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Reply for Anonymous Referee #1
Thank you for the review given by Anonymous Referee #1. The sugges-
tions and detailed comments by the Anonymous Referee #1 are answered
as follows.

1. We already have reference to Brocchini and Peregrine (1996) on page
328.

2. On page 320, line 4-15, the paragraph will be revised as follows:
The shoreline position and wave reflection in the model area (sloping
region) are determined using an analytical solution of the nonlinear
shallow water equations (NSWE) following the approach of Antuono
and Brocchini (2010) for unbroken waves. The decomposition of the
incoming wave signal and the reflected one is also described in An-
tuono and Brocchini (2007,2010) for the calculation of the shoreline
and wave reflection. Nevertheless, the method in their paper is ap-
plied by determining the incoming wave signal with the solution of
the Korteweg-de Vries (KdV) equation. The novelty of our approach
is the utilization of an observation operator at the boundary x = B
to calculate the incoming wave elevation towards the shore from the
numerical solution of the LSWE in the simulation area. For any given
wave profile and bathymetry in the simulation area, the numerical
solution can be calculated and the signal arriving at x = B can be
observed. Afterwards, the data are used to calculate the analytical
solution of the NSWE in the onshore region and the reflected waves.

We also have fixed the typo in the citations.
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3. Equation (1) is Miles’ variational principle (Miles, 1977) that can be
rewritten in terms of velocity potential Φ and wave elevation η as
follows

0 = δ

∫ T

0
L[Φ, η]dt = δ

∫ T

0

∫ L

xs

∫ η

−hb

(
∂tΦ + gz +

1

2
|∇Φ|2

)
dzdxdt

(R1)

Arbitrary variations of the functional with respect to η gives result

∂tΦ + gη +
1

2
|∇Φ|2 = 0 at z = η. (R2)

This is Bernoulli equation which states that the pressure at the surface
of the water should vanish (it is the assumed pressure condition for
the variational formulation of full surface wave problem).

We do not fully understand the remark from Anonymous Referee #1.
In the full water wave problem, there is no depth-averaged flow. From
Eq. (1), we derive a Boussinesq version with a simplified vertical struc-
ture (Eq (2)). There is no arbitrary constrant, as the surface potential
φ is specified by the initial condition. Without such an initial condi-
tion, of course, φ only appears under space or time gradients. Hence,
also the numerical implementation is fine, because it requires an initial
condition for φ (and not its gradient). Of course, if one specifies the
initial velocity u, this initial condition for φ is indeed specified up to a
constant, but once φ is specified that initial constant is automatically
fixed as well.

4. In the linear wave theory, it is assumed that the bottom variations and
surface elevations are small compared to other dimensions. Equation
(3) arises from Miles’ variational principles (Miles, 1977) in Eq. (1) as
follows

0 = δ

∫ T

0
L[φ,Φ, η, xs]dt

= δ

∫ T

0

∫ L

xs

(
φ∂tη −

1

2
g
(
(h+ b)2 − b2

)
−
∫ η

−hb

1

2
|∇Φ|2dz

)
dxdt

(R3)
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with velocity potential Φ = Φ(x, z, t), surface potential φ(x, t) =
Φ(x, z = η, t), where η = h− hb is the wave elevation and h = h(x, t)
the total water depth above the bathymetry b = −hb(x) with hb(x) the
rest depth. Time runs from t ∈ [0, T ]; partial derivatives are denoted
by ∂t et cetera, the gradient in the vertical plane as ∇ = (∂x, ∂z)

T and
the acceleration of gravity as g.
The second term in Eq. (R3) is the potential energy and the third
term is the kinetic one. We follow Klopman, et al. (2010) for approx-
imating the velocity potential Φ and thus we get Eq. (3) with the
functions β̆(x), ᾰ(x), and γ̆(x) are given by Eq. (4).

