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Abstract

The Variational Ensemble Kalman Filter (VEnKF), a recent data assimilation method
that combines a variational assimilation of the Bayesian estimation problem with an
ensemble of forecasts, is demonstrated in two-dimensional geophysical flows using
a Quasi-Geostrophic (QG) model and a shallow water model. Using a synthetic5

experiment, a two layer QG model with model bias is solved on a cylindrical 40×20
domain. The performance of VEnKF on the QG model with increasing ensemble size
is compared with the classical Extended Kalman Filter (EKF). It is shown that although
convergence can be achieved with just 20 ensemble members, increasing the number
of members results in a better estimate that approaches the one produced by EKF.10

In the second test case, a 2-D shallow water model is described using a real dam-
break experiment. The VEnKF algorithm was used to assimilate observations obtained
from a modified laboratory dam-break experiment with a two-dimensional setup of
sensors at the downstream end. The wave meters are placed parallel to the direction
of the flow alongside the flume walls to capture both cross flow and stream flow.15

In both test cases, VEnKF was able to predict genuinely two-dimensional flow
patterns when the sensors had a two-dimensional geometry and was stable against
model bias in the first test case.

In the second test case, the experiments are complemented with an empirical study
of the impact of observation interpolation on the stability of the VEnKF filter. In this20

study, a novel Courant–Friedrichs–Lewy type filter stability condition is observed that
relates ensemble variance to the time interpolation distance between observations.

The results of the two experiments shows that VEnKF is a good candidate for
data assimilation problems and can be implemented in higher dimensional nonlinear
models.25
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1 Introduction

The increasing power of computers and various automatic measurement devices has
created a new domain for algorithmic research that develops methods for producing
optimal state estimates of a system to be studied that combine a computer model of
corresponding system dynamics with real – often indeed real-time – measurements.5

The methods suggested for this kind of studies go by a variety of names, such as
methods for parameter estimation, data assimilation methods, Markov chain Monte
Carlo methods, particle filters and so on. Most of these methods are statistical by
their construction and often fit the paradigm of Bayesian estimation theory, where the
computer model produces a prior estimate that is then complemented to the posterior10

estimate by some algorithm based on the Bayes formula.
In the current article we shall focus on the problem of state estimation of two-

dimensional systems in geophysics, more precisely atmospheric and hydrological
models, with a recent ensemble data assimilation method that combines a variational
formulation of the Bayesian estimation problem with an ensemble of forecasts, namely15

the Variational Ensemble Kalman Filter (VEnKF) introduced in Solonen et al. (2012).
The current section reviews related previous research. Section two presents the
variational ensemble Kalman filter with related earlier Kalman filter algorithms. The
third section discusses both example cases, namely a synthetic two-dimensional
atmospheric flow and a real two-dimensional hydraulic river flow, and presents the20

corresponding assimilation results. Section four concludes the paper with a brief
discussion of the results.

1.1 Data assimilation in geophysical and atmospheric sciences

In recent years, data assimilation has become common in the field of geophysics
and atmospheric sciences (van Leeuwen, 2011; Blum et al., 2009; Wu et al., 2008).25

Some of the challenges in estimating geophysical systems are the nonlinearity of the
corresponding system dynamics (Miller et al., 1994; Blum et al., 2009; van Leeuwen,
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2011); sensitivity to initial conditions; and estimating the error covariance matrix for
high-dimensional state vectors (Kuznetsov et al., 2003; Hamill et al., 2001). Various
data assimilation methods have been applied in some fields of geophysics, such as
meteorology and oceanography. These methods belong to two main groups, namely
sequential assimilation methods (e.g. nudging, Particle Filter methods and Kalman filter5

methods) and lumped and variational assimilation methods (e.g. Optimal Interpolation,
three-dimensional and four-dimensional variational data assimilation).

Optimal interpolation has long been used in numerical weather prediction (NWP)
(Daley, 1993; Bertino et al., 2003). However, the use of optimal interpolation in
hydrological models with complicated flow patterns introduces instabilities (Heemink10

and Metzelaar, 1995). Kalman filtering is an optimal sequential data assimilation
method. However, it can only be applied to linear models with a Gaussian assumption
of model and observation error covariances (see e.g., Dee, 1991; Heemink and
Metzelaar, 1995; Auvinen et al., 2010; Bertino et al., 2003; Bardsley et al., 2013;
McMillan et al., 2013). Incorporating the Kalman filter with repeated linearizations of15

a nonlinear dynamical systems leads to the Extended Kalman Filter (EKF) that can
be used for nonlinear models. EKF has the advantage of being robust and it gives
accurate estimates of the state. However, it is computationally expensive for large scale
problems.

Particle Filters have also been used in geophysical flows e.g. in NWP (van Leeuwen,20

2011; van Leeuwen and Ades, 2013). Particle filtering uses Sequential Monte Carlo
techniques whereby the state is represented in the form of a posterior probability
density function conditioned on the measurements available at that time. Particle filters
do not require the Gaussian assumption on the error terms. van Leeuwen (2011)
has suggested that the probability density function of highly nonlinear models can be25

represented by a number of points or particles so that each particle represent a full
model state.

