
Responses to Referees: 

Response to Anonymous Referee # 1 (npgd-1-c37-2014) 

We would like to thank Anonymous Referee # 1 for the excellent comments. The primary point raised by 

this reviewer, “… an inclusion of a broader range of other groups working in the same area could greatly 

improve the impact of this perspective” is very well taken. The reviewer suggests specific papers, all of 

which will be cited in the revised version. In addition, we will cite a few other papers in related areas 

(e.g., predictability).  We are grateful to this reviewer for not only suggesting the citations but also 

including a short discussion about these papers in the review itself. These and other specific comments 

(e.g., labels in sub-figures etc.) will all be addressed in the revised version.  

 

Response to Anonymous Referee # 2 (npgd-1-c46-2014) 

We appreciate the short yet meaningful comments by Anonymous Referee # 2. Our responses to the 

specific points raised by this referee are as follows: 

 “This paper appears to be a review paper… ”: This manuscript is intended as a perspectives 

paper. The first goal is to motivate an emerging and urgent area of research while providing an 

assessment of the literature in that or related areas. The second goal is a call to action for 

researchers and practitioners. Specifically, two interdisciplinary communities are targeted. The 

first is that sub-community of geoscientists, earth and environmental engineers, and experts in 

climate impacts, adaptation and vulnerability, who would want to adopt or apply innovative data 

science methods. This group includes, for example, climate or impacts researchers engaged in 

statistical downscaling, statistical evaluation of models, or analysis of observed and modeled 

trends and patterns. In addition, this paper attempts to target the primary readership of the journal 

Nonlinear Processes in Geophysics, specifically, who are interested in innovative data science 

methods and their applications in geophysics. We note that data science in this context includes 

computer science (e.g., data mining and machine learning), nonlinear dynamics (including 

network science), signal processing, and statistics. The second target group is that sub-community 

of data scientists who would be interested to bring their methods and tools to address societal 

challenges in climate science and impacts or adaptation. This group includes researchers in the 

emerging area of climate informatics.    

 “…because it does not contain new previously unpublished information”:  This primary intent of 

the perspectives paper is not to overwhelm with previously unpublished materials. However, 

there is significant unpublished information in each of the examples, which are all designed to 

motivate the next steps in this important research topic. Thus, Figures 4 and 5 are unpublished, 

Figure 1 is an (unpublished) summary of the state of knowledge which also serves as a 

motivation, while Figures 2, 3 and 6 are new summaries of our prior publications designed to 

motivate and/or exemplify the research topics. 

 “However, as a review paper, it lacks sufficient context to allow a non-expert to read and get a 

sense of the field”: This perspectives paper is designed to have enough depth and context for the 

target audience as described above. The primary audience is either expected to have background 

in the data science aspects of climate and impacts, or data scientists with an interest in 

contributing to climate science and impacts. While this perspectives paper is targeted towards 

specific (albeit broad and interdisciplinary) research communities, we hope that sections of the 

paper will also appeal to other readers of this journal who may not be experts in the specific areas 

mentioned above.  

 

 



Detailed Manuscript Changes 

1. In Section 1 – Introduction - After “The differing insights are summarized by Trenberth 

et al. (2014) in a perspectives article in Nature Climate Change.”, added the following 

paragraph: “Similar opposing insights have been reported for temperature extremes, 

which are generally relatively better simulated by climate models. Hansen et al. (2012) 

reported that seasonal temperature anomalies have significantly increased while 

Huntingtonford et al. (2013) reported significantly more uncertainty and did not find an 

increasing trend. Apparent insights can depend on metrics of choice and data analysis 

procedures (Alexander and Perkins, 2013; Huntingford et al., 2013), adding complexity 

to the analytic process and interpretation of findings.” 

Added the following references for this addition: 

a. Alexander, L. and S. Perkins.: Debate heating up over changes in climate 

variability. Environ. Res. Lett. 8, doi:10.1088/1748-9326/8/4/041001, 2013. 

b. Hansen, J., Sato, M., and Ruedy, R.: Perception of climate change, Proc. Natl. 

