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Abstract. Exponential family statistical distributions, in-
cluding the well-known Normal, Binomial, Poisson, and
exponential distributions, are overwhelmingly used in data
analysis. In the presence of covariates, an exponential family
distributional assumption for the response random variables5

results in a generalized linear model. However, it is rarely
ensured that the parameters of the assumed distributions are
stable through the entire duration of data collection process.
A failure of stability leads to nonsmoothness and nonlinear-
ity in the physical processes that result in the data. In this10

paper, we propose testing for stability of parameters of ex-
ponential family distributions and generalized linear models.
A rejection of the hypothesis of stable parameters leads to
change detection. We derive the related likelihood ratio test
statistic. We compare the performance of this test statistic15

to the popular Normal distributional assumption dependent
cumulative sum (Gaussian-CUSUM) statistic in change de-
tection problems. We study Atlantic tropical storms using the
techniques developed here, to understand whether the nature
of these tropical storms has remained stable over the last few20

decades.

1 Introduction

One important way in which nonlinear structures may be
present in data related to many physical and natural phenom-25

ena is by structural breaks and changes. Generally, elicitation
of the time and nature of such breaks with statistical guaran-
tees involves change detection techniques like the cumulative
sum (CUSUM), or the exponentially weighted moving aver-
age (EWMA).30

The standard framework for applying such change detec-
tion techniques requires assuming that the order in which the

sampled observations arrive is known, with the question of
interest being whether the data generating process has re-
mained stable over time. The observations are assumed to35

follow a known Gaussian distribution, and are monitored for
a potential change to a different, but still known, Gaussian
distribution. Statistical guarantees are typically expressed in
terms of expected run length, i.e., how long it takes on aver-
age for a true change to be detected, when there is a control40

for the expected length of time before false signaling occurs.
These Normality-based sequential monitoring and stability
detection techniques originated from industrial process con-
trol (Page (1954)), although they have far ranging applica-
tions nowadays. Examples of such applications are in health45

care monitoring (Steiner et al. (1999)), detection of genetic
mutation (Krawczak et al. (1999)), credit card and financial
fraud detection (Bolton and Hand (2002)), insider trading
in stock markets (Meulbroek (1992)), and detection of jam-
ming attacks in wireless networks (Chen et al. (2007)).50

Note that in many modern applications, the assumption of
Normality is not tenable. In this paper, we discuss change de-
tection in general exponential family, and in regression mod-
els including generalized linear models like logistic regres-
sion and log-linear regression. We present several mathemat-55

ical results concerning the different kinds of CUSUM statis-
tics that may result, depending on the probabilistic structure
under consideration, and whether certain parameters are es-
timated or assumed known. A natural question here is on the
performance of the Normality-based CUSUM statistic, when60

the probability models do not satisfy the Gaussian assump-
tions. We study this issue, and present mathematical results,
simulation studies and discussions about when and how the
Gaussian-CUSUM may yield high quality results. Finally,
we discuss properties of Atlantic tropical storms, and use65

the techniques developed in the rest of this paper to study
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structural changes in the fundamental physical properties for
which we have data records for such storms.

In order to generalize the scope of statistical change detec-
tion tools, in this paper we propose a variant of the sequential70

industrial monitoring framework, by considering the stabil-
ity of the data generation process as a problem of detecting
the time of the distributional change. That is, we conduct a
hypothesis test, and under the null hypothesis, the data gen-
eration process remains stable through the entire sampling75

time t= 1, . . . ,n. Under the alternative hypothesis, the dis-
tribution of the individual observations remain stable up to
an unknown point of time τ ≤ n and then it changes to an-
other distribution. With this hypothesis testing framework,
we are in a position to (a) consider models with none, one80

or more change points in the same statistical framework, (b)
quantify uncertainty associated with any potential result us-
ing standard concepts of hypothesis tests like size, power,
level of significance, or properties of the run length, (c) ex-
tend the scope of the study beyond the traditional frameworks85

where the data either arrives sequentially, or there are suffi-
cient observations before and after each change point. We
may consider problems where some parameters are known
for some duration of the process, while others are estimated.
The sequential process monitoring statistics like CUSUM are90

obtained as a special case, so there is no loss of generality in
using the hypothesis testing approach proposed here. Two of
these generalizations, that of extension to any partitioning of
the data and that of using multiple change times, can be eas-
ily visualized in this hypothesis testing framework, but we do95

not pursue them here for brevity. However, we briefly com-
ment on these generalizations in Section 3 below. Also, our
framework allows for cases where parameter values are un-
known and estimated from data, but we present first our re-
sults for the known-parameter case for clarity, and restrict the100

discussion of the estimated parameter case in Section 3.3 be-
low. We call the proposed testing procedure the exponential
family CUSUM (or EF-CUSUM in short), while the statis-
tic obtained under Gaussian framework is called normal-
CUSUM or Gaussian-CUSUM.105

Simulation studies show that in most situations, EF-
CUSUM method performs better than Gaussian-CUSUM.
The EF-CUSUM has a shorter average run length, smaller
variation of run length and shorter maximum run length com-
pared with Gaussian-CUSUM. Moreover, smaller shifts can110

be detected more quickly by EF-CUSUM than by Gaussian-
CUSUM, which is a big advantage of using EF-CUSUM.
Under some circumstances the Gaussian-CUSUM approx-
imates the EF-CUSUM well, we discuss this issue below.
It is also important to note that whether the change point115

τ is at the beginning, in the middle or at the end, the EF-
CUSUM generally outperforms the Gaussian-CUSUM, so
the unknown parameter τ plays little role in our analysis.
Finally, in the case of a large parameter shift, the exponen-
tial family CUSUM and the Gaussian-CUSUM perform sim-120

ilarly. This is not unusual, and even visual and ad hoc tech-
niques suffice for many cases of large changes.

