the average values are:450

〈β(j)〉T =
1

N

N∑
i=1

〈β(j)〉
(i) (11)

〈α(j)〉T =
1

N

N∑
i=1

〈α(j)〉
(i) (12)

〈Hu(j)〉T =
1

N

N∑
i=1

〈Hu(j)〉
(i) (13)

〈Ha(j)〉T =
1

N

N∑
i=1

〈Ha(j)〉
(i)
, (14)

455

with N = 41 and j = 1≡ sheath, j = 2≡MC, j = 3≡
post-MC.

The calculation of the standard deviation shows, how
much variation or dispersion exists from the average. If
a rectangular area is built using the mean and standard devi-460

ation then there is a validity region where all exponents join
up. Following the above idea, the panels of Fig. 14 are built.
In Fig. 14a the black points are (〈α(j)〉T ,〈β(j)〉T ) in each one
of three regions, from 41 events plotted in the Fig. 12a and b.
For 2-D graphic, filling is done in the x and y directions be-465

tween the standard deviation of the mean, and the shade rect-
angular regions are the set of validations of the persistence
for each regions. Thus, the graph allows a conjugate analysis
of persistence. Fig. 14a, shows in the 〈β(j)〉T axis that the
MC is the region with the largest average value. However,470

shade rectangular regions are overlapping. It is not possible
to separate the MC region. Nevertheless, the result is impor-
tant because we can see that persistence is large in the MCs.
On the other hand, if we see the 〈α(j)〉T axis then 75% of
the shade rectangular regions are not overlapping. The MCs475

have 〈α(j)〉 values from 1.39 to 1.54. A vertical dashed line
is drawn in the point 1.392. We propose the use of this value
as a threshold when the alpha exponent is calculated in MC
regions.

The alpha value characterizes a multiscale phenomenon480

that can be observed from the fluctuations of the amplitude
of the IMF. The coherent structures associated with magnetic
clouds are related to scales of hours. However, there are sev-
eral components of fine structures which we call noise com-
ponent (on the order of seconds). These disturbances may be485

caused by different processes (e.g., Alfvén waves interact-
ing with the cloud). Another possible nonlinear component at
small scales is the fact that there are disturbances outside the
coherence Bx and Bz plane (see e.g. Figure 3, ?). Here, the
calculation of the exponent alpha is taken as the average of490

the alpha values of each component (Bx,By and Bz). There-
fore, the threshold values represent the average complexity
signature of the maximum fluctuation of the system. The
fluctuation is not self-similar; it is a self-affine phenomenon.
It means that, there are similar patterns of fluctuation but495

only in some scales, not all. An analysis of multi-resolution

(for example, by using wavelets) may be important for future
work to investigate this process. In the classification of per-
sistence processes, the value of alpha, in the range 1.39 to
1.54, only indicates that in the transition region the variabil-500

ity pattern is typically a nonstationary process very close to a
Brownian-like fluctuation (≈ 1.5). However, more important
than characterizing the process in this context, the detection
of the transition should be addressed as the most important
issue.505

Figure 14b has the same format as Fig. 14a, but in the
y axis, 〈Ha(j)〉T was plotted. Along 〈Ha(j)〉T axis, the
shaded rectangular region corresponding to the MC has less
overlap with other regions than are seen in Fig. 14a. Only
the MCs have 〈Ha(j)〉 values between 0.320 and 0.420. A510

horizontal dashed line is drawn in the point 0.327.
Figure 14c has the same format as Fig. 14a and b but in the

y axis, 〈Hu(j)〉T was plotted. In addition, the MCs were sep-
arated from the other two regions, and the horizontal dashed
line is drawn in the point 0.875. The regions with least over-515

lap correspond to the Hurst and Hausdorff exponents, respec-
tively. In Fig. 14d, (〈Hu(j)〉T ±σ) vs. (〈Ha(j)〉T ±σ) is plot-
ted. The Hurst and Hausdorff exponents provide good results,
and the clouds are separated from the other two regions. This
graphic could be used to evaluate the quality when a new MC520

is identified using other methods, i.e., they are useful to cat-
egorize the ranges previously identified by another method.

With these results, we conclude that the persistence val-
ues increase in the IMF components inside of MCs. The per-
sistence analysis is not able to distinguish physical differ-525

ences between sheath and post-MC regions, but the same av-
erage values suggest that both regions may be influenced by
the noise component (non-linear processes at finer scales in-
volved in the dynamics of the IMF).