The linear model is obtained by assuming that the the bottom varia-
tions and surface elevations are small, thus the kinetic energy in Eq.
(R3) are obtained by integration in the vertical z-axis from z = −hb
to z = 0 in x ∈ [B,L] as follows

0 = δ

∫ T

0
L[φ,Φ, η, xs]dt

= δ

∫ T

0

∫ L

B

(
φ∂tη −

1

2
g
(
(h+ b)2 − b2

)
−
∫ 0

−hb

1

2
|∇Φ|2dz

)
dxdt

(R4)

By replacing the approximation for the velocity potential and rewrit-
ing φ and η as φ̆ and η̆, we get Eq. (5a) with the functions β̆(x), ᾰ(x),
and γ̆(x) are given by Eq. (6). The linear variables mentioned in the
article refer to the variables in the linear model.

We will revise the last paragraph on page 323 and state as follows:
We a priori divide the domain into two intervals, x ∈ [B,L], where
we model the wave propagation linearly, and x ∈ [xs(t), B], where
we keep the nonlinearity. To be precise, in the simulation area from
x ∈ [B,L], we linearize the equations and thus the wave propaga-
tion in this domain is modeled by linear shallow water shallow water
equations and a linear yet dispersive Boussinesq model. In the model
area x ∈ [xs(t), B], we only consider depth-averaged shallow water
flow. Thus, a non-dispersive and nonlinear shallow water equations
are used to model the wave propagation in this region. Hereafter, we
write φ̆ and η̆ for the linear variables and also the definitions of β̆, ᾰ and
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γ̆ simplify accordingly. Consequently, by applying the corresponding
approximations to variational principle (3), the (approximated) varia-
tional principle becomes . . . .

On page 324 line 9, we will add explanation as follows:
Hence, the coefficients in (4) simplify to their linearized counterparts in
the simulation area where the linear Boussinesq equation holds (while
these coefficients disappear in the model area where the nonlinear
depth-averaged shallow water equations hold).

5. Equations (13a) and (14) are only identical for the coupling between
linear (Boussinesq and shallow water) model with the nonlinear shal-
low water model. In the linear domain (where we have φ̆ and ψ̆), Eqs.
(13a) and (13b) together must be applied to transfer the information
from the nonlinear domain (where we only have φ) to the linear do-
main. While in the nonlinear domain, the coupling condition is only
given by Eq. (14).
In general, the coupling conditions in both domains will not be iden-
tical. For example, the coupling conditions between linear potential
flow and shallow water model are derived by Klaver (2009).

We will revise the paragraph on page 327 line 11-15 as follows:
Note that the coupling conditions (13)-(14) are used to transfer the
information between the two domains. The coupling conditions (13)
gives the information of φ̆ and ψ̆ in simulation area, provided the infor-
mation of φ from model area. Meanwhile, the coupling condition (14)
gives the information of φ in model area, provided the information of
φ̆ and ψ̆ from simulation area.

6. We will revise page 330 line 25 and state as follows:
This article follows the approach of Antuono and Brocchini (2010)
which uses this incoming Riemann variable as boundary data and
solve the dimensionless NSWE by direct use of physical variables in-
stead of using the hodograph transformation introduced by Carrier
and Greenspan (1958). We do, however, clarify the mathematics of
the boundary condition at the shoreline.

7. We will revise page 339 lines 21 and state as follows:
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This superposition is also described in Antuono and Brocchini (2007,
2010) and actually in line with our EBC concept since the linearity
holds in the simulation area.

8. Page 340, lines 2-5 will be deleted. The citation to Antuono and Broc-
chini (2007, 2010) has been done on the previous page (comment 7).

9. Yes, the linearity ratio δ is in agreement with the definition of ε on
page 332, line 20. For consistency, the parameter δ will be replaced
with ε in the whole article.

Page 332, line 20, we will revise as follows:
We expand it in perturbation series around the rest solution (23) with
the assumption of small data at x = B. Using the linearity ratio
ε = A/h0 (A is the wave amplitude), we say a wave is small if ε � 1
and expand as follows:

Equation (58) is used to determine the location of the seaward bound-
ary condition. In the subsequent study cases, we choose the value of
δ � 1 to calculate the value of h0.