We also extend our study to that of parameter change in
the generalized linear model. In this context, Brown, Durbin
and Evans (1975), and Jandhyala and MacNeill (1991) dis-125

cussed general linear model, Lee, Tokutsu and Maekawa
(2004), Chihwa and Ross (1995) and Ploberger, Kramer and
Alt (1989) focused on detecting linear model with different
types of error terms. In this paper we propose methodology
for detecting change in regression coefficients in the general-130

ized linear model setting and the EF-CUSUM scheme asso-
ciated with it.

Our case study for illustrating our instability and change
detection techniques is based on Atlantic tropical storm data.
There are several studies in recent times on whether, and how,135

the properties of these storms have changed with climate
change, see for example Robbins et al. (2011). Such storms
can do immense harm to life and property, consequently a
change in their patterns is of interest. Apart from being of
current interest, the presence of some amount of evidence for140

change in the literature is helpful for evaluating whether our
proposed methods can detect known instabilities. We study
the yearly number of such storms, as well as the joint rela-
tionship between pressure and windspeed. We detect changes
compatible with known facts. Interestingly, we find that al-145

though windspeeds and central pressure values of Atlantic
hurricanes have changed, they have changed in-sync, that is,
their mutual relationship has remained stable over time. This
lends credence that our methodology might be able to detect
true changes and discard false signals well, since large scale150

energy balance relationships (as that between pressure and
windspeed) are not expected to change.

Section 2 contains a brief literature review. Section 3 deals
with EF-CUSUM statistic derivation. Multivariate Gaussian-
CUSUM is discussed as well, with covariance matrix either155

singular or positive definite. A few examples are given as to
how to derive CUSUM statistic, and Table 1 and 2 are pro-
vided for the convenience of readers. Section 3.2 talks about
change detection in the generalized linear model setting. Sec-
tion 4 contains simulation studies. The data analysis for At-160

lantic tropical storms is provided in section 5, followed by
conclusions and discussion in Section 6.

2 Literature Review

In this section we provide a partial list of techniques for
change detection. As mentioned earlier, some of these orig-165

inated in industrial quality context, and related methods in-
clude Shewhart control charts (Shewhart (1931)), EWMA
control charts (Roberts (1966)) and CUSUM (Page (1954)).
In the context of the CUSUM statistic, which originated from
Page (1954) and Page (1955), various optimality results170

are available in Lorden (1971); Khan (1979); Moustakides
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(1986); Ritov (1990); Pollak (1987); Atienza et al. (2000)
showing the versatility of this procedure.

The CUSUM technique has been extended to better suit
practical needs, including Shu, Yeung and Jiang (2010)175

on adaptive CUSUM, Hawkins (1992) on robust average
run length with Winsorization, Liu, Xie and Goh (2006)
on transformation of exponential data, Yashchin (1993) on
transforming serially correlated observations. In other direc-
tions, Lucas and Saccucci (1990) compared the average180

run length properties of EWMA with CUSUM, MacEachern,
Rao and Wu (2007) developed robust CUSUM by modifying
the likelihood function, Albers, Kallenberg (2009) proposed
CUMIN charts for grouped data and compared CUMIN with
CUSUM and Shewhart charts, Chatterjee and Qiu (2009)185

proposed CUSUM control charts with control limits esti-
mated using bootstrapping when the distribution was un-
known, Steiner et al. (1999) used simultaneous CUSUM
control charts to monitor correlated bivariate outcomes in
the field of medical research, Crosier (1988) proposed vec-190

tor CUSUM and Hotelling T 2 based CUSUM when deal-
ing with multivariate case and compared them to Shewhart
scheme, Lucas (1982) proposed Shewhart-CUSUM scheme
to draw advantages of both methods for quick detection of
mean change in the normal distribution setting, and Morais195

and Pacheco (2006) extended the approach to binomial data.
Some researchers have treated special cases in the EF-

CUSUM family, including Hawkins and Olwell (1997)
on detecting known location and shape change in inverse
gamma distribution, Hawkins and Zamba (2005) on change200

point detection in unknown mean and variance for normal
distribution, Rochelle et al. (2008) used negative binomial
CUSUM to study outbreaks of Ross River virus disease and
compared it to Early Aberration Reporting System (EARS)
CUSUM algorithms, Wu, Jiao, Liu (2008) studied large205

shifts in fraction non-conforming, Lucas (1985) improved
the Poisson CUSUM with FIR and introduced two-in-a-row
rule to robust CUSUM. Healy (1987) discussed shift in
mean and covariance for multivariate normal distribution us-
ing CUSUM, Alwan (2000) proposed transformation to nor-210

mality to deal with EF-CUSUM chart, Severo and Gama
(2010) discussed using Kalman Filter and CUSUM to detect
residual mean and variance in the regression model, and Qiu
and Hawkins (2001) used rank-based CUSUM procedure to
deal with multivariate measurements without normality as-215

sumption.

3 Distributional stability in exponential families

3.1 Known parameter case

Let the data be the random sample {X1, . . . ,Xn}, where we
know X1 is observed first, then X2 is observed, and so on.220

We assume thatX1, . . . ,Xτ are identically and independently
distributed following an exponential family distribution with

probability density or mass function given by

p(x;θ,φ) = exp
{
a(φ)−1 (xθ− b(θ)) + c(x,φ)

}
.

Here the parameters are θ, which is of the same dimension-225

ality as each of the data-points, and φ.
We assume that Xτ+1, . . . are identically and indepen-

dently distributed from another exponential family distribu-
tion, with probability density function given by

p(x;θ+ δ1,φ+ δ2) = exp
{
a(φ+ δ2)−1 (x(θ+ δ1)230

−b(θ+ δ1)) + c(x,φ+ δ2)} .