The Ensemble Kalman Filter (EnKF) (Evensen, 1994) has also been used in NWP
and in hydrological models. EnKF uses a Monte Carlo approach such that the error
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covariance matrices are replaced by the corresponding sample covariance matrices
calculated from an ensemble and the ensemble of states is propagated in time using
the fully nonlinear model (Evensen, 1994; Reichle et al., 2002; Bertino et al., 2003;
Hoteit et al., 2007; McMillan et al., 2013). Variational methods such as 3DVAR and
4DVAR are also commonly used. However, their use is limited by the need of a tangent5

linear and an adjoint model for the evaluation of the gradient of the cost function which
leads to a high computational cost. These methods solve the underlying maximum a
posterior optimization problem that measures the model to data misfit (Bertino et al.,
2003). Navon (2009) gives a review of these methods in numerical weather prediction
applications. Other studies in NWP include that of Fisher et al. (2009).10

1.2 Data assimilation in hydrological and coastal models

The use of data assimilation in hydrological studies has been a great challenge
and has not been applied very often. In many numerical simulations based on
hydrological flows, several researchers have developed numerical models based on
different numerical schemes, such as finite difference, finite volume and finite element15

methods. In different numerical simulations, comparisons have been made between
simulation results and experimental results (Liang and Marche, 2009; Chang et al.,
2011; Tseng and Chu, 2011; Zhou et al., 2004). Liu et al. (2012) review the challenges
and opportunities on the use of effective data assimilation in operational hydrological
forecasting. They point out that before the adoption of data assimilation techniques20

in hydrological modeling, the challenges which need to be taken care of include the
high non-linearity of hydrological processes, high dimensionality of the state vector and
the need to use large samples when using ensemble methods. As it was pointed out
by Heemink and Metzelaar (1995) there is a need of numerical hydrological models
to incorporate water level measurements using data assimilation technique so as to25

improve forecast.
Reichle et al. (2002) has shown in a study of hydrologic data assimilation that

although EnKF underestimates the forecast error covariance when 100 ensemble
407
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members were used, it can well estimate the error covariance with 500 ensemble
members so that the soil moisture can be estimated as a key variable in hydrologic
and atmospheric models. Xu and Daley (2002) used data assimilation to test a
representer algorithm on an unstable 2-D shallow water system. The representer
algorithm minimizes a cost function of a 4DVAR assimilation scheme that measures5

the fit of the analysis to the observations, to the forecast model and to the initial state
estimate (Xu and Daley, 2002). The accelerated representer algorithm was found to
be computationally more efficient than the cyclic representer algorithm. However, the
cyclic representer algorithm produced a more accurate analysis than the accelerated
representer algorithm.10

Tinka et al. (2009) presented a Quadratic Programming (QP) method for assimilating
Lagrangian sensor measurement data into a shallow water equation model. Strub et al.
(2009) compared two data assimilation algorithms applied to river flow, the QP as
described by Tinka et al. (2009) and the EnKF. The performance of the two methods
was compared using a twin experiment and their results concluded that the QP based15

algorithms is of low computational cost and presents a better balance between cost and
accuracy than EnKF. Bélanger and Vincent (2004) used a 4-Dimensional Variational
data Assimilation (4DVAR) to forecast floods. The 4DVAR method was applied to
shallow water equations and used a steepest descent minimization technique to
minimize the cost function which for their case is the mean deviation between the20

model solution and the available measurements. Though 4DVAR is computationally
expensive in high dimensional problems and it needs an adjoint model to find the
gradient required in 4DVAR, the method was suggested as a good one for improving
hydrological models. In dealing with boundary conditions, Kazantsev (2012) applied a
4-D variational data assimilation technique to a non-linear shallow water model so as25

to control the discretization of the derivative and interpolation error near the boundary,
with the advantage of making the solution closer to observations after assimilation.

Another approach in data assimilation which has been used in hydrological flow was
introduced by Lei et al. (2012). The method is known as Hybrid Nudging Ensemble
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Kalman Filter (HNEnKF) and it combines EnKF and Observation Nudging with the
aim of achieving more gradual and continuous data assimilation. When applied to a
shallow water model, the method was found to have a smaller RMS error than nudging
and EnKF alone. However, it costs quite a lot of CPU time, as does EnKF, since they
both require an ensemble of forecasts whereas nudging needs much less CPU time.5

The current paper extends an earlier study on a dam-break experiment (Amour
et al., 2013), in which we introduced data assimilation of wave meter data into a river
model that has originally been presented by Martin and Gorelick (2005). In that paper
we demonstrated the capability of a recently developed data assimilation method,
the variational ensemble Kalman filter by Solonen et al. (2012), to produce better10

results than pure simulation when applied to a hydrological model. It was shown earlier
by Solonen et al. (2012) that the problems encountered in using the Kalman filter
are hereby solved by the use of low memory estimations of state and observation
covariance matrices. These are obtained using the LBFGS optimization method by
using the low-rank Hessian matrix estimates it produces to replace the full error15

covariance matrices in EKF.
In the previous work, only a one-dimensional set of observations was available. In

such a situation, the analysis of the flume is limited to one-dimensional corrections
to the simulated flow. In this case, data assimilation produces a series of crests and
troughs in the flow direction only, and no cross-flow is introduced to the analysis. In20

the current paper, we apply the VEnKF to modified hydrological flume data of a dam-
break experiment conducted in a laboratory by Bellos et al. (1991), that simulates the
presence of a two-dimensional set of observations with a known cross-flow pattern. We
also apply VEnKF to simulated two-dimensional observations of a barotropic vorticity
equation.25
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2 Assimilation Methods

In this section we discuss the data assimilation methods that are used in our
experiments. The implementation of the Saint-Venant shallow water model, which
is exploited as the second example case in the present study, does not provide
linearization (e.g. tangent-linear and adjoint) codes. Therefore, we are limited to use5

of ensemble methods, which can be executed directly on top of a nonlinear model.
In this paper we only consider sequential data-assimilation performed using VEnKF
that provides a good low-memory approximation of the EKF and does not require
linearization codes for transition operator.