Acad. Sci. USA, 109, E2415-E2423, doi:10.1073/pnas.1205276109, 2012. 

c. Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M., and Cox, P. M.: No 

increase in global temperature variability despite changing regional patterns, 

Nature, 500, 327-330, doi:10.1038/nature12310, 2013. 

2. In section 4 - Societal Urgency and State of the Science, changed “Even for the relatively 

better understood temperature extremes, such as heat waves and cold snaps, large 

uncertainties remain, especially at regional scales (Ganguly et al., 2009b).” to: “Even for 

the relatively better understood temperature extremes, such as heat waves and cold 

snaps, large uncertainties remain, especially at regional scales (Ganguly et al., 2009b). 

Recent studies (Fischer et al., 2013; Fischer and Knutti, 2014) suggest that these large 

uncertainties will likely persist even if climate models improve rapidly (Maslin and 

Austin, 2012; Kumar et al., 2014).” 

Added the following references for this addition: 

a. Kumar, D., Kodra, E., and Ganguly, A. R.: Regional and seasonal 

intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature 

and precipitation, Clim. Dynam., doi:10.1007/s00382-014-2070-3, 2014. 

b. Fischer, E., Beyerle, U., and Knutti, R.: Robust spatially aggregated projections of 

climate extremes, Nat. Clim. Change, 3, 1033-1038, doi:10.1038/nclimate2051, 

2013. 

c. Fischer, E., and Knutti, R.: Detection of spatially aggregated changes in 

temperature and precipitation extremes, Geophys. Res. Lett., 41(2), 547-554, 

doi:10.1002/2013GL058499, 2014. 



3. In section 5 – Characterization of climate extremes, after: “While phenomena like heat 

waves under climate change are better understood than most other climate-related 

extremes (Coumou and Rahmstorf, 2012; Field et al., 2012), their very definitions may 

depend on the impact sector of interest (Ebi and Meehl, 2007).”, added: “Quantitative 

research relating climate extremes and anomalies to impacts, for example terrestrial 

ecology (Reichstein et al., 2013; Zscheischler et al., 2013; Zscheischler et al., 2014) and 

agricultural production (Lobell et al., 2006; Lobell et al., 2012), often examine climate 

indices derived from extremes with disciplinary specificity.” 

Added the following references for this addition: 

a. Lobell, D. B., Field, C. B., Cahill, K. H., and Bonfils, C.: Impacts of future 

climate change on California perennial crop yields: Model projections with 

climate and crop uncertainties, Ag. Forest Meteorol., 141(2-4), 208-218, 

doi:10.1016/j.agrformet.2006.10.006, 2006. 

b. Lobell, D. B., Sibley, A., and Ortiz-Monasterio, J. I.: Extreme heat effects on 

wheat senescence in India, Nat. Clim. Change, 2, 186-189, 

doi:10.1038/nclimate1356, 2012. 

c. Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., 

Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., 

Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., and Wattenbach, 

M.: Climate extremes and the carbon cycle, Nature, 500, 287-295, 

doi:10.1038/nature12350, 2013. 

d.  Zscheischler, J.,  Mahecha, M. D., Harmeling, S., and Reichstein, M.: Detection 

and attribution of large spatiotemporal extreme events in Earth observation data, 

Ecol. Inform., 15, 66-73, doi:10.1016/j.ecoinf.2013.03.004, 2013. 

e. Zscheischler, J., Mahecha, M. D., Harmeling, S., Rammig, A., Tomelleri, E., and 

Reichstein, M.: Extreme events in gross primary production: a characterization 

across continents, Biogeosciences Discuss., 11, 1869-1907, doi:10.5194/bgd-11-

1869-2014, 2014. 

4. In section 5 – Characterization of climate extremes, after: “The value-addition of the 

MRF-based approach, beyond proof-of-concept detection of known droughts, would be 

demonstrated when the methods are generalized for multiple variables, and subsequently 

used for the evaluation of historical multi-model ensembles as well as for the generation 

of future projections with uncertainty from model projections in forecast mode.” Added: 

“Computationally scalable and flexible detection approaches based on spatio-temporal 

similarity between drought events (Lloyd-Hughes et al., 2012) have also recently been 

developed.” 