Here τ is a fixed but unknown parameter denoting the time
of change from one distribution to another, and 0< τ <∞.
In the testing for distributional stability (TDS) framework we
adopt in this paper, our interest is in testing the null hypothe-235

sis H0 : τ ≥ n against the alternative hypothesis H1 : τ < n.
In keeping with the traditional process monitoring literature,
we consider all parameter values, other than τ as known con-
stants for now. Then in Section 3.3, we extend a selection
of our results to the case where the parameters are estimated240

from the available data. Assuming some, or all, of these pa-
rameters as unknown requires additional technical conditions
and assumptions.

Note that the time-ordering of the observations is not an
integral part to our methodology. Also, multiple change-245

points may be allowed. For the former, we would assume that
there is some permutation of the data, sayXσ1

, . . . ,Xσn such
thatXσ1

, . . . ,Xστ are independent and identically distributed
with some exponential family distribution with parameters
θ and φ, while Xστ+1 , . . . independent and identically dis-250

tributed with the same distribution with a different set of pa-
rameter values. Also, multiple change-points τ1, . . . , τk can
be easily accommodated in the above framework, and both
the null and alternative hypothesis made more complex. In
other words, we can extend our study to the case where, for255

some permutation of the indices, the data may be partitioned
into k0 segments under the null and k1 segments under the
alternative. Here, each segment of data is a set of indepen-
dent, identically distributed exponential family random vari-
ables with its own distinct set of parameters. Our current260

problem may be thought of as the special case where σi = i
for i= 1, . . . ,n, k0 = 1 and k1 = 2. Extensions like those de-
scribed above may lead to new approaches for solving sev-
eral problems in applied statistics. However, in the interest of
clarity of presentation, and to keep this paper at a reasonable265

length, we do not pursue such extensions here. Our method
has a natural extension to time series and other dependent
data with potential (unknown) change points, for which a
likelihood can be written and computed, and an equivalent
CUSUM testing framework can be established.270

In our first result below, we obtain the test statistic for
the hypothesis test described above. We adopt the conven-
tion that

∑b
i=aYi = 0 whenever a > b, for any sequence of

(possibly random) reals {Yi}.
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Theorem 3.1. Let275

Yi = a(φ+ δ2)−1 (Xi(θ+ δ1)− b(θ+ δ1)) + c(Xi,φ+ δ2)

−a(φ)−1 (Xiθ− b(θ))− c(Xi,φ),

for i= 1, . . . ,n, and further define Sk =
∑k
i=1Yi, adopting

the convention that S0 = 0.
The likelihood ratio test statistic for testing the null hy-280

pothesis H0 : τ ≥ n against the alternative hypothesis H1 :
τ < n is given by Tn = Sn−min0≤k<nSk, and the null hy-
pothesis is rejected if Tn ≥ L for a critical value L.

We omit the proof of this and several other Theorems in
the interest of brevity.285

In general, the distribution of the test statistic Tn is in-
tractable under both null and alternative hypothesis, conse-
quently p-value, power, critical value L are difficult to find.
Numeric methods are typically used to obtain these, and
parametric bootstrap used when the distributional param-290

eters are unknown and estimated. We discuss this issue in
greater detail in Section 3.3.

The critical value L may be chosen by standard hypoth-
esis testing protocol, by setting an upper bound α (signif-
icance level) to the probability of falsely rejecting the null295

hypothesis, i.e., Type-1 error. However, in the framework of
sequential process monitoring, the expected number of tests
that may be performed before a false rejection is traditionally
used as a control in place of the probability of a single test
turning out to be a false rejection, and may be more mean-300

ingful in some applications. The former is called average run
length under the null hypothesis, denoted by ARL0, and is
related to the probability of Type-1 error. A deeper discussion
on this relation may be found in Li et al. (2013). Formally,
the run length isR= inf{n : Sn−min0≤k<nSk = Tn ≥ L}.305

The value of L is obtained by fixing the value of ER(=
ARL) assuming τ =∞, at a pre-determined value ARL0.
The notation ARL stands for average run length. In this pa-
per we adopt the statistical process control-based approach
of specifying control over false rejections using ARL0. We310

set the value ARL0 = 200 for our examples and data analy-
sis below. This implies a significance level of α= 0.005 for
a sequence of independent tests. More importantly, in our
datasets of a few dozen observations, this implies that we are
very unlikely to make a false rejection of the null hypothesis,315

since a hypothesis test for change at every single data point
would still need an average of 200 observations for Type-1
error to occur.

Note that the test statistic Tn may be written recursively as
Tn = max{0,Tn−1+Yn}, with T0 = 0. This form is reminis-320

cent of the the celebrated CUSUM statistic. In view of this,
we call Tn the exponential family CUSUM statistic. We ob-
tain the classical CUSUM statistic as a special case in Corol-
lary 3.1 below. Note that Tn ≥ 0 almost surely, hence a non-
trivial test is obtained only when L is strictly positive. Our325

next result shows that this relation is fairly easy to ensure in
practice.

Theorem 3.2. Eτ=∞R(=ARL0)≥ 1 if and only if the crit-
ical value L is positive.

PROOF OF THEOREM 3.2330

The necessity part: If L≤ 0, since R= inf{n : Sn−
min0≤k<nSk ≥ L}, we have S0−min0≤k<0Sk = 0≥ L al-
most surely. Hence we have R= 0 almost surely, and there-
fore Eτ=∞(R) = 0, which is contradictory to ARL0 ≥ 1.
The sufficiency part: If L > 0, thenR cannot be zero because335

S0−min0≤k<0Sk = 0< L almost surely, henceR is at least
1 almost surely. Therefore ARL0 ≥ 1.

We now state some special cases of Theorem 3.1, which
are of interest. Our first such result deals with the case where340

the observations are Normally distributed. We use the nota-
tion i.i.d.