2.1 Ensemble Kalman Filter10

We begin by reviewing the well known Ensemble Kalman filter (EnKF) that is derived
via straightforward sampling approximation of the EKF formulas. First, we consider the
following coupled system of stochastic equations:

xk+1 =Mk (xk)+εk , (1)

yk+1 =Hk+1 (xk+1)+ηk+1. (2)15

Here xk denotes N-dimensional model state vector, which fully describes the
phenomena being studied at a given time instant k, Mk is transition operator that
propagates model state vector from time instant k to time instant k +1, yk+1 is M-
dimensional vector of observations collected at time instant k +1, Hk+1 is observation20

operator which maps the model state vector space to the observation vector space.
Finally, the terms εk and ηk+1 are random vectors with known covariances Cεk and
Cηk+1

respectively. The role of stochastic addenda is to merely represent prediction
error of transition operator Mk in Eq. (1) and to account for the measurement noise in
observation model (2). Procedure of data assimilation provides a statistically consistent25

way of estimating the model state vector at time instant k +1 given the corresponding
observation yk+1 and the state estimate x

est
k with covariance Cest

k at preceding time
410
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instant k. Transition operator Mk and observation operator Hk as well as covariances
Cεk and Cηk+1

are also assumed to be known. Often, the stochastic terms εk and ηk+1
are supposed to be normally distributed, although this assumption may be relaxed.

Prior to the discussion of the ensemble approximation, we present the basic EKF,
which under certain conditions derives in some sense statistically optimal estimate for5

state vector xk+1 (see Simon, 2006). The algorithmic formulation of the EKF reads as
follows:

i. Prediction step.

a. Compute prediction: xpk+1 =Mk

(
x

est
k

)
.

b. Propagate estimate covariance: Cpk+1 = MTL
k Cest

k MAD
k +Cεk .10

ii. Correction step.

a. Compute Kalman gain: Gk+1 = Cpk+1HAD
k+1

(
HTL
k+1Cpk+1HAD

k+1 +Cηpk+1

)−1
.

b. Compute the state estimate: xest
k+1 = x

p
k+1 +Gk+1

(
yk+1 −HTL

k+1

(
x
p
k+1

))
.

c. Compute the covariance estimate: Cest
k+1 = Cpk+1 −Gk+1HTL

k+1C
p

k+1.

Here HTL
k+1, MTL

k denote tangent-linear codes of the operators Hk+1 and Mk evaluated15

at xest
k and x

p
k+1 respectively, HAD

k+1 and MAD
k are the corresponding adjoint codes. As

was previously pointed out, the presented algorithm derives an optimal estimate for
xk+1. However, it requires explicit matrix storage to operate covariances Cest

k and Cpk+1
(covariances Cεk and Cηk+1

are often assumed being diagonal or implemented by low-
memory sub-routines). Therefore, in large-scale cases such matrix storage becomes20

infeasible and the task of data assimilation requires a special treatment.
One of the obvious ways to overcome the emitted problem is to replace the

problematic parts of the EKF with corresponding ensemble approximations. This is
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the main idea behind the EnKF (see Evensen, 2003). Let us consider a bunch of N-

dimensional random vectors sk,i ∼N
(
x

est
k ,Cest

k

)
, where k ∈N, i = 1, . . . ,S, and S is

the ensemble cardinality. Consider an N-by-S matrix Xk depending on sk,i , which is
defined by the following:

Xk =
((
sk,1 − s̄k

)
, . . . ,

(
sk,S − s̄k

))
/
√
S −1. (3)5

Here s̄k denotes the mean of ensemble sk,i . A single EnKF data assimilation step
defines procedure of propagating sk,i to s(k+1),i .

i. Prediction step.

a. Move the state estimate and ensemble forward over the time: s
p
(k+1),i =10

Mk
(
sk,i

)
+e

p
k,i , i = 1, . . . ,S.

b. Calculate prediction covariance matrix using ensemble obtained on the
previous step: Cpk+1 = XkXTk .

ii. Correction step.

a. Compute Kalman gain: Gk+1 = Cpk+1HAD
k+1

(
HTL
k+1Cpk+1HAD

k+1 +Cηpk+1

)−1
.15

b. Update ensemble members:

s(k+1),i = s
p
(k+1),i +Gk+1

(
yk+1 −HTL

k+1s
p
(k+1),i +n(k+1),i

)
.

c. Calculate the next state estimate as the sample mean of ensemble s(k+1),i :

x
est
k+1 = s̄(k+1),i .20

Here vectors e
p
k,i and n(k+1),i are realizations of random terms εk and ηk+1 respectively.

Obviously, the EnKF algorithm closely mimics the steps of the EKF, while the
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impracticable matrix storage is avoided since the cardinality of the ensemble S is
usually significantly smaller compared to the problem dimension.

The ensemble Kalman filter can be implemented directly on top of a nonlinear model
as it does not require either tangent-linear or adjoint codes. However, the algorithm has
numerous disadvantages such as propagation ensemble degradation as pointed out by5

Houtekamer and Mitchell (1998) and Zupanski (2005). In the next section we discuss
an approach that attempts to overcome the drawbacks of the EnKF by introducing
the ensemble approximations into the variational formulation of the EKF suggested by
Auvinen et al. (2010).