10. Page 346, the first paragraph of the conclusions will be revised as fol-
lows:
We have formulated a so-called effective boundary condition (EBC),
which is used as an internal boundary condition within a domain di-
vided into simulation and model areas. The simulation area from the
deep ocean up to a certain depth at a seaward boundary point at
x = B is solved numerically using the linear shallow water equations
(LSWE) and the linear variational Boussinesq model (LVBM). The
nonlinear shallow water equations (NSWE) are solved analytically in
the model area from this boundary point towards the coastline over
a simplified sloping bathymetry. The wave elevation at the seaward
boundary point is decomposed into the incoming signal and the re-
flected one, as described in Antuono and Brocchini (2007,2010). The
advantages of using this EBC are the ability to measure the incom-
ing wave signal at the boundary point x = B for various shapes of
incoming waves, and thereafter to calculate the wave run-up and re-
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flection from these measured data. To solve the tsunami wave run-up
in nearshore area analytically, we employ the asymptotic technique for
solving the NSWE over sloping bathymetry derived by Antuono and
Brocchini (2010), applied to any given wave signal at x = B.

11. Ryrie’s model decouples the longshore problem from the onshore one.
By doing this, we neglect any effect on the onshore motion of in-
teraction between onshore and longshore motion. It is justifiable for
waves incident at a small angle to the beach. Ryrie (1983) numeri-
cally solves the 2D shallow water equations for motion on a sloping
beach generated by a single bore and by a periodic succession of bores,
both incident at small angles. Brocchini and Peregrine (1996) use
Ryrie’s approach to get 2D analytical solution of shallow water equa-
tions for periodic unbroken waves (extending the solution of Carrier
and Greenspan (1958)).
We still think that the extension of the EBC method in 2D can be
done by using Ryrie’s approach. The onshore problem is solved using
the same approach of Antuono and Brocchini (2010), and the solution
of the decoupled longshore problem is left for further study.

Reply for Anonymous Referee #2
Thank your for the comment Anonymous Referee #2. The comments from
Anonymous Referee #1 have been answered in the Interactive Discussion.

Reply for Anonymous Referee #3
Thank you for the review given by Anonymous Referee #3. The comments
from Anonymous Referee #3 are answered as follows.

1. The EBC can capture the resonance effect since the interactions be-
tween the incoming and reflected waves are included in this technique.
We follow the three piece-wise linear profiles of the bathymetry as used
in Ezersky et al. (2013), with the slopes that characterize roughly the
Indian coast bathymetry (Neetu et al., 2011). A periodic wave with
the frequency in the resonant regime is influxed and we get the run-up
amplification due to the resonance. The result is presented in Section
5.
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2. We have added the reference.

3. We have added both the references.

4. (a) We use the experimental data of Synolakis (1987) for a solitary
wave run-up over a canonical bathymetry and show the valida-
tion of our technique in Section 5. We have compared the labora-
tory data with both the coupling of the linear model (LSWE and
LVBM) with the NSWE model and the linear model with EBC
implementation.

(b) The EBC formulation for the case when the shoreline is fronted by
a vertical wall as presented by Kânoğlu and Synolakis (1998) can
be obtained by requiring the normal velocity at the shoreline wall
boundary is zero. The present analytical solution is only valid for
the run-up case, thus another characteristics for the outgoing or
reflected waves must be derived (either for the LSWE or NSWE
model).

(c) The basic idea of the EBC is to couple the linear model (LSWE
and LVBM) in the simulation area with the NSWE in the model
area. However, an extension of this technique to the case when
the NSWE model is used both in the simulation and model area
follows directly from the variational methodology. We do not
consider the case when nonlinear model is used in both area in
this present article.

5. We have removed those type of informations from the main text.

6. We have used larger line width for the plots and put the information
in the figure captions when the lines are on top of another.

The revised version of the article can be seen in the supplement.
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