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We thank the two anonymous reviewers for the very helpful and insightful comments 

that lead to significant improvement of the quality of this manuscript. We have tried 

our best to address all the comments. Below we use boldface to indicate the comments 

from the reviewers and the associate editor, and italics for our responses. 

 

To reviewer 1 

Recommendation: Accept subject to Minor Revision 

The manuscript discusses two novel approximations to deal with nonlinear 

observation operators in the context of the ETKF. The problem has central 

relevance in geophysical data assimilation where Earth observations are often 

derived from nonlinear relation. The proposed approach leads to a new way to 

compute the inflation factor required to adjust the forecast error covariance 

matrix in most ensemble-based scheme. To the best of my knowledge the method 

introduced by the authors is new and it is well outlined in the context of 

state-of-the-art procedures against which it is compared numerically. 

The manuscript is quite well written and relatively easy to follow; it is somehow 

long in the mathematical derivation but the authors have rightly cut the 

formalism into appendices in order to make the read of the main text easier. 

My overall opinion is therefore positive and I think this study is worth to be 

published after minor modifications that I list below. 

Response: Thank you for your thorough review of our manuscript and we appreciate 

your encouraging comments. 



 

1. Page 545, line 19. Typos: Burgerss ) Burgers 

Response: We have corrected this typo. 

 

2. Page 545, lines 22 - 25. It is unclear why the linear approximation on   

should affect the error covariance evolution and not just the analysis step. 

Response: This is partly due to that inflation on error covariance matrix plays an 

important role in error covariance evolution. All existing estimations of inflation 

factors are related to the observation operator. If the tangent-linear operator is used 

to approximate a strongly nonlinear observation operator, the inflation factor can be 

incorrectly estimated. That can affect the estimation of error covariance evolution. 

 

3. Page 548, lines 5 - 10. I suggest the authors to improve notation. In fact while 

the number in the brackets for the state vector is time, it is the observation in h. 

Furthermore h is an operator which is applied to the state vector and using the 

notation h(1) is confusing. 

Response: The notation has been changed to  
T

1, 2, ,, ,
ii i i p iH h h h ,

 
T

t t t t

1, 2, ,x , x ..., xi i i n ix ，  and  
T

o o o o

1, 2, ,y , y ,..., y
ii i i p iy . 

 

4. Page 554, lines 20 - 24. Along with model error, other factors may affect the 

consistency between F-RMSE and F-Spread, namely the nonlinearities and the 

sampling error. The authors mention them later in the text; I suggest them to do 

it at this point too. 

Response: Thanks for the comment. In the last paragraph of section 2.3, we have 

added the sentence “Beside model error, the nonlinearities and the sampling error 

may also affect the consistency between F-RMSE and F-Spread as it is discussed later 

in this paper.”. 

 

5. Page 556, Eq. (32). The authors state the observations are spatially correlated. 



From Eq. (32) this is not clear, since the observation at point k, only depends on 

the state vector at the same point. Does the spatial correlation of the observation 

error come from the state vector in (32) ?. Please clarify. 

Response: The spatial correlation of the observation errors come from Eq. (33). 

 

6. Page 557, line 4. I suggest the authors to include also the main equation 

characterizing the ETKF for consistency with the other listed methods. These 

equations should be Eq. (12) and (13) I guess. 

Response: Following this comment, the expression for ETKF is modified to 

“Traditional ETKF in linear approximation (Eq. (12)) and optimization (Eq. (10))”. 

 

7. Page 557, lines 4 - 9. The comparison would be more self-consistent if an 

algorithm having SS in the inflation and nonlinear in the optimization would be 

at hand. I suggest the authors to either add such an algorithm among those 

under comparison or at least discussing it in the text. 

Response: Following this comment, we investigated the second-order approximation 

method for estimating inflation factors while using the nonlinear optimization scheme. 

The corresponding A-RMSE is 2.20 for the forcing parameter F=12 and parameter of 

observation operator 0.1  , which is larger than that of method TN and smaller 

than that of method NN. We have added this discussion in the fourth paragraph of 

section 4.1 in the revised version. 

 

8. Figure 1 and 2. Please improve the quality of the figures by using colors or 

thicker lines. Also, I strongly suggest the authors to include a similar figure 

showing A-RMSE for the algorithms under comparison as a function of  . This 

will further fortify the result in Fig. 2 and the overall results in general. 

Response: Thanks for your suggestion. We have used colors in Figure1 and thicker 

lines in Figure 2. Also, A-RMSE as a function of   for the different schemes is 

shown in the Figure 1(b) of the revised version. It shows that all the schemes have the 

same A-RMSE with 0   (i.e. the observation operator is linear), indicating that 



there is no difference among them. For each scheme, the A-RMSE increases as the 

parameter   increases from 0 to 0.1. The magnitude relation of all schemes is 

basically consistent with that in Figure 1(a). The larger the parameter   is, the 

bigger difference the different schemes have. 