2.2 Variational Ensemble Kalman Filter10

In this section we describe another approximation of the EKF called the Variational
Ensemble Kalman filter. We begin by considering the following quadratic function:

l (x|yk+1) =
1
2

(
x−x

p
k+1

)T (
Cpk+1

)−1(
x−x

p
k+1

)
+

1
2

(
yk+1 −HTL

k+1x
)T (

Cηk+1

)−1(
yk+1 −HTL

k+1x
)

. (4)
15

It can be proved (see Simon, 2006) that the minimizer of this function equals to
the model state vector estimate x

est
k+1 computed by EKF. Furthermore, the inverse

Hessian of l
(
x|yk+1

)
equals to covariance Cest

k+1 as defined by the EKF. Hence, EKF is
equivalent to generalized least squares problem (4). The idea to replace EKF algebraic
formulas by equivalent optimization task is referred to as the variational formulation20

of the extended Kalman filter. However, it inherits the memory-related pitfalls of the
EKF since minimization of Eq. (4) requires inversion of Cpk+1 as well as storage of(

Cpk+1

)−1
and the inverse Hessian of Eq. (4). These issues can be circumvented by

leveraging sampled approximations as demonstrated in the previous section and by
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plugging them into the variational formulation (4). This is the basic idea behind the
variational ensemble Kalman filter.

In order to formulate the VEnKF we again begin by considering a bundle of N-

dimensional random vectors sk,i ∼N
(
x

est
k ,Cest

k

)
(here we assume that model state

vector as well as its covariance estimated at time instance k are known). Therefore,5

the prediction step now can be formulated as follows:

x
p
k+1 =Mk

(
xest
k

)
, (5)

s
p
(k+1),i =Mk

(
sk,i

)
. (6)

Next, we redefine matrix Xk from the previous section as now the mean of ensemble10

s(k+1),i is considered known and equal to predicted state x
p
k+1:

Xk =
((

sk,1 −x
p
k

)
, . . . ,

(
sk,S −x

p
k

))
/
√
S, (7)

where S as previously denotes the cardinality of ensemble sk,i . Hence, the sampled
approximation for the prior covariance can be defined by leveraging prior ensemble15

s
p
(k+1),i computed on prediction step leading to the following:

Cpk+1 = XkXTk +Cεk . (8)

This sampled approximation allows to programmatically implement the prior covariance
Cpk+1 as a low-memory subroutine since following Eq. (8), the computation of a matrix–20

vector product would only require storage of Xk (as before, it is assumed that Cεk is
diagonal or implemented as a low-memory subroutine). Nevertheless, minimization of

Eq. (4) makes use of
[
Cpk+1

]−1
, which can be obtained by applying the Sherman–

Morrison-Woodbury (SMW) matrix identity:[
Cpk+1

]−1
= C−1

εk
−C−1

εk
Xk

(
I+XTkC−1

εk
Xk

)−1
XTkC−1

εk
. (9)25
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Here, it is assumed that covariance Cεk can be easily inverted due to its simple

structure. Moreover, since I+XTkC−1
εk Xk is an S-by-S matrix and the ensemble size S is

usually much smaller compared to the problem dimension N, the inversions in EQ. (9)
are considered feasible.

Minimization of Eq. (4) is done by the L-BFGS unconstrained optimizer described5

in Nocedal and Wright (1999). The L-BFGS is a Quasi-Newton method, which uses
the history of its iterations in order to approximate the inverse Hessian of the target
cost function. Furthermore, the L-BFGS usually converges to the optimal point having
a qualified inverse Hessian approximation in much smaller amount of iterations than
the dimension of the problem. These characteristics of the method can be leveraged10

to minimize Eq. (4) as well as to compute its inverse Hessian, wherein both tasks are
completed in single pass. The same idea may be used instead of SMW matrix identity

to obtain
[
Cpk+1

]−1
(see Solonen et al., 2012). However, the L-BFGS only provides

an approximation for the inverse Hessian of the target cost function, so formula (9) is
suggested as the one preferable to use.15

Finally, putting together Eqs. (5), (7), (8), (9) and the argumentation concerning the
L-BFGS we can formulate the VEnKF algorithm:

i. Prediction step.

a. Compute prior model state and propagate the ensemble members as defined
in Eq. (5).20

b. Define the approximative prior covariance operator Cpk+1 in accordance with
Eq. (8).

c. Apply SMW matrix identity or L-BFGS in order to define low-memory operator

representation of the inverse prior covariance
[
Cpk+1

]−1
.
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ii. Correction step.

a. Apply L-BFGS to minimize Eq. (4). Assign x
est
k+1 to the minimizing point and

Cest
k+1 to the L-BFGS approximation of inverse Hessian of the cost function,

(Eq. 4)

b. Generate new ensemble s(k+1),i ∼N
(
x

est
k+1,Cest

k+1

)
.5

The attractive feature in the presented algorithm is that the operating ensemble is
regenerated at every assimilation round, which allows to avoid the ensemble in-
breeding inherent to EnKF. It should be mentioned, that the given formulation of the
VEnKF algorithm does not reveal efficient implementation, but only explains the main
steps of the procedure. Further details can be found in the paper by Solonen et al.10

(2012).