= for independent and identically distributed.

Corollary 3.1. Suppose X1, . . . ,Xτ
i.i.d.
= N(µ,σ2

1) and

Xτ+1, . . . ,Xn
i.i.d.
= N(µ+ δ1,σ

2
2). For testing the null hy-

pothesis H0 : τ ≥ n against the alternative H1 : 0≤ τ <345

n, the likelihood ratio statistic is given by Cn = Sn−
min0≤k<nSk, where Sk =

∑k
i=1Yi and Yi = log(σ1/σ2) +

1
2σ
−2
1 (Xi−µ)2− log(σ2)− 1

2σ
−2
2 (Xi−µ− δ1)2.

In the very special case where σ1 = σ2 = 1,µ= 0, we ob-
tain Yi = (Xi−δ/2), and hence obtain Sn−min0≤k<nSk =350

Cn = max{0,Cn−1 +Xi− δ/2}, with C0 = 0. This expres-
sion is that of the classical Gaussian-CUSUM, where the fac-
tor δ/2 is often called the allowance constant.

The statistic Cn defined as Cn = max{0,Cn−1 +Xi−
δ/2} (with C0 = 0) is often used as a default statistic for355

change detection. Our result above shows that this statistic
may also be obtained in a non-sequential framework, how-
ever, the assumption of Normal distribution seems unavoid-
able. Since Cn is used for change detection in non-Normal
data also, it is of interest to know under what circumstance360

it may obtain reasonable accuracy and precision with change
detection. Our next theorem describes the conditions under
which using Cn as a statistic may be a reasonable procedure.

Theorem 3.3. Consider the framework of Theorem 3.1. In
addition, assume that the third derivative of b(·) at θ0 is zero,365

i.e., b′′′(θ0) = 0, that δ1 is small and δ2 = 0.
Under these assumptions, the difference between the

Normality-based CUSUM Cn and the exponential family
CUSUM Tn is as follows: |Cn−Tn|= op(nδ1).

Example 3.1.1370

Binomial change detection: In the case of binomial dis-
tribution with parameter p, the natural parameter is θ =
log((1− p)−1p), and b(θ) = n log(1 + exp{θ}), φ is taken
as a constant. Also b′′′(θ) = (1 + exp{θ})−4{nexp{θ}(1 +
exp{θ})(1− exp{θ})}, b′′′(θ0) = 0 iff θ0 = 0. In that case,375

p= 1
2 . To conclude, when p= 1

2 , a change from p→ p+ δ1
using Gaussian-CUSUM ỹ and exponential family CUSUM
y yield similar performance.
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Corollary 3.2. For the same detection problem as above, un-
der the condition of b′′′(θ0) = b′′′′(θ0) = 0, δ1 is small and380

δ2 = 0, we get an even stronger result |Cn−Tn|= op(nδ
2
1).

Example 3.1.2
Change from Np(µ,Σ1) to Np(µ+ δ,Σ2)

The CUSUM for multivariate normal distribution is some-
what more complicated and therefore we divide this problem385

into the following cases based on the nature of the variance-
covariance matrix. In all the cases listed below, the test statis-
tic is Cn = Sn−min0≤k<nSk, where Sk =

∑k
i=1Yi and Yi

depends from one case to another. This result is a corollary
of Theorem 3.1, but is of independent interest owing to the390

multitude of applications involving the normal distribution.

1. Σ1 = Σ2 = Σ, where Σ is positive definite. Based
on the following density function: f(x|µ,Σ) =

(2π)−
p
2 |Σ|− 1

2 exp{− 1
2 (x−µ)′Σ−1(x−µ)} it is

straightforward to derive the CUSUM statistic based on395

Yi = (xi−µ− 1
2δ)
′Σ−1δ. If we let p= 1, we are back

to the univariate normal situation.

2. Σ1 = Σ2 = Σ, where Σ is a singular.

Assume rank (Σ) = r,r < p. There exists an or-
thogonal matrix Qp∗p, such that QΣQ′ = Λ,400

where Λ = diag(λ1, . . . ,λr,0, . . . ,0), where
λi > 0, i= 1,2, . . . , r. So Z =QX ∼Np(Qµ,Λ). Let
P = (Ir0r×(p−r)), and K = PZ ∼Nr(PQµ, Λ̃),
where Λ̃ == diag(λ1, . . . ,λr). Thus the prob-
lem is reduced to a change of Nr(PQµ, Σ̃)405

to Nr(PQ(µ+ δ), Σ̃), and we are back to
case 1. The CUSUM statistic is based on
Yi = (xi−µ− 1

2δ)
′(PQ)′Σ̃−1PQδ.

3. Σ1 6= Σ2, where Σ1, Σ2 are both positive definite.
Following previous discussion, the CUSUM statis-410

tic is based on Yi = 1
2 log(|Σ1|−1|Σ2|) + 1

2 (xi−µ−
δ)′Σ−1

2 (xi−µ− δ)− 1
2 (xi−µ)′Σ−1

1 (xi−µ).

4. Σ1 6= Σ2, where Σ1,Σ2 are both singular.

Based on discussion of case 2, our CUSUM statistic is
based on Yi = ( r22 −

r1
2 ) log(2π)+ 1

2 log(|Λ̃1|−1|Λ̃2|)−415

1
2 (P1Q1(xi−µ))′Λ̃1

−1(P1Q1(xi−µ))+ 1
2 (P2Q2(xi−

µ− δ))′Λ̃2
−1(P2Q2(xi−µ− δ)). Here P1,Q1,P2,Q2

are such that P1Q1Σ1Q
′
1P
′
1 = Λ̃1, P2Q2Σ2Q

′
2P
′
2 =

Λ̃2, and rank (Λ̃1) = rank (Σ1), rank( Λ̃2 ) = rank ( Σ2 ),
Λ̃1, Λ̃2 are r1× r1 and r2× r2 diagonal matrix.420

5. Σ1 6= Σ2, where Σ1 is positive definite,
Σ2 is singular. In this case we have Yi =
r2−p

2 log(2π) + 1
2 log(|Λ̃1|−1|Λ̃2|) + 1

2 (P2Q2(xi−
µ− δ))′Λ̃2

−1(P2Q2(xi−µ− δ))
− 1

2 (xi−µ)Σ−1
1 (xi−µ), where P2Q2Σ2Q

′
2P
′
2 = Λ̃2,425

rank( Λ̃2 ) = rank ( Σ2), Λ̃2 is r2× r2 diagonal matrix.