In this study, the investigated period covers the rising530

phase of solar activity (1998–1999), solar maximum (2000),
and the early declining phase (2001–2003) when defined by
the yearly sunspot number. We had a variety of MCs in five
year (1998–2003), and the rotation of the magnetic field di-
rection can occur in any direction relative to the ecliptic.535

However there are some MCs where identification is not
completely secure. For example, WIND MC table2 or Lep-
ping’s list show a quality factor (1 ≡ Excellent, 2 ≡ Good, 3
≡ Poor) when MC intervals are identified. This methodology
can help to evaluate the quality of the identification. After540

identifying a MC, if their persistence exponents occupy non-
overlapping regions in Fig. 14 (panels b, c, and d), then the
cloud was identified with good quality. An advantage of the
proposed methodology is that plasma data are not required.
The plasma data sometimes have large gaps and poor time545

resolution if compare with the magnetic field data.
In Table 13, we check if the 41 events are all in Lepping’s

list. The first two columns are the same as published in Lep-
ping’s list (MC Code and quality factor). Seven events are

2http://wind.nasa.gov/mfi/mag cloud pub1.html.
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not published in Lepping’s list. These events are shown with550

symbol ”−“. They are the events 5, 10, 16, 17, 20, 27, and 28
as shown in third column. Lepping’s quality factor informs
how well their model identifies each MC. The quality factor
is published in a range of 1 to 3. We used the previous idea
to create a quality factor that can help to evaluate the quality555

of the identification, i.e. Q=1 ≡ Excellent (three exponents
are larger than threshold values), Q=2 ≡ Good (two expo-
nents are larger than threshold values), Q=3 ≡ Poor (only
one exponent is larger than the threshold value), and Q=0
≡ Ill-defined (three exponents are lower than the threshold560

values, the field shows little evidence of MCs). The num-
bers that are greater than the threshold (〈α〉> 1.392; 〈Ha〉>
0.327; 〈Hu〉> 0.875) are shown in bold font. We found 83%
(34/41×100%) of MCs with quality factor Q=1 or Q=2. The
previous result is better than the 70.6% (24/34× 100%) re-565

ported in Lepping’s list. From 24 cases reported by Lepping
with Q=1 or Q=2, only one disagree with our results. How-
ever, some conflicting results could be expected, because
Lepping used a different dataset to identify MCs. Seven cases
were not reported by Lepping and Q=0 was found in two of570

them. Table 13, last four columns, is a summary of the results
derived from Fig. 14 (panels b, c, and d).

6 Conclusions

The physical bases for the use of the techniques are the
plasma features related to the MC processes. Physical-575

mathematical techniques have been selected for their ability
to allow the investigation of MC occurrences. Those tech-
niques have been developed in an original approach to char-
acterize MC events in the SW. They consist of techniques of
persistence exponents: Hurst, Hausdorff, beta exponent from580

power-spectral density (Fourier), and alpha exponent from
detrended fluctuation analysis, respectively. Those numerical
tools have a great advantage because they are easy to imple-
ment with low computational cost and could the creation of
an automatic operation detection. In addition, they charac-585

terize MC regions using as input data only the three compo-
nents of the interplanetary magnetic field (IMF) measured by
satellites at convenient space location, e.g., the Lagrangian
point L1.

We worked mainly with data of Bx, By , and Bz with tem-590

poral resolution of 16 s measured by the ACE. We worked
with a total of 41 MCs from the years 1998–2003, published
in the paper of Huttunen et al. (2005). The criteria used to
select these 41 cases were the existence of a plasma sheath
in front of the MC, and in these cases, clouds were well-595

identified. We have studied persistence in the 41 ICMEs di-
vided in three regions: plasma sheath, MC, and post-MC,
respectively. The persistence exponent values increased in-
side cloud regions, and it was possible to select the fol-
lowing threshold values: 〈α(j)〉= 1.392; 〈Ha(j)〉= 0.327;600

〈Hu(j)〉= 0.875. These values are useful as another test to

evaluate the quality of the identification. After identifying
a cloud, persistence analysis can be performed in the full ex-
tent of temporal series of the three IMF components. If the
cloud is well-structured, then the persistence exponent values605

exceed thresholds.
The PSD scaling exponent is not a suitable tool to study

persistence in IMF components in the SW. Nevertheless, the
other three exponents are suitable to study persistence, and
the exponent values have an increase in the cloud region. It610

means that the three exponents report the largest persistence
in 33 of total 41 cloud regions. In 80.5 % of the cases studied,
these tools were able to separate the region of the cloud from
neighboring regions. The Hausdorff exponent (Ha) provides
the best results.615

One difficulty in studying the persistence in time series is
the dimension of it. However, we can see a pattern in the per-
sistence values between all MC events. An additional anal-
ysis by other techniques that consider processes with non-
Gaussian features and multifractality is underway and will be620

presented later (Campos-Velho et al., 2001; Bolzan, M. J. A.
et al., 2002).