3 Test cases with 2-D flows

3.1 A synthetic atmospheric flow with the barotropic vorticity equation

In this section we present a synthetic case of the two-layer Quasi-Geostrophic model
(QG-model) introduced in Pedlosky (1987). This model provides an example of chaotic15

dynamics which can be run at a large-scale setting with reasonable computational
cost. In the present study the QG-model is coupled with VEnKF in an artificial data
assimilation experiment, which is devoted to empirically demonstrate the “correctness
of the concept” and illustrate the advantages of the VEnKF over EnKF in case of large-
scale data assimilation.20

The QG-model simulates flat double-layered geostrophic (slow) wind motion.
Geometrically, the model resides on a cylindrical surface divided into two interacting
“atmospheric” layers located one above the other. The lower layer is affected by an
orography component, which models surface irregularities of the bottom. Due to the
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cylindrical domain, periodical boundary conditions are employed along the longitudinal
direction. Figure 1 provides an illustration of the geometrical layout. In the figure
variables Ū1 and Ū2 denote mean zonal wind speeds in the upper and lower layers,
respectively. These values are used to define constant boundary conditions at the top
and at the bottom of the cylinder. Hereafter in this section the subindex i = 1,2 is used5

as reference to the top and the bottom model layers.
Operating components of the QG-model are potential vorticity qi and stream function

(analog of pressure) ψi . The relation between these components is described by the
following equations:

q1 = ∇2ψ1 − F1 (ψ1 −ψ2)+βy , (10)10

q2 = ∇2ψ2 − F2 (ψ2 −ψ1)+βy +Rs, (11)

where Fi are layer interaction parameters, β is northward gradient of the Coriolis
parameter, and Rs denotes two-dimensional orography surface. It can be shown (see
Fandry and Leslie, 1984) that the coupled system of Eqs. (10)–(11) is invertible. Hence,15

there is a one-to-one correspondence between potential vorticity and stream function,
wherein the latter relates to the zonal wind ui and meridional wind vi by the following
dependency:

ui = −
∂ψi
∂y

, vi =
∂ψi
∂x

. (12)
20

Therefore, stream function ψi can be thought of as potential of the two-dimensional
field (vi ,−ui ).

Finally, it is assumed that the QG-model obeys the following conservation law:

Diqi
Dt

= 0. (13)
25

Here operator Di ·
Dt =

∂·
∂t +ui

∂·
∂x + vi

∂·
∂y denotes substantial derivative. Equations (10),

(11), (12), and (13) define the governing PDE system of the QG-model. The given
417
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system is described in non-physical terms specified via the standard procedure of non-
dimensionalization given below:

Fi =
f 2
0 L

2

ǵDi
,

ǵ = g
∆θ

θ̄
,

Rs =
S(x,y)

ηD2
,5

β = β0
L
U

,

where Di is the depth of the corresponding model layer, g is acceleration of gravity, ∆θ
is the potential temperature change across the layer interface, θ̄ is the mean potential
temperature, S(x,y) is dimensional orography, f0 is the Coriolis parameter, β0 is the10

dimensional northward derivative of the Coriolis parameter, L and U are the main length
and velocity scales respectively.

In our experiments Eqs. (10)–(13) are integrated using a semi-Lagrangian approach
(refer for example to Staniforth and Côté, 1991) coupled with finite-difference schemes.
This numerical method is based on the core ideas of solving the QG-model equations15

explained by Fandry and Leslie (1984).
The test runs employ the VEnKF algorithm applied on top of the QG-model. More

precisely, the model is instantiated twice in a twin experiment, where the first instance
(hereafter, the truth run) simulates the “nature” and is used to generate observations
and the second instance (hereafter, the biased run) runs with different layer depths20

and is leveraged as prediction model. Both model instances were run at dimension
of 40-by-20 grid nodes in each layer thus having 1600 degrees of freedom. The layer
depths used in the truth run were 6000 m for the top layer and 4000 m for the bottom
layer. In the biased run they were set to 5500 and 4500 m, respectively. The rest of
parameters were the same in both runs. The observations extracted from the truth25

418

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 403–446, 2014

2-D geophysical
flows with a VEnKF

Z. Mussa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

run were perturbed by normally distributed zero-mean noise with standard deviation
equal to 0.1. In addition, prior to start of the actual data assimilation the truth and
the biased runs for simulated for two weeks of the model time. This was done to
establish divergence between the initial estimate of the VEnKF and the first bundle
of observations.5

The dimension of the problem in the described numerical experiments was still small
enough to allows the use of the EKF. Therefore, we compared performance of the
VEnKF estimates against those of the classical EKF and against the “tourist’s brochure”
(climatology), which is a fixed estimate equal to the mean field of the target model.
“Tourist’s brochure” represents the mean model behavior within the observation history10

and thus corresponds to the “average climate”. As the measure for the estimates quality
we chose the root mean square error (RMSE) defined as follows:

Ek =
‖xtruth
k −x

est
k ‖

√
N

,

where x
truth
k is the real model state at time instant k (which remains unknown in

real cases, but is available in the described artificial setting), xest
k is filter estimate at15

time instant k, and N is the dimension of the model. The results of the numerical
experiments are shown in Figs. 2 and 3.

In the data assimilation runs coupled with the QG-model we assumed that the
measurement noise was known. Hence, the observation error covariance Cηk+1

was
set to 0.1I (here I is identity matrix of corresponding dimension). Prediction error was20

specified by two parameters: error variance in a single node of the discretization grid
and correlation between two nodes lying in different layers one above the other. The
former parameter was set to 0.2 and the latter one was assigned to 0.5. In-layer
correlations of the model error were not taken into account. Hence, prediction error
covariance was defined as follows:25

Cεk =
(

0.2I 0.5I
0.5I 0.2I

)
,
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where I was 800-by-800 identity matrix. The number of the L-BFGS iterations as well
as the length of stored iteration history in the VEnKF was set to 50 (as was pointed
out earlier, the iteration history is used to generate approximative inverse Hessian of
Eq. (4).