Added the following reference for this addition: 

a. Lloyd-Hughes, B.: A spatio-temporal structure-based approach to drought 

characterisation, Int. J. Climatol., 32, 406-418, doi:10.1002/joc.2280, 2012. 

5. In section 8 - Enhanced Understanding and Predictions, after “In the same manner, 

temperature and updraft velocity profiles have been used to constrain or enhance 



multimodel projections of precipitation extremes (Knutson et al., 2010; Wilhite and 

Glantz, 1985).”, added: “Additionally, ensembles have been found to simulate robust 

statistics of severe thunderstorm environments and imply increased risk in possible 

convective hazards under global warming (Diffenbaugh et al., 2013).” 

Added the following reference for this addition: 

a. Diffenbaugh, N. S., Scherer, M., and Trapp, R.J.: Robust increases in severe 

thunderstorm environments in response to greenhouse forcing, Proc. Natl. Acad. 

Sci. USA, 110, 16361-16366, doi: 10.1073/pnas.1307758110, 2013. 

6. In section 8 - Enhanced Understanding and Predictions, we added a Runge et al., 2014 

reference to the following sentence: “Network-based graphical models have been used to 

discover causality among different modes of climate variability (Ebert-Uphoff and Deng, 

2012; Runge et al., 2014).”  

Added the following reference for this addition: 

a. Runge, J., Petoukhov, V., and Kurths, J.: Quantifying the Strength and Delay of 

Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure 

Based on Graphical Models, J. Clim., 27, 720-739, doi:10.1175/JCLI-D-13-

00159.1, 2009. 

7. In section 9 – Summary, changed the first sentence to “One of the largest scientific gaps 

in climate change studies is the inability to develop credible projections of extremes with 

the degree of precision required for adaptation decisions and policy (Fischer et al., 

2013).” The addition of Fischer et al., 2013 reference was the only change made. We 

added this to the bibliography already. 

8. In section 9 – Summary, after: “As climate-related data approaches the scale of hundreds 

of petabytes (Overpeck et al., 2011), and climate data mining research continues to 

improve (Smyth et al., 1999; Robertson et al., 2004, 2006; Khan et al., 2006; Camargo et 

al., 2007a, b; Gaffney et al., 2007), new opportunities willemerge (e.g., Monteleoni et al., 

2013; Ganguly et al., 2013).” , add: “The 2014 Climate Data Initiative (Lehmann 2014) 

launched by the White House (United States President's Office) points to Big Data as a 

solution for climate adaptation, and lends further urgency of the theme discussed in this 

manuscript. However, despite the promise, pitfalls in pure data mining methods have 

been pointed out in the context of climate. Thus, Caldwell et al. (2014) shows how naive 

applications of data mining may yield spurious relationships in climate. This paper 

emphasizes the need to intelligently combine physics understanding with data mining, not 

just to avoid the risk of generating misleading insights, but also to produce novel results 

that may not have been possible otherwise. Data-driven methods may be complementary 

to physics and may need to be constrained by physics (e.g., see Majda and Yuan, 2012; 

Majda and Hardin, 2013). When mining climate model simulations, data mining is 

conditioned on the embedded physics in the models, and aspires to extract relations that 

may further inform and augment our current physical understanding. However, to be 

successful, data mining methods need to be aware of the complexity of climate processes 



and data.”  Removed the following sentence: “Indeed, data-driven methods are 

complementary to, and indeed conditioned on, physics-based models or constrained by 

physics (e.g., see Majda and Yuan, 2012; Majda and Hardin, 2013); however, they need 

to be tailored to the complexity of climate data and processes.” 