 

9. Page 557, lines 23 - 28. The authors should include some hints on the physical 

interpretation of L in terms of the state-estimation accuracy. This will help to 

fully interpret the results in Table 1. 

Response: The interpretation “The function represents the second-order distance of 

the squared innovation statistic (
T

i id d ) to its expectation. Generally speaking, for a 

more accurate assimilation scheme, the realization of 
T

i id d  should be closer to its 

expectation and therefore the value of the objective function should be smaller.” is 

added in the corresponding paragraph. 

 

10. Page 558, lines 1 - 2. It is not strictly true that a smaller error corresponds to 

a smaller value of the objective function L: see SS. 

Response: We have changed the expression to “In the majority of the cases”. 

 

11. Page 560, line 6. I would change”... may be more appropriate ...” into”... may 

also be appropriate ...”. Moreover inflation of the background is also useful 

when the system is highly chaotic and the ensemble size too small. Multiplicative 

inflation of the background in fact does not change the range of the matrix which 

can be desirable if the ensemble members have correctly catch the dynamics 

instabilities. 

Response: Thanks for your suggestion. We have changed the expression. 

 

12. Page 560, lines 9 - 12. I understand that everything is based on the equality: 

            , where d is the innovation vector, P the forecast error 

covariance matrix and < . > the expectation operator. If my understanding is 



correct, I suggest the authors to include this in the text. A good place might be 

when the objective function is introduced. 

Response: In the cases of nonlinear observation operator, the mean value of T

i id d  is  

           
T

T 1/2 o t 1/2 t f 1/2 o t 1/2 t f( ) ( ) ( ) ( ) ( ) ( )i i i i i i i i i i i i i i i i i i i iE E H H H H H H          
  

d d R y x R x x R y x R x x . (A2) 

Especially, if the observation operator is a linear matrix (
iH ), Eq. (A2) can be 

simplified to 

  T 1/2 T 1/2

i i i i i i iE   d d R H PH R I , (A3) 

where I  is the i ip p  identity matrix. We have added this in Appendix A in the 

revised version. 

 

13. Page 561, lines 1 - 8. This paragraph is important but not clearly written. 

Please rephrase the description of the experiments with a fixed-tuned inflation. 

Response: Following this comment, the paragraph is modified to “In many practical 

experiments, the inflation factor is constant in time and is chosen by trial and error to 

give the assimilation with the most favourable statistics (e.g. Anderson and Anderson 

1999). For testing the fixed-tuned inflation method, suppose 
a ( )i x  and 

f ( )i x  are 

the analysis sate and forecast state using time invariant inflation factor  . Then the 

statistics 
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respectively. When Eq (10) is minimized to estimate the weights of perturbed analysis 

states, the corresponding A-RMSEs of the two fixed-tuned methods are estimated as 

2.97 and 2.85 respectively which are larger than that of method SS (2.29). The ratios 

of F-RMSE to F-Spread are estimated as 3.14 and 3.45 respectively which are also 

larger than 1.80 of method SS (see Table 2 ). All these facts indicate than the 

empirical estimation method for the inflation factor is not as good as method SS.” 

 

14. Page 578, Table 1. I suggest the authors to include the ratio between F-RMSE 



over A-RMSE. This will help quantifying the relative improvement gained at the 

analysis and the average error growth during the forecast. For instance, these 

ratios would reveal the large error reduction obtained by TN at the analysis. 

Response: Thanks for your suggestion. We have added the ratios between F-RMSEs 

over A-RMSEs to Table1, which can be considered as a measurement of the 

improvement gained at the analysis step. All the ratios are larger than 1, which 

indicate that the analysis state is better than the forecast state. Among all methods, 

the ratio is largest for the method TN, which indicates the largest error reduction at 

the analysis step. 

  



To reviewer 2 

General comments 

This paper addresses some issues associated with Ensemble Transform Kalman Filter 

(ETKF) in applications to nonlinear observation operators. In particular, the paper 

proposes the use of second-order Taylor expansion in approximation of nonlinear 

observation operator to improve error covariance inflation in ETKF. The proposed 

methodology is applied to the Lorenz 40-variable model. 

Overall, the paper clearly describes the improvements and demonstrates the benefit of 

introducing the second order information. Most of the mathematical description is 

focused on the improvements of the error covariance inflation methodology for the 

ETKF. 

Response: Thank you for your thorough review of our manuscript and we appreciate 

your encouraging comments. 