The RMSE values of the VEnKF estimates computed with different ensemble sizes5

are illustrated in Fig. 2. It can be seen that the filter converges already for ensemble
cardinality of 20, but stable behavior is observed only with at least 50 ensemble
members. Predictably, increasing the ensemble size results in better estimation quality,
although even for 400 ensemble members the RMSE values are inferior to that of the
EKF, which is natural due to the approximation error.10

Figure 3 contains the forecast skill curves for the VEnKF executed at different
ensemble cardinalities as well as for the EKF. The plot demonstrates that when the
VEnKF stabilizes (i.e. starting from 50 ensemble members) the effective forecast range
stays at the same 7 days mark regardless of the ensemble size growth. Expectedly,
the EKF overcomes its approximation providing about 1 day longer range of effective15

forecast.
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3.2 A real hydraulic two-dimensional flow

3.2.1 2-D shallow water equations

The governing equations are the depth-averaged shallow water equations as given in
Martin and Gorelick (2005):

∂U
∂t

+U
∂U
∂x

+ V
∂U
∂y

= −g
∂η
∂x

+ε
(
∂2U
∂x2

+
∂2U
∂y2

)
+γT

(Ua −U)

H
−Sfx − f V , (14)5

∂V
∂t

+U
∂V
∂x

+ V
∂V
∂y

= −g
∂η
∂y

+ε
(
∂2V
∂x2

+
∂2V
∂y2

)
+γT

(Va − V )

H
−Sfy − f U , (15)

∂η
∂t

+
∂(HU)

∂x
+
∂(HV )

∂y
= 0. (16)

where U is the depth averaged x-direction velocity component, V is the depth averaged
y-direction velocity component, η is the free surface elevation, g is the gravitational10

constant, t is time, ε is the horizontal eddy viscosity, f is the Coriolis parameter and H =
h+η is the total water depth, where h is the water depth measured from the undisturbed
water surface, γT is the wind stress coefficient, Ua and Va are wind velocity components
in the x and y direction respectively, Sfx and Sfy are the bottom friction terms in x and
y direction, respectively. The relationship of H , h, and η are as shown in Fig. 4.15

Top friction and bottom friction boundaries are given by Eqs. 17 and 18, respectively

ν
∂U
∂z

= γT (Ua −U) , ν
∂V
∂z

= γT (Va − V ) . (17)

Sfx = gU

√
U2 + V 2

Cz2
, Sfy = gV

√
U2 + V 2

Cz2
(18)

where Cz is the Chezy coefficient, ν is the kinetic velocity coefficient, and z indicates20

vertical direction (Martin and Gorelick, 2005).
421
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3.2.2 Numerical scheme

A combination of a semi-implicit, semi-Lagrangian time stepping and a finite volume
discretization is employed to solve the equations on a rectangular grid (Martin and
Gorelick, 2005). This scheme provides a stable solution, even for a time step larger
than the Courant–Friedrichs–Levy (CFL) restriction, defined by5

CFL = w
∆t
∆xi

(19)

where w is the velocity component in xi direction, ∆t is the time step size and ∆xi
is the cell dimension in the xi direction of flow (Martin and Gorelick, 2005). The CFL
relates fluid velocity and time step size with computational cell size, and requires that10

the CFL should be smaller than 1. Please refers Martin and Gorelick (2005) for more
on numerical approximations.

3.2.3 Boundary conditions

The model identifies itself the location of water/land boundaries using Eqs. (20)
and (21) (Martin and Gorelick, 2005):15

HN+1
i+1/2,j

= max
(
0,hi+1/2,j +η

N+1
i ,j ,hi+1/2,j +η

N+1
i+1,j

)
, (20)

HN+1
i ,j+1/2

= max
(
0,hi ,j+1/2 +η

N+1
i ,j ,hi ,j+1/2 +η

N+1
i ,j+1

)
. (21)

Two types of radiation boundaries have been set, which are:

i. The projection of velocity normal to the domain boundary:20

∂U
∂t

+Uupw
∂U
∂n

= 0 (22)

where Uupw is the upwinded normal direction velocity component, and n is the
direction normal to the domain boundary (Martin and Gorelick, 2005).
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ii. To limit wave reflections at open boundaries, the following condition is imposed

∂η
∂t

+Cn
∂η
∂n

= 0 (23)

where Cn is the propagation velocity from grid points around the boundary (Martin
and Gorelick, 2005).5

3.3 Two-dimensional ensemble generation

For defining the shore boundary, VEnKF does not account for additional prior
knowledge beyond the observations. This fact means that in case of problems on
bounded domains, there is no way to include information about the boundaries into the
Kalman filter analysis. If the prediction model automatically maintains the boundaries10

in accordance with defined constraints, one can simply reduce the data assimilation
analysis to the inner part of the model domain. However, this approach is complicated
when the boundaries change over the time.