3.2 Generalized Linear Model and CUSUM

In this section, we consider data of the form
(y1,x1), . . . ,(yn,xn). Here, the yi’s are the responses,
and the xi’s are covariates that are considered to be fixed430

constant vectors. We assume that y′is come from the dis-
tribution p(yi|θi) = exp{a(φ)−1(yiθi− b(θi)) + c(yi,φ)},
where θi = xi

′β is the canonical parameter under stable
distributional regime and a(φ)> 0 is a dispersion parameter.
Our main result below generalizes the main result of the435

previous section, and presents change detection test statistic
for generalized linear models:

Theorem 3.4. Assume that (y1,x1), . . . ,(yτ ,xτ ), the true
model is θi = xi

′β, and for (yτ+1,xτ+1), . . . ,(yn,xn), the
true model is θi = xi

′(β+ δ), where β, δ is known. For the440

hypothesis testingH0 : τ ≥ n vsH1 : 0≤ τ < n, if we denote
zi = yixi

′δ−b(xi
′(β+δ))+b(xi

′β) and Sk =
∑k
i=1 zi, then

the test statistic is Sn−min0≤k<nSk.

3.3 Estimated parameter cases

We now illustrate the results presented above extend to the445

case where the parameters are unknown. For simplicity of
presentation, we omit the scaling function a(φ) for the first
two results below. We begin with the single parameter frame-
work whereX1, . . . ,Xτn are independent and identically dis-
tributed with density450

p(x;θ0) = exp{(xθ0− b(θ0)) + c(x)} ,

and Xτn+1, . . . are i.i.d. with density

p(x;θ1) = exp{(xθ1− b(θ1)) + c(x)} .

We assume θ1 6= θ0 throughout. We test the null hy-
pothesis H0 : τn ≥ n against the alternative H1 : 0≤455

τn < n. Let us denote the maximum likelihood esti-
mator for θ0 based on X1, . . . ,Xn as θ̂00; note that
this is under the null hypothesis scenario. Also, un-
der the alternative hypothesis scenario, the likelihood
L(θ0,θ1, τn) =

∏τn
i=1 p(Xi;θ0)

∏n
i=τn+1 p(Xi;θ0) is maxi-460

mized at (θ̂10, θ̂11, τ̂n). We have the following result:

Theorem 3.5. In the framework described above, the likeli-
hood ratio test statistic is given by

Tn1 = (θ̂10− θ̂00)

τ̂n∑
i=1

Xi + (θ̂11− θ̂00)

n∑
i=τ̂n+1

Xi

−τ̂nb(θ̂10)− (n− τ̂n)b(θ̂11) +nb(θ̂00).465

Further, under either τn ≥ n or τn/n ∈ (0,1), the paramet-
ric bootstrap scheme may be used to estimate the distribu-
tion of Tn1, and consequently obtain a rejection region and
p-value of the above hypothesis test.

It may be noted however, that the above test statistic can470

suffer from extremely low power, depending on the values
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of θ0, θ1 and τn. One reason for this performance deficiency
is that θ00 is not a consistent estimator for θ0 under the al-
ternative hypothesis. In order to address this issue and im-
prove the performance capabilities of our testing procedure,475

we propose a modification of the usual likelihood ratio test,
whereby we use θ̂10 as the estimator for θ0, even under the
null hypothesis. We have the following result:

Theorem 3.6. In the framework of Theorem 3.5, the profile
likelihood ratio test statistic is480

Tn2 = (θ̂11− θ̂00)

n∑
i=τ̂n+1

Xi− (n− τ̂n)(b(θ̂11)− b(θ̂00)).

Further, under either τn ≥ n or τn/n ∈ (0,1), the paramet-
ric bootstrap scheme may be used to estimate the distri-
bution of Tn1, and consequently obtain a rejection region
and p-value of the above hypothesis test. Further, the power485

of this test tends to one when τn/n ∈ (0,1). In addition,
(θ̂10, θ̂11, τ̂n) converge in probability to (θ0,θ1, τn) under
standard conditions.

The above test statistic can be obtained from the profile
likelihood (for null and alternative), when θ0 is replaced490

with θ̂10. Another useful variant is the case where both θ0

and θ1 may be estimated from the full data, perhaps under
some restrictions on the model. An example is where the
the null distribution is N(θ0,σ

2), and after τn it changes to
N(θ0 +cσ,σ2) for some known constant c. This formulation495

is particularly useful for applications, where it may be of im-
portance to detect only practically significant lack of stability
of distributions, and not just statistically significant ones. In
our simulation examples and the real data analysis below, we
consider the above specification where we test for a change in500

mean in terms of c standard deviation units. We study results
with c= 1,1/2,1/4 as potential cases of relatively easy, not
easy and hard change-detection scenarios. This framework is
adopted in this paper since it makes sense to describe the dis-
tance between the null and alternative scenarios in terms of505

”units of standard deviation”. Also, in samples of finite sizes,
the only scenario where we get reasonable power in hypoth-
esis tests is when the two hypotheses are sufficiently apart.
Additionally, for practical purposes, even if there is a change
but the change is minute and negligible, the hypotheses test510

may be redundant. Based on all these considerations, it is ad-
visable to test hypotheses that are a reasonable number of
standard deviation units away from each other.