Fluctuations in time series can also be studied from tech-
niques based on bilateral asymmetries that can be found in
the gradient domain of the data. The technique known as gra-625

dient pattern analysis (GPA), originally formulated to anal-
yse spatiotemporal data (Rosa et al., 1999), was adapted to
analyse patterns of asymmetries that appear exclusively in
the time domain (Assireu et al., 2002). The GPA for time se-
ries (known as GPA-1D) compares amplitude values consid-630

ering different scales of time fluctuation mapped in its gra-
dient field (Rosa et al., 2008). Within the scope of the GPA-
1D, the value of the gradient asymmetry coefficient can also
present relations with the values obtained from DFA, Power
Spectra and fractal measures. Therefore, the use of gradient635

pattern analysis (GPA-1D) (Assireu et al., 2002; Rosa et al.,
2008) will be explored further in an complementary work.

Appendix A

Autocorrelations and semivariograms

A summary taken from Malamud and Turcotte (1999) is pre-640

sented here. The correlation of a time series with itself, i.e.
y(t+ s) compare with y(t) at lag s, is called autocorrelation
function (r(s)). The autocorrelation function can be used to
quantify the persistence or antipersistence of a time series.
This is given by:645

r(s) =
c(s)

c(0)
, (A1)
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with the autocovariance function, c(s), given by

c(s) =
1

(T ′− s)

T ′−s∫
0

[y(t+ s)− ȳ] [y(t)− ȳ]dt,

650

and the autocovariance function at 0 lag, c(0), given by

c(0) =
1

T ′

T ′∫
0

[y(t)− ȳ]
2

dt= Va

The time series, y(t), is prescribed over the interval 0≤
t≤ T ′. The average and variance of y(t) over the interval T ′655

are ȳ and Va. The autocorrelation function, r(s), is dimen-
sionless and does not depend on the units of y(t) or t. The
plot of r(s) vs. s is known as correlogram (Malamud and
Turcotte, 1999).

For a discrete time series, the autocorrelation function, rk,660

is given by:

rk =
ck
c0

(A2)

with the autocovariance, ck, given by:

ck =
1

(N − k)

N−k∑
n=1

(yn+k − ȳ)(yn− ȳ) (A3)665

and the autocovariance at 0 lag (the variance) given by:

c0 =
1

N

N∑
n=1

(yn− ȳ)
2

= Va. (A4)

If the mean or variance vary with the length of the interval670

considered, then the time series is nonstationary. The correl-
ograms is inappropriate to study nonstationary time series,
because r(s) has ȳ in its definition. However, the method to
measure long-range correlation, which is valid for both sta-
tionary and nonstationary time series, is the semivariogram675

γ. Like the autocorrelation function, the semivariogram mea-
sures the dependence of values in time series that are sepa-
rated by lag, s.

For a discrete time series, the semivariogram, γ(s), is
given by:680

γk =
1

2
(N − k)

N−k∑
n=1

(yn+k − yn)
2 (A5)

For a stationary time series, the semivariogram, γk, and the
autocorrelation function, rk, are related. The mean of the
time series, ȳ, can be added and subtracted within the sum-685

mation in Eq. (A5) to give:

γk =
1

2(N − k)

N−k∑
n=1

[(yn+k − ȳ)− (yn− ȳ)]
2
.

When expanded this gives:

γk =
1

2(N − k)
690 [

N−k∑
n=1

(yn+k − ȳ)2 +

N−k∑
n=1

(yn− ȳ)2−
N−k∑
n=1

2(yn+k − ȳ)(yn− ȳ)

]
.