In our experiments we use a strategy, which allows us to account for evolving
boundaries more flexibly, albeit it does not guarantee that the boundaries will15

be preserved exactly as required by the model constraints. Information about the
boundaries is included into the model uncertainty description, i.e. into the model error
covariance Cεk . This changes the analytical representation of the boundaries into a
probabilistic description, which means that there is no absolute certainty about where
the boundaries are located, but there is more confidence about evolution of boundaries20

than that of the model.
In the dam-break case studied here, we have prior knowledge about the shore line

and we have high certainty that there can be no water in the middle of the river bank.
Therefore, we define the model covariance Cεk so that the state elements that are
confined to the river bank have variances much smaller than the variances assigned to25

the rest of the state. This strategy shifts the responsibility of maintaining the boundaries
to the data assimilation analysis.
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3.3.1 Setup of the meters with two rows of observations

A dam-break experiment of Bellos et al. (1991) is tested with new modification. At the
downstream end the meters are placed as in the original experiment and as shown
in Martin and Gorelick (2005). Parallel wave meters are placed along the flow in the
downstream end. The goal of this setup is to examine if the VEnKF can learn and5

predict cross-flow along the flume, which is the true case for river flows. The meters are
placed in the same original position in the y direction but pushed up and down from the
flume midline for downstream meters by 4∆x, i.e y ′ = y and x′ = x±4∆x, where x′ and
y ′ are new wave meter positions downstream in x and y direction, respectively. This
makes total of 8 wave meters downstream as can be seen in Fig. 5. Other parameters10

are as in Martin and Gorelick (2005).
With these new positions of the meters, data are collected by assuming there are

cross flows along the flume. To accomplish this assumption we simulate a new set of
observations at the downstream end by superimposing a sinusoidal wave across the
water flow on the true experimental observations. The sine wave is chosen so that the15

wave crests are not in a straight angle to the channel walls, so that the observations
correspond to genuine cross-flow patterns, and that the water level at the sensors does
not drop to zero at any time of the simulation. To make it more natural, we add normally
distributed noise with mean 0 and standard deviation of 0.001 to the resulting data set.

3.3.2 Interpolation in time20

As mentioned above, the data set of observations has a major disadvantage of sparsity,
both in time and in space. More precisely, that means that at a time instance only
a small number of sensors among those installed along the flume were producing
actual measurements, whereas the time instances had no alignment with the model
integration time step set to 0.1 s. This sparsity is a challenge to data assimilation25

methods, since the amount of data obtained from the measurements is usually
not enough to expose bias in the prediction model. Therefore simple interpolation

424

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 403–446, 2014

2-D geophysical
flows with a VEnKF

Z. Mussa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

techniques were deployed to reduce the negative impact caused by the sparsity of
the observations.

As we expect the flume to be continuous both over time and space, the time
interpolation can be performed if the measurements obtained from each wave-meter
are frequent enough. In the case discussed, the smallest data rate of incoming5

measurements was demonstrated by the second wave-meter and was equal to
7.07×10−1 measurements per second, which means that the longest average time
period between two successive observations was about 0.14 s. As this period is about
the same length as the model integration time step, we expect satisfactory results from
the time interpolation.10

The interpolation procedure was organized as follows. We began by discretizing the
time axis with a discretization step of 0.1 s. Thereafter, every time instance related to a
measurement obtained from a wave-meter installed in the flume was aligned with the
time discretization grid by rounding the time instances to the closest grid point. Since
the time grid resolution is smaller than the rate of incoming measurements, some of15

the time grid points were left with no related observation. These gaps were filled by
piecewise cubic interpolation defined by Hermite Interpolating Polynomials (Fritsch and
Carlson, 1980). The curves given in Fig. 6 demonstrate the resulting interpolation and
the original measurement data obtained from the 2nd sensor.

3.3.3 Gaussian interpolation in space20

As noted previously, the published observation data we use in our experiments
was defined for seven spatial locations only, which is much less than the model
state dimension. Therefore, for each sensor, the corresponding observations were
extrapolated to a small neighbourhoods of their spatial location.

We specified a square patch that defines the extrapolation neighbourhood for each25

actual observation. These neighbourhoods were specified symmetrically with their
centres aligned to the spatial locations of the sensors. Thereafter, the extrapolated
values were defined by a product of an actual measurement and a Gaussian weight,
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where the weights were computed from a discretized Gaussian hill with its top aligned
to the sensor location and the discretization defined by the spatial grid and the
extrapolation neighbourhood.

We should note that the Gaussian kernels were allowed to be anisotropic, i.e. to
have different standard deviations along the spatial axes. An example of the discussed5

spatial interpolation computed for the 2nd sensor measurements is shown in Fig. 7.
We used a smaller Gaussian patch of 5-by-5, so that we do not spread the cross wave
effect on a wide area, since the difference might grow bigger than the one estimated
by the gaussian interpolation if we use a bigger square patch.

3.3.4 VEnKF parameters10

The state vector for the assimilation is defined as the vector of heights at the center of a
grid point. The complete state vector comprises free surface elevation η and horizontal
velocities u in the x direction and v in the y direction for the entire domain; that is x =
[η u v ]T . The model has therefore altogether 16000 spatial degrees of freedom. With
the interpolations, the ensembles are sampled in every time step of the assimilation.15

The observation error covariance and the model error covariance are both assumed to
be diagonal matrices. The observation operator HTL from Eq. 4 is a linear operator that
maps the state vector to the observation space corresponding to all grid points covered
by the interpolated data, but restricted to the water height values only.

3.3.5 Results with two rows of observations20

The result shown by VEnKF proves the capability of VEnKF to capture the cross flows
along the flume. As it can be seen in Figs. 9 and 10. In both cases we can see a
reasonable balance between the measurements and the model prior estimate. For the
first three upstream sensors, the flow captured by the VEnKF is realistic and no cross
flows are detected, as can be seen in Fig. 8, whereas for the downstream sensors25
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sinusoidal oscillations indicate the presence of cross-flows that can also be seen in a
video of the simulation.