Added the following reference for this addition and change: 

a. Caldwell, P. M., Bretherton, C. S., Zelinka, M. D., Klein, S. A., Santer, B. D., and 

Sanderson, B. M.: Statistical significance of climate sensitivity predictors 

obtained by data mining, Geophys. Res. Lett., 41, doi:10.1002/2014GL059205, 

2014. 

b. Lehmann, E: Can Big Data Help U.S. Cities Adapt to Climate Change? White 

House data splurge meant to "change the game" on climate, Scientific American, 

2014. 

c. Majda, A. J., and Yuan: Fundamental Limitations of Ad Hoc Linear and 

Quadratic Multi-Level Regression Models for Physical Systems, Discrete Contin. 

Dyn. S., 17(4), 1333-1363, doi:10.3934/dcdsb.2012.17.1333, 2012. 

d. Majda, A. J., and Harlin, J.: Physics Constrained Nonlinear Regression Models 

for Time Series, Nonlinearity, 26(1), 201-217, doi:10.1088/0951-7715/26/1/201, 

2013. 

9. In section 8 – Enhanced Understanding and Predictions, added the reference Kinney and 

Atwal, 2014 to modify the following sentence: “Developments in correlative analysis 

(Khan et al., 2007; Reshef et al., 2011; Kinney and Atwal, 2014), extended to handle 

correlated data at multiple spatial and temporal scales, may help quantify conceptual 

understanding and possibly even discover new dependencies (Khan et al., 2006).” 

Added the following reference for this addition and change: 

a. Kinney, J. B. and Atwal, G. S.: Equitability, mutual information, and the maximal 

information coefficient, Proc. Natl. Acad. Sci. USA, 111(9) 3354-3359, 

doi:10.1073/pnas.1309933111, 2014. 

10. Added two authors to the author list: W. Liao and A. Agrawal. 

11. In section 8 – Enhanced Understanding and Predictions, changed the sentence that 

formerly read: “New methods in nonlinear data sciences, from complex networks 

(Steinhaeuser et al., 2011a) to multifractals (García-Marín et al., 2013; Muzy et al., 

2006), have demonstrated initial promise for better description and predictive insights on 

climate-related extremes, such as extreme monsoonal rainfall over South Asia (Malik et 

al., 2011).” to “Applications of methods in nonlinear data sciences, from complex 

networks (Steinhaeuser et al., 2011a) to multifractals (Garc\'{\i}a-Mar\'{\i}n et al., 2013; 

Muzy et al., 2006), and dynamic Bayesian networks (Troy et al., 2013) have 

demonstrated initial promise for better description and predictive insights on climate-

related extremes, such as extreme monsoonal rainfall over South Asia (Malik et al., 

2011).” 

Added the following reference for this addition and change: 



a. Troy, T. J., Devineni, N., Lima, C., and Lall, U.: Moving towards a new paradigm 

for global flood risk estimation, European Geosciences Union General Assembly, 

7-12, 2013. 

12. In section 5 – Characterization of Climate Extremes, change: “Fig. 3 (bottom) presents 

fully automated and computationally efficient spatio-temporal characterization of long-

term droughts using a Markov random field-based approach (Fu et al., 2012).” To: 

“Figure 3 (b-c) presents fully automated and computationally efficient spatio-temporal 

characterization of long-term droughts using a Markov random field (MRF)-based 

approach (Fu et al., 2012); this type of MRF approach has been validated by 

automatically detecting the intertropical convergence zone from instantaneous satellite 

data (Bain et al., 2011).”  

Add the following reference for this change: 

a. Bain, C. L., De Paz, J., Kramer, J., Magnusdottir, G., Smyth, P., Stern, H., and 

Wang, C.: Detecting the ITCZ in Instantaneous Satellite Data using 

Spatiotemporal Statistical Modeling: ITCZ Climatology in the East Pacific, J. 

Clim., 24, 216–230, doi:10.1175/2010JCLI3716.1, 2011. 

13. In section 9 – Summary, the following sentence was changed: “Improving regional 

projections (e.g., through variable selection or statistical downscaling) and characterizing 

natural variability (e.g., irreducible uncertainty at decadal scales: Deser et al., 2012) are 

necessary for informing adaptation at stakeholder-relevant scales and planning horizons.” 

Via the addition of several new references: “Improving regional projections (e.g., 

through variable selection or statistical downscaling) and characterizing natural 

variability (e.g., irreducible uncertainty at decadal scales: Hawkins and Sutton, 2009, 

2011; Branstator and Teng, 2012; Deser et al., 2012a-b; Fischer et al., 2013; Hu and 

Deser, 2013; Rosner et al., 2014) are necessary for informing adaptation at stakeholder-

relevant scales and planning horizons.” 

As a result, the following references were added: 

a. Branstator, G., and Teng, H.: Potential impact of initialization on decadal 

predictions as assessed for CMIP5 models, Geophys. Res. Lett., 39(12), 

doi:10.1029/2012GL051974, 2012. 

b. Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role 

of natural variability in future North American climate, Nat. Clim. Change, 2(11), 

775–779, doi:10.1038/nclimate1562, 2012b. 

c. Hawkins, E., and Sutton, R.: The potential to narrow uncertainty in regional 

climate predictions, Bull. Am. Meteorol. Soc., 90(8), 1095–1107, 

doi:10.1175/2009BAMS2607.1, 2009. 

d. Hawkins, E., and Sutton, R.: The potential to narrow uncertainty in projections of 

regional precipitation change, Clim. Dyn., 37(1-2), 407–418, doi:10.1007/s00382-

010-0810-6, 2011. 



e. Hu, A., and Deser, C.: Uncertainty in future regional sea level rise due to internal 

climate variability, Geophys. Res. Lett., 40(11), 2768–2772, 

doi:10.1002/grl.50531, 2013. 

f. Rosner, A., Vogel, R. M., and Kirshen, P. H.: A risk-based approach to flood 

management decisions in a nonstationary world, Water Resour. Res., 50(3), 1928-

1942, doi:10.1002/2013WR014561, 2014. 

14. In section 8 – Enhanced Understanding and Predictions, after “However, this method can 

also be applied for improved understanding of the complex dependence structure between 

climate variables, especially in a high-dimensional setting (Chatterjee et al., 2012; Das et 

al., 2012, 2013).” Added the following: “Dimensionality reduction techniques that utilize 

manifold, atomic, and topological structures derived directly from physical laws 

(Kpotufe, 2009; Kpotufe, 2011; Balakrishnan et al., 2013a-b; Kpotufe and Garg, 2013; 

Lum et al., 2013; Wang et al., 2014) at once could make the prediction problem both 

more computationally tractable and physically sensible.” 

As a result, the following references were added: 

a. Balakrishnan, S., Rinaldo, A., Singh, A., Wasserman, L., Tight Lower Bounds for 

Homology Inference, arXiv, 2013a. 

b. Balakrishnan, S., Narayanan, S., Rinaldo, A., Singh, A., Wasserman, L., Cluster 

Trees on Manifolds, arXiv, 2013b. 

c. Kpotufe, S.: Fast, smooth and adaptive regression in metric spaces, Adv. Neur. 

In., 2009. 

d. Kpotufe, S.: k-NN Regression adapts to local intrinsic dimension,  Adv. Neur. In., 

2011. 

e. Kpotufe, S., Garg, V. K.: Adaptivity to Local Smoothness and Dimension in 

Kernel Regression. Adv. Neur. In., 2013. 

f. Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., 

Alagappan, M., Carlsson, J., and Carlsson, G.: Extracting insights from the shape 

of complex data using topology, Nature Scientific Reports, 3, 1236, 

doi:10.1038/srep01236, 2012. 

g. Wang, H., Fazayeli, F., Chatterjee, S., and Banerjee, A.: Gaussian Copula 

Precision Estimation with Missing Values, International Conference on Artificial 

Intelligence and Statistics, 2014. 

15. We added clarity throughout the manuscript in terms of figure subpanels – all figures 

except figure 2 now have subpanels denoted by letters,  i.e., (a). All references to figures, 

either in the main text or in the figure manuscripts, now refer to those subpanels as 

appropriate. This should further clarify discussions surrounding the figures. 

 