(A6)

Provided the time series is stationary, two of the terms in
Eq. (A6) are equivalent to the variance in Eq. (A4), giving:

γk = Va−
1

(N − k)

N−k∑
n=1

(yn+k − ȳ)(yn− ȳ) . (A7)695

Substituting the definition for ck from Eq. (A3) into Eq. (A7)
and using the definitions of c0 from Eq. (A4) and rk from
Eq. (A2), the new equation is:

γk = (Va− ck) =

(
V −V ck

c0

)
= V (1− rk) (A8)700

For an uncorrelated time series, we have rk = 0 and γk =
Va. Several authors have applied both the autocorrelation
function and semivariograms to both real and synthetic time
series that exhibit long-range persistence (e.g. Ramos et al.,705

2004; Rosa et al., 2008).
Using the definition for the semivariogram, γk, given in

Eq. (A5), a computational code was implemented:

function [Ha,R1] = Semivariogram(y)710

N1 = size(y,1);
potencia2 = floor(log2(N1));
gammaT k = 1 : potencia2;
xi= 1 : potencia2;
for i= 1 : potencia2715

k = 2∧i;
contador = 0;
for n= 1 : (N1− k)
contador = contador + (y(n+ k)− y(n))∧2;
end720

gam k = (1/(N1− k)) ∗ contador;
gammaT k(i) = gam k;
xi(i) = k;
end
yi= gammaT k;725

[a,R] = RegresionLinear(log10(xi), log10(yi));
Ha = a/2;
R1 =R;
end

function [a,R] = RegresionLinear(xi,yi)730

n1 = size(xi,2);
a= (n1 ∗ sum(xi. ∗ yi)− sum(xi) ∗ sum(yi))/(n1 ∗
sum(xi.∧2)− sum(xi)∧2);
b= (sum(yi)− a ∗ sum(xi))/n1;
R= ((sum(xi. ∗ yi)− (sum(xi) ∗735
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sum(yi))/n1)∧2)/((sum(xi.∧2)− (sum(xi)∧2)/n1) ∗
(sum(yi.∧2)− (sum(yi)∧2)/n1));
end
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Table 11. Solar wind data studied (from Huttunen et al., 2005).

No. Year Shock, UT MC start, UT MC stop, UT Post-MC, UT

01 1998 6 Jan, 13:19 7 Jan, 03:00 8 Jan, 09:00 9 Jan, 15:00
02 3 Feb, 13:09 4 Feb, 05:00 5 Feb, 14:00 6 Feb, 23:00
03 4 Mar, 11:03 4 Mar, 15:00 5 Mar, 21:00 7 Mar, 03:00
04 1 May, 21:11 2 May, 12:00 3 May, 17:00 4 May, 22:00
05 13 Jun, 18:25 14 Jun, 02:00 14 Jun, 24:00 15 Jun, 22:00
06 19 Aug, 05:30 20 Aug, 08:00 21 Aug, 18:00 23 Aug, 04:00
07 24 Sep, 23:15 25 Sep, 08:00 26 Sep, 12:00 27 Sep, 16:00
08 18 Oct, 19:00 19 Oct, 04:00 20 Oct, 06:00 21 Oct, 08:00
09 8 Nov, 04:20 8 Nov, 23:00 10 Nov, 01:00 12 Nov, 02:00
10 13 Nov, 00:53 13 Nov, 04:00 14 Nov, 06:00 15 Nov, 08:00

11 1999 18 Feb, 02:08 18 Feb, 14:00 19 Feb, 11:00 20 Feb, 08:00
12 16 Apr, 10:47 16 Apr, 20:00 17 Apr, 18:00 18 Apr, 16:00
13 8 Aug, 17:45 9 Aug, 10:00 10 Aug, 14:00 11 Aug, 18:00

14 2000 11 Feb, 23:23 12 Feb, 12:00 12 Feb, 24:00 13 Feb, 12:00
15 20 Feb, 20:57 21 Feb, 14:00 22 Feb, 12:00 23 Feb, 10:00
16 11 Jul, 11:22 11 Jul, 23:00 13 Jul, 02:00 14 Jul, 05:00
17 13 Jul, 09:11 13 Jul, 15:00 13 Jul, 24:00 14 Jul, 09:00
18 15 Jul, 14:18 15 Jul, 19:00 16 Jul, 12:00 17 Jul, 05:00
19 28 Jul, 05:53 28 Jul, 18:00 29 Jul, 10:00 30 Jul, 02:00
20 10 Aug, 04:07 10 Aug, 20:00 11 Aug, 08:00 11 Aug, 20:00
21 11 Aug, 18:19 12 Aug, 05:00 13 Aug, 02:00 13 Aug, 23:00
22 17 Sep, 17:00 17 Sep, 23:00 18 Sep, 14:00 19 Sep, 05:00
23 2 Oct, 23:58 3 Oct, 15:00 4 Oct, 14:00 5 Oct, 13:00
24 12 Oct, 21:36 13 Oct, 17:00 14 Oct, 13:00 15 Oct, 09:00
25 28 Oct, 09:01 28 Oct, 24:00 29 Oct, 23:00 30 Oct, 22:00
26 6 Nov, 09:08 6 Nov, 22:00 7 Nov, 15:00 8 Nov, 08:00

