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In my earlier review I pointed out what I considered to be several flaws in the theory
presented by the author. Several points I raised were relatively minor - a matter of
creating confusion for the reader rather than undermining the central premise of the
work. However, I had pointed out a major theoretical flaw, which is that the interface
conditions are truncated at an amplitude-order, inconsistent with the rest of the weakly
nonlinear analysis. As a result, I believe the physics of the interactions between the
waves and the wave-induced mean flow are not correctly represented. The author is
unequivocal in his stand that the conditions are correct. It might have helped the
author’s argument if he had produced time series that could have been compared with
simulations that have been published elsewhere. But this he has not done. Now he
does show snapshots of the waves in simulations with n1/k = 0.4 with uniform and
step-stratification. But he does not do so in the case n1/k = 1/

√
2 (the control case)

and n1/k = 1.
The author argues that his simulations are correct. But I argue that the equations

he is solving are wrong to begin with.
I have suggested the author examine if transmission and reflection is a function of

amplitude, as has been shown in earlier work by fully nonlinear simulations. The author
has refused to do so stating the “nonlinear reflection does not occur at this order”.
This is nonsense. In a weakly nonlinear theory, weakly nonlinear effects can influence
reflection. Even fully nonlinear simulations can capture linear evolution (if run with
very small amplitude waves