There can be several other results relating to stability de-
tection with estimated parameters, under various assump-515

tions and technical conditions, which we will address in fu-
ture work. We conclude this section with a result on stability
detection when parameters are estimated in a generalized lin-
ear model.

Theorem 3.7. Assume that (y1,x1), . . . ,(yτn ,xτn), the true520

model is θi0 = xi
′β0, and for (yτn+1,xτn+1), . . . ,(yn,xn),

the true model is θi1 = xi
′β1. For the hypothesis testing

H0 : τn ≥ n vs H1 : 0≤ τn < n, the test statistic is Tn3 =∑n
i=1τ̂n+1 a

−1(φ̂)
{
yixi

′
(β̂1− β̂0)− b(xi

′β1) + b(xi
′β0)

}
.

We present below a sketch of the proof of the above result.525

SKETCH OF PROOF OF THEOREM 3.7
The likelihood function under the alternative hypothesis is

L1(β0,β1, τn,φ)

=

τn∏
i=1

exp{a(φ)−1(yixi
′β0− b(xi

′β0)) + c(yi,φ)}

×
n∏

i=τn+1

exp{a(φ)−1(yixi
′β1− b(xi

′β1)) + c(yi,φ)}.530

Suppose this function is maximized at (β̂0, β̂1, τ̂n, φ̂). We
evaluate the likelihood under the null hypothesis at β̂0, φ̂, and
obtain the profile likelihood ratio as

Λ(τ) =
L1(β̂0, β̂1, τ̂n, φ̂)

L0(β̂0, φ̂)

= exp

[
n∑

i=1τ̂n+1

a−1(φ̂)
{
yixi

′
(β̂1− β̂0)535

− b(xi
′β1) + b(xi

′β0)

}]
.

In the generalized linear model case also, the parametric
bootstrap is a viable way of approximating the distribution of
Tn3, and thus eliciting the properties of the test for stability.540

4 Simulation Study

In this section, we discuss a simulation study on the change
of parameter(s) for binomial, exponential, gamma and pois-
son distributions, and compare the EF-CUSUM statistic with
the Gaussian-CUSUM statistic, under the constraint that the545

mean and the standard deviation of both distributions are
equal. Based on the exponential family density f(x;θ,φ) =
exp{a(φ)−1(xθ− b(θ)) + c(x,φ)}, it is easy to calculate
E(X) = b′(θ), and var(X) = b′′(θ)a(φ). When there is
change in parameter from θ to θ+δ1 and from φ to φ+δ2, we550

have E(X) = b′(θ+δ1) and var(X) = b′′(θ+δ1)a(φ+δ2).
So the corresponding Gaussian assumption-based setting is
a change from N(b′(θ), b′′(θ)a(φ)) to N(b′(θ+ δ1), b′′(θ+
δ1)a(φ+ δ2)).

The simulation procedure can be described as follows:555

First, we control false alarms by carefully choosing L un-
der the null distribution by fixing ARL0 = 200. Second,
we compute E((R− τ)+) under the alternative distribution.
Let τ be the time of change. We simulate x1, . . . ,xτ

i.i.d.
=

f(x|θ) and xτ+1, . . . ,xT
i.i.d.
= f(x|θ+ δ) for 2500 replica-560

tions, where δ is known. For each τ = 0,1, . . . ,100, use the
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L from the first step and computeR for the 2500 replications
to get the mean, median, standard deviation, and maximum
of (R(τ)). We simultaneously carry out the same procedure
for the Gaussian-CUSUM case for comparison with the EF-565

CUSUM.
From the simulation results in Figure 1, one key finding is

that in most cases, EF-CUSUM statistic performs better than
Gaussian-CUSUM statistic except for one occasion when the
underlying distribution is exponential distribution. Also note570

that for small shift in parameter, exponential CUSUM has
a considerable advantage over the Gaussian-CUSUM, while
for large shift in parameter, EF-CUSUM still works better
than Gaussian-CUSUM, but not significantly different.

We also discover that E1(R(τ)) does not vary a lot with575

τ changing from 0 to 100 for a particular distribution in the
exponential family. Particularly, for τ close to 0 or close to
100, E1(R(τ)) is still quite stable. In addition, the median,
standard deviation and maximum of average run length tell
the same story as the mean.580

5 Hurricane Data Analysis

We now discuss a case study of Atlantic tropical storms, for
which data is available for every six hours from its incep-
tion till finish. For each storm, the following information is
recorded: date and time, hurricane identity, hurricane name,585

position in latitude and longitude, maximum sustained winds
in knots, and central pressure in millibars.

We present our results from three studies on Atlantic hur-
ricanes here. Each of these studies are carried out on two
data sets: a longer series from 1851-2008 and a shorter se-590

ries from 1951-2008. The expectation-maximization algo-
rithm was used for missing data segments in the longer se-
ries when required, this problem does not arise in the shorter
series.

First, we consider the problem of testing for distributional595

stability for the yearly number of hurricanes between 1851-
2008. This yearly data is modeled as Poisson(µ̂), and a po-
tential change to Poisson(µ̂+ δ) is studied. We assume that
any potential change point occurred after 1900, and use the
data previous to it for estimating parameters. We estimate600

µ̂= 7.54, and fix δ = cσ̂, where c is predetermined as 1
4 , 1

2
and 1, and σ̂ = 2.75 is the estimated standard deviation. Note
that σ ≈ µ 1

2 because for the Poisson distribution, the mean
equals the variance. Then we create the Poisson CUSUM
statistic as given in Table 1. We getL based onE0(R) = 200,605

and search for the first n that makes Sn−min0≤k<nSk ≥ L
with the hurricane data.