27 2001 19 Mar, 10:12 19 Mar, 22:00 21 Mar, 23:00 23 Mar, 24:00
28 27 Mar, 17:02 27 Mar, 22:00 28 Mar, 05:00 28 Mar, 12:00
29 11 Apr, 15:18 12 Apr, 10:00 13 Apr, 06:00 14 Apr, 02:00
30 21 Apr, 15:06 21 Apr, 23:00 22 Apr, 24:00 24 Apr, 01:00
31 28 Apr, 04:31 28 Apr, 24:00 29 Apr, 13:00 30 Apr, 02:00
32 27 May, 14:17 28 May, 11:00 29 May, 06:00 30 May, 01:00
33 31 Oct, 12:53 31 Oct, 22:00 2 Nov, 04:00 3 Nov, 10:00

34 2002 23 Mar, 10:53 24 Mar, 10:00 25 Mar, 12:00 26 Mar, 14:00
35 17 Apr, 10:20 17 Apr, 24:00 19 Apr, 01:00 20 Apr, 02:00
36 18 May, 19:44 19 May, 04:00 19 May, 22:00 20 May, 16:00
37 1 Aug, 23:10 2 Aug, 06:00 2 Aug, 22:00 3 Aug, 14:00
38 30 Sep, 07:55 30 Sep, 23:00 1 Oct, 15:00 2 Oct, 07:00

39 2003 20 Mar, 04:20 20 Mar, 13:00 20 Mar, 22:00 21 Mar, 07:00
40 17 Aug, 13:41 18 Aug, 06:00 19 Aug, 11:00 20 Aug, 16:00
41 20 Nov, 07:27 20 Nov, 11:00 21 Nov, 01:00 22 Nov, 15:00

Table 12. We calculate the persistence in the IMF components by
four different method: β exponent of power spectrum, α exponent
of DFA, Hurst of R /S analysis and Hausdorff Ha exponent of semi-
variogram respectively. The interval from 6 January 13:19 UT to 7
January 02:59 UT 1998 was classified as sheath. The intervals 7 Jan-
uary 03:00 UT to 8 January 09:00 UT and from 8 January 09:01 UT
to 9 January 15:00 UT were classified as MC and solar wind after
the MC respectively. Dates are shown in Table 11, event No. 1.

Event No. 1 α β Hu Ha

Bx:
Sheath 1.27 1.71 0.86 0.31

MC 1.41 1.60 0.89 0.31
Pos-MC 1.31 1.70 0.87 0.31

By:

Sheath 1.34 1.68 0.87 0.27
MC 1.52 1.55 0.91 0.42
Pos-MC 1.37 1.65 0.88 0.31

Bz:

Sheath 1.39 1.65 0.85 0.31
MC 1.45 1.75 0.90 0.36
Pos-MC 1.23 1.64 0.86 0.23

Mean Values: 〈α(j)〉±σ 〈β(j)〉±σ 〈Hu(j)〉±σ 〈Ha(j)〉±σ
Sheath 1.33± 0.06 1.68± 0.03 0.86± 0.01 0.30± 0.02
MC 1.46± 0.06 1.64± 0.11 0.90± 0.01 0.37± 0.05
Pos-MC 1.30± 0.07 1.66± 0.04 0.87± 0.01 0.28± 0.05

Table 13. The first two columns are the same as were published in
Lepping’s list. MCs that were not identified in Lepping’s list are
shown with ”−“. The 41 events in Table 11 are shown in the third
column. The last four columns from the left to the right give: the
Hurst exponent, the Hausdorff exponent, the alpha exponent, and
the quality of the MCs, respectively.