3.4 Observation interpolation and Kalman filter stability

When studying the impact of observation interpolation with two rows of observations
and the superimposed sine wave solution, a curious phenomenon was observed. There5

appears to be a relationship between the interpolation distance of observations in time,
and the spread of the ensemble used in re-sampling. The latter quantity is directly
proportional to the assumed variance of the state vector and is therefore an analogue
of covariance inflation that is often used with Ensemble Kalman Filters.

The nature of this relationship is such that the shorter the distance in time between10

observations, the smaller the spread of the ensemble can be, and the analysis still
captures the wave-like pattern of the solution. But if the interpolation distance of
observations is too long, the VEnKF algorithm misses the troughs of the true solution,
unless the spread of the ensemble is also increased correspondingly. In this case,
VEnKF diverges, even if there is no numerical instability. This behaviour can be seen15

in Figs. 11, 12, and 13, where the analysis begins to diverge from the true solution if
ensemble variance is too small.

As a further analysis, the relationship between interpolation distance and spread
was studied over a range of values of both. The metric used in the comparison is the
difference in Euclidean norm between the analysis and the true solution. Figure 14 plots20

this relationship in logarithmic coordinates and shows the level curves of this distance
as a function of observation interpolation distance in time ∆t and of ensemble variance
σ2. The level curves are seen to be almost linear in logarithmic scale.

Based on a visual study of the slopes of the level curves with respect to the log(σ) and
log(∆t) axes in Fig. 14, we can see that there appears to be a power law that relates25

the standard deviation of the ensemble and the time interval between observations that
has to be met for the VEnKF algorithm not to diverge. This empirical power law that
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guarantees filter convergence looks roughly like

∆t ∼ σ6 or ∆t ∼ var3.

The exact nature and reasons behind these particular exponents remains a subject
for further investigation.

4 Conclusions5

In an earlier study by the current authors Amour et al. (2013), one of the current flow
examples, the dam break example, was assimilated with VEnKF, but in that case the
observations of the flow were located along a one-dimensional flow contour only, even
if the flow model was based on the two-dimensional shallow water equations. The
analysis increments resulting from Kalman filtering in that case tended to be almost10

one-dimensional structures that are constant in the cross-flow direction.
In the current article, we have seen that the Variational Ensemble Kalman

Filter VEnKF is able to capture genuinely two-dimensional realistic flow patterns in
geophysical flows, both in the case of a synthetic atmospheric flow with a biased
model and a modified real hydraulic flow. In the latter case, real observations were15

interpolated in time to prevent filter divergence. By the two-dimensionality of the flow
pattern we mean that both the real flow and the real or synthetic observations of the
flow have a two-dimensional geometry.

When the stability of the VEnKF filter was studied as a function of ensemble variance
and interpolation distance in time between observations, an empirical relationship20

between these two quantities was detected that establishes a power law between the
two quantities above as a sufficient condition for filter stability.
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Fig. 1. Geometric layout of the QG-model.
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Fig. 2. Root mean square error of the estimates obtained from the data assimilation of the
QG-model.
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Fig. 3. Forecast skill of VEnKF at different ensemble sizes and that of EKF on the QG-model.
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h H

η

Fig. 4. Relationship between H , h, and η.
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Fig. 5. Parallel setup of wave meters at downstream end (plan view).
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Fig. 6. Time interpolated water depth at Sensor Number 2.
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Fig. 7. Space interpolated water depth at Sensor Number 2.
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Fig. 8. Upstream meters: no cross flows recorded by the VEnKF as was expected.

440

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/403/2014/npgd-1-403-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 403–446, 2014

2-D geophysical
flows with a VEnKF

Z. Mussa et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

Time [s]

H
ei

gh
t [

m
]

(a): SensorNo4

 

 
VEnKF
Data

 0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

0.08

Time [s]

H
ei

gh
t [

m
]

(b): SensorNo5

 

 
VEnKF
Data

 0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

Time [s]

H
ei

gh
t [

m
]

(c): SensorNo6

 

 
VEnKF
Data

 0 10 20 30 40 50 60 70
0.00

0.02

0.04

0.06

Time [s]

H
ei

gh
t [

m
]

(d): SensorNo7

 

 
VEnKF
Data

Fig. 9. The VEnKF captures well the cross flows for the downstream locations.
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Fig. 10. The VEnKF captures well the cross flows for the downstream locations.
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SensorNo4, Sig = 2
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Fig. 11. Results showing VEnKF converges to the true measurements with all observation
intervals if ensemble variance is sufficient (σ2 = 4). Note the aliasing of the sine wave to a
lower frequency wave when the observation interval exceeds the wave frequency at 5 ∆t = 5 s
and the estimation problem violates the Nyquist limit. The filter then converges to the aliased
solution.
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Fig. 12. Border-line filter divergence with different observation intervals and border-line
ensemble variance σ2 = 1.
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SensorNo4, Sig = 0.25
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Fig. 13. Results showing VEnKF divergence at all observation intervals with excessively small
ensemble variance (σ2 = 0.625). The solutions remain numerically stable in all cases.
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Fig. 14. Empirical level curves for the difference in Euclidean norm between the analysis and
true solution as a function of the logarithm of the observation interval ∆t and the logarithm of
ensemble standard deviation σ.
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