In view of the fact that the data from the 19th century and
the first half of the 20th century may not be entirely reliable,
we repeated the above analysis on detecting change for the610

Atlantic tropical storms from year 1951 to 2008. We assume
that the potential change could only occur after 1970. For
detecting potential change Poisson(µ̂) to Poisson(µ̂+ δ), we

now have µ̂= 9.8, and δ = cσ̂, where c is predetermined as
1
4 , 1

2 and 1, and σ̂ = 2.97. Note that in both analyses, the615

sample standard deviation is close to the sample mean, again
verifying the Poisson model assumption.

In both of these analyses, our results are not particularly
sensitive to the choice of the initial segment when no change
is assumed to occur (i.e. till 1900 and 1970 in the first and620

second analysis described above). We also verified that the
assumption that the number hurricanes in a given year fol-
lows a Poisson distribution is reasonable. For example, a
goodness-of-fit p-value for testing Poisson distribution fit is
0.8, thus strongly rejecting that Poisson is a bad fit. Note Fig-625

ure 2 also for an observed and expected plot for the data be-
tween 1951-2008. We also explored the possibility that there
may be a temporal pattern in the number of hurricanes over
the years, but that was ruled out from autocorrelation and
partial autocorrelation computations on both the original and630

logarithmic scales.
The second study has two parts. For the data from

1851-2008, we model the maximum sustained winds and
maximum central pressure as N2(µ̂, Σ̂), and study poten-
tial change to N2(µ̂+ δ, Σ̂). We estimate the mean µ̂ and635

variance-covariance matrix Σ̂ based on the first 50 obser-

vations. Here µ̂ =
(

104.8
982.99

)
, and Σ̂ =

(
σ̂11 σ̂12

σ̂21 σ̂22

)
=(

199.96 −20.66
−20.66 367.56

)
. Let δ =

(
cσ̂11

cσ̂22

)
, where c is prede-

termined as 1
4 , 1

2 and 1.
In a variation of the second study, we consider maxi-640

mum sustained wind speed and minimum central pressure as
N2(µ̂,Σ̂) and study potential change to N2(µ̂ + δ,Σ̂). Here µ̂

=
(

129.5
937.6

)
, and

Σ̂ =
(
σ̂11 σ̂12

σ̂21 σ̂22

)
=
(

376.05 −220.47
−220.47 237.41

)
. Let δ =

(
cσ̂11

cσ̂22

)
,

where c is predetermined as 1
4 , 1

2 and 1.645

The results are summarized in Table 3 and in Table 4.
We discover that the number of hurricanes had a signifi-
cant increase around year 1933-1936, and the strength of
the hurricanes had a sharp increase around the year 1923-
1924. This is consistent with the historical records. In his-650

tory, the 1924 hurricane Cuba was the earliest officially clas-
sified Category 5 Atlantic hurricane on the Saffir-Simpson
scale, and it became the strongest hurricane on record to
hit the country; 1928 Okeechobee hurricane was the sec-
ond recorded hurricane to reach Category 5 status on the655

Saffir-Simpson Hurricane Scale in the Atlantic basin after
the 1924 Cuba hurricane; The 1933 Atlantic hurricane sea-
son was the second most active Atlantic hurricane season
on record with 21 storms; The 1936 season was fairly ac-
tive, with 17 tropical cyclones including a tropical depres-660

sion. From the analysis of the shorter series, we detect that
the year 2000-2001 saw an increase in the number of hur-
ricanes. According to National Hurricane Center, the 2001
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Atlantic hurricane season produced 17 tropical storms and
hurricanes. Notice that the results we obtain are consistent665

for c= 1,1/2,1/4 which strongly suggests that the changes
we see are not false discoveries. As a further corroborative
check, we present a moving estimate of the average number
of hurricanes in Figure 3, which strongly suggests there is a
change in the average around the 50th observation, i.e. year670

2000 for the 1951-2008 data. Our results are similar to those
obtained by Robbins et al. (2011) (see Section 5 therein),
who notice changes in North Atlantic tropical storm patterns
circa 1930 and 1995.

In the third study, we consider the relationship between the675

number of hurricanes Y , the maximum sustained winds X1

and maximum (minimum) central pressure for data between
1851-2008 (1951-2008) X2. We model Y as Poisson(λ),
where θ = logλ, p(y,θ) = exp{yθ−eθ− logy!} and use the
canonical link θ = (1,X)′β.680

For the 1851-2008 data, we take the first 50 observations,
and get β̂ = (−4.99,0.01,0.006)′. We also estimate the bi-
variate mean and covariance as µ̂= (104.8,982.99)′ and

Σ̂ =

(
199.96 −20.66
−20.66 367.56

)
. Secondly, we select δ = cβ̂, where

c= 1
4 ,

1
2 ,1. Next we search for L, assuming ARL0 = 200.685

To implement this, we simulate the bivariate series X using
µ̂ and Σ̂. Based on equation log(λ̂) = (1,X)′β̂, we get λ̂, and
we can simulate Y from Poisson ( λ̂). Construct the CUSUM
statistic and the stopping rule Sn−min0≤k<nSk ≥ L to sat-
isfy ARL0 = 200. Finally, we fit the stopping rule to the real690

data and discover the signal. Results shows that there is no
significant change in terms of β, which means the way how
the maximum sustained winds and maximum central pres-
sure of a hurricane relates to the number of hurricanes has
not changed over the past 158 years.695

For the 1951-2008 data, we take the first 20 observa-
tions, and get β̂ = (3.08,0.003,−0.0016)′. We also estimate

the bivariate mean and covariance as µ̂ =
(

129.5
937.6

)
, and Σ̂

=
(

376.05 −220.47
−220.47 237.41

)
. Secondly, we select δ = cβ̂, where

c= 1
4 ,

1
2 ,1. Results shows that there is no significant change700

in terms of β, which means the way how the maximum sus-
tained winds and minimum central pressure of a hurricane
relate to the number of hurricanes has not changed over the
past 58 years. Thus, the third part of our study shows broad
physical relations between windspeeds and pressures have705

not changed, which is to be expected.