 

Specific comments 

1) Introduction: Although the title of the paper indicates it is focusing on the ETKF 

applications and improvements, it would be beneficial to describe the treatment of 

nonlinearity in general ensemble data assimilation outside of ETKF, including the 

Maximum Likelihood Ensemble Filter (Zupanski 2005) and the particle filters (van 

Leeuwen 2009).  

Response: Following this comment, we have added the following sentences in the third 

paragraph of the introduction: “In general ensemble data assimilation, Maximum 

Likelihood Ensemble Filter (MLEF) minimizes a cost function that depends on a 

general nonlinear observation operator to estimate the state vector, which is 

equivalent to maximize the likelihood of the posterior probability distribution 

(Zupanski, 2005). Particle filter uses a set of weighted random samples (particles) to 

approximate the posterior probability distribution that may depend on a nonlinear 

observation operator (Leeuwen, 2009).” 

 

Also, the proposed methodology implicitly assumes the use of incremental minimization 



(e.g. a form of truncated Newton method), with outer and inner loops. This should be 

clearly stated, since this is only one possible approach to iterative minimization, with 

many more efficient methods available in mathematical optimization and control theory. 

Response: Following this comment, the sentences “It is worthwhile to point out that the 

proposed methodology implicitly assumes the use of incremental minimization with 

outer and inner loops. There may be other efficient methods available in mathematical 

optimization and control theory.” are added in the six paragraph of the introduction. 

 

2) Impact of higher order nonlinear Taylor approximation: The utility of the nonlinear 

difference between observation operators (e.g., Eq.(7)) is not adequately presented. For 

general nonlinear or even non-smooth radiative transfer operators (Steward et al. 2012), 

the utility of higher-order elements in Taylor expansion may be questionable. Also, the 

development of the second order term may be time consuming and difficult in case of 

complex observation operators, and this aspect should also be discussed. I believe that 

the paper would benefit if these issues are also addressed in discussion. 

Response: Thanks for the valuable comments. In the revised version, we discussed 

these caveats in the third paragraph of section 4.3. 

 

3) Realistic applications: Since the ultimate goal of data assimilation is to be applied 

with realistic high-dimensional systems and observations, the conclusion should include 

some discussion of the outlooks into the applicability of the proposed improvements of 

ETKF in realistic situations. 

Response: The following sentences are added in the conclusion section “The proposed 

method is computationally feasible to assimilate satellite observations with radiative 

transfer models as the nonlinear observation operators (see Appendix E) which are 

broadly used in atmospheric, ocean and land data assimilations.” 
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for a Limited-Area Shallow-Water Equation Model. Quart. J. Roy. Meteorol. Soc., 138, 

323-339. 

Zupanski, M., 2005: Maximum Likelihood Ensemble Filter: Theoretical Aspects. Mon. 

Wea. Rev., 133, 1710–1726. 

Response: These references are added in the revised version. 

 

Technical corrections 

4) Abstract, line 8: This statement is not correct. Iterative minimization with advanced 

Hessian preconditioning would require very few minimization iterations (1-2). 

Response: In the revised version, the sentence is changed to “One problem in the 

minimization of a nonlinear objective function similar to 4D-Var is that the nonlinear 

operator and its tangent-linear operator have to be iteratively calculated if the 

Hessian is not preconditioned or the Hessian has to be calculated several times. This 

may be computationally expensive.” 

  

5) Introduction, p.544, L.24: “... satellite radiance data : : :” 

Response: Comment is followed. 

 

6) Introduction, p.546, L.3-5: Not clear what the sentence wants to say. Given that 

degrees of freedom of the ensemble forecast error covariance are governed by the 

number of ensembles, it is only natural to define the minimization space in the ensemble 

domain. The way to deal with insufficient degrees of freedom is to consider hybrid 

variational-ensemble error covariance, which is outside of the paper’s considerations. 

Response: Following this comment, the sentence is deleted in the revised version. 

 

7) Introduction, p.547, L.7-10: Linearization typically doubles the number of operations, 

and thus increases the computational cost (e.g. del(x*y)=x*del(y)+y*del(x)). This should 

also be taken into account when discussing the cost. 



Response: The computational cost is discussed in Appendix E. In the revised version, the 

paragraph “On the other hand, computing the first and second derivatives requires 

additional number of operations, but it is manageable.” is added in the end of 

Appendix E. 

 

8) Section 2.2.2: Mathematical derivation should be followed by a brief verbal 

description of the meaning and implications of equations, as this is the main novelty of 

this paper. 

Response: We have added more descriptions of the mathematical derivation in section 2.2.2. 

 

9) p. 562, L.13: Although it is true that most observation operators are localized, there 

are some that are not. How would this impact the computation of the second order 

term? 

Response: In the revised version, we discussed these problems in the fourth paragraph of 

section 4.2 as follows “For the observation operators which are not localized, the 

computation of the second-order term may be complex.” 