Code Q.a Table1 〈Hu(j)〉〈Ha(j)〉〈α(j)〉 Q.b
28 1 01 0.901 0.365 1.460 1
30 2 02 0.907 0.463 1.587 1
31 1 03 0.897 0.329 1.457 1
32 3 04 0.891 0.363 1.496 1
− − 05 0.891 0.341 1.330 2
35 1 06 0.912 0.457 1.593 1
36 2 07 0.903 0.404 1.503 1
37 3 08 0.907 0.400 1.493 1
38 1 09 0.894 0.369 1.437 1
− − 10 0.874 0.307 1.388 0
39 3 11 0.866 0.358 1.310 3
40 3 12 0.898 0.439 1.440 1
41 1 13 0.892 0.362 1.470 1
43 3 14 0.886 0.347 1.293 2
44.1 3 15 0.893 0.414 1.413 1
− − 16 0.890 0.316 1.435 2
− − 17 0.860 0.280 1.474 3
46 2 18 0.895 0.398 1.542 1
47 2 19 0.879 0.412 1.521 1
− − 20 0.866 0.326 1.234 0
49 2 21 0.889 0.375 1.349 2
50 3 22 0.860 0.326 1.408 3
51 1 23 0.898 0.432 1.437 1
52 2 24 0.884 0.355 1.337 2
53 3 25 0.888 0.380 1.340 2
54 2 26 0.894 0.332 1.514 1
− − 27 0.909 0.427 1.423 1
− − 28 0.857 0.299 1.502 3
57 2 29 0.882 0.296 1.235 3
58 2 30 0.884 0.380 1.348 2
59 2 31 0.889 0.402 1.516 1
60 1 32 0.895 0.381 1.360 2
62 3 33 0.883 0.382 1.477 1
65 2 34 0.892 0.321 1.419 2
66 1 35 0.893 0.384 1.366 2
68 1 36 0.885 0.368 1.542 1
71 2 37 0.878 0.350 1.498 1
72.2 3 38 0.887 0.299 1.428 2
73 1 39 0.867 0.341 1.545 2
76 2 40 0.895 0.411 1.517 1
77 2 41 0.887 0.407 1.483 1

a From Lepping’s list: QUALITY: 1≡ EXCELLENT, 2 ≡ GOOD,
3 ≡ POOR
b Our results: QUALITY: 1 ≡ EXCELLENT (three exponents are
larger than threshold values), 2 ≡ GOOD (two exponents are larger
than threshold values), 3 ≡ POOR (only one exponent is larger
than the threshold value), 0 ≡ ILL-DEFINED, the field shows little
evidence of MCs (three exponents are lower than the threshold
values)
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Fig. 11. In (a), a histogram is construct from a frequency table of
〈β(j)〉 values plotted in Fig. 12a. We want to have a better view
of the distribution of 〈β(j)〉 values between the three regions. The
other panels (b), (c), and (d) are similar to (a) but for 〈α(j)〉,
〈Hu(j)〉, and 〈Ha(j)〉 exponents, respectively.
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Fig. 12. In (a), the PSD scaling exponent 〈β(j)〉 values vs. number of events (see Table 11) plotted, where (“�”), (“⊗”) and (“4”) symbols
corresponds to the sheath, MC and post-MC regions respectively. The other panels (b), (c), and (d) are similar to (a) but for 〈α(j)〉, 〈Hu(j)〉,
and 〈Ha(j)〉 exponent,s respectively. The results in the four panels show long-range persistence in IMF time series (1< 〈β(j)〉< 2, 1<
〈α(j)〉< 1.6, 0.75< 〈Hu(j)〉< 0.95, and 0.1< 〈Ha〉< 0.5). The horizontal dashed line is a threshold derived from Fig. 14.
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Fig. 13. Histogram from 41 MCs and its respective plasma sheaths that are studied in this paper. The Histogram shows the number of cases
vs. temporal extension (in hour) of MCs and plasma sheaths, respectively.
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Fig. 14. In (a), the black points are (〈α(j)〉T ,〈β(j)〉T ) in each of the three regions, of the 41 events plotted in the Fig. 12a and b. We calculated
the standard deviation of the mean for each persistence exponent that is shown in the Eq. (11). For 2-D graphic, filling is done in the x and
y directions between the standard deviation of the mean. The filling rectangular regions are the set of validations of the persistence for each
regions, (〈β(j)〉T ±σ) vs. (〈α(j)〉T ±σ). The other panels (b), (c) and (d) are similar to (a) but for other exponents combinations i.e.: (b)
(〈Ha(j)〉T ±σ) vs. (〈α(j)〉T ±σ); (c) (〈Hu(j)〉T ±σ) vs. (〈α(j)〉T ±σ); (d) (〈Hu(j)〉T ±σ) vs. (〈Ha(j)〉T ±σ).