6 Conclusion and Future Work

The exponential family CUSUM generally performs better
than the Gaussian-CUSUM. In practice, in situations where
the data do not follow normal distribution, we should con-710

sider the appropriate distribution for modeling the data and
choose the corresponding CUSUM statistic to effectively de-

tect the change in parameter(s) if there is any. Further details
for the mathematical proofs, simulation studies, and our anal-
ysis of Atlantic tropical storms record are available from the715

authors.
In general, optimality results for our proposed methods

should follow along lines similar to those established by
Moustakides (1986) and related works, but this requires a
separate proof. There are other situations of interest in geo-720

physical studies where an exponential family model may not
be appropriate. Examples include extremes, cases where the
parameter is a boundary point of the support of the random
variable, and mixtures of distributions. Our future work will
consist of stability detection for such cases.725

The presence of temporal dependence is typically not
problematic; our likelihood-based schemes generalize easily
to standard time series frameworks, but additional mathemat-
ical technicalities cannot be avoided. In addition, cases where
the observations are not temporally ordered, or when there730

are multiple break points, need suitable generalizations and
mathematical treatment. Note that there is a relationship be-
tween the number of structural breaks in the distribution of a
data sequence, the size of such breaks, and the probabilities
of true/false inference from hypothesis testing. Establishing735

the limits of our proposed methodology along these lines is a
future work to accomplish.

It should be noted that the methodology discussed here
may fail under several different scenarios. For example,
when parameters of the distributions are unknown, there740

seems to be no reasonable way of obtaining the null or al-
ternative distribution consistently if there are too few obser-
vations before or after any change point. This also suggests
that the proposed method may not be able to adapt to situ-
ations where there are many change points, or when one or745

more changes in the parameters asymptotes to zero quickly.
Although we consider exponential family distributions here
which lends itself to several standard statistical techniques,
our proposed tests may require modifications if other dis-
tributions are involved, and in situations where parametric750

bootstrap is not guaranteed to produce consistent distribu-
tional approximations.
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Type of Distribution Density Function EF-CUSUM based on

Binomial(n,p):
(
n
k

)
px(1− p)n−x xlog(p+δp ) + (N −x)log( 1−p−δ

1−p )

p→ p+ δ

Poisson(λ): λxe−λ

λ! xlog λ+δ
λ − δ

λ→ λ+ δ

Gamma(α,β): 1
βαΓ(α)x

α−1e−
x
β δ2

β(β+δ2)x+ δ1log
x

β+δ2
−αlog β+δ2

β − log Γ(α+δ1)
Γ(α)

α→ α+ δ1,β→ β+ δ2

Multivariate normal: 1

(2π)
p
2 |Σ|

1
2

exp{− 1
2 (x−µ)′Σ−1(x−µ)} (x−µ− 1

2δ)
′Σ−1δ

Np(µ,Σ)→Np(µ+ δ,Σ)
Σ is positive definite

Table 1. Exponential Family CUSUM: Binomial, Exponential, Gamma and Multivariate Normal distributions

Distribution CUSUM statistic

N(µ,σ2
1)→N(µ+ δ1,σ

2
2) logσ1 + 1

2σ
−2
1 (xi−µ)2− logσ2− 1

2σ
−2
2 (xi−µ− δ1)2

N(µ,σ2)→N(µ+ δ,σ2) σ−2(xi−µ− 1
2δ1)δ1 ∝ (xi−µ− 1

2δ1)δ1

N(µ,σ2
1)→N(µ,σ2

2) log(σ−1
2 σ1) + 1

2σ
−2
1 σ−2

2 (σ2
2 −σ2

1)(xi−µ)2

N(θ,θ2)→N(θ+ δ1,(θ+ δ1)2) log((θ+ δ1)−1θ) + 1
2θ
−2(xi− θ)2− 1

2 (θ+ δ1)−2(xi− θ− δ1)2

Table 2. CUSUM Statistic for Normal Distribution: The first row is more general with both mean and variance change. The rest three rows
are special cases of the first one.

Distribution c= 1
4 c= 1

2 c=1

Poisson 1936 1933 1933
Bivariate Normal 1924 1923 1924

Table 3. Atlantic hurricane data from 1851 to 2008 are used to detect any mean change in hurricane characteristics. Here c is the magnitude
representing the number of standard deviation from the mean. Result shows that the number of hurricane had a significant increase around
1933-1936, and strength of the hurricane increased around 1923-1924.
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Distribution c= 1
4 c= 1

2 c=1

Poisson 2001 2001 2000
Bivariate Normal 2008 2008 2008

Table 4. Atlantic hurricane data from 1951 to 2008 are used to detect any mean change in hurricane characteristics. Here c is the magnitude
representing the number of standard deviation from the mean. Result shows that the number of hurricane had a significant increase around
the year of 2000, and strength of the hurricane has not changed.
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Fig. 1. Performance Comparison: Exponential Family CUSUM with Gaussian-CUSUM. Dotdash, dashed and solid line stand for mean,
median and standard deviation. The top panel describes run length comparison from Binomial(15,0.95) to Binomial(15,0.90), the middle
panel describes run length comparison from Poisson(3) to Poisson(3.1), the bottom panel describes run length comparison from Gamma(1,2)
to Gamma(1.5,1.5). Due to length limitation of the graphs, we here do not include the MAX line.
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Fig. 2. The observed data and a Poisson fit for the number of hurricanes between the years 1951-2008.
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Fig. 3. A moving average estimate of the average number of hurricanes between the years 1951-2008.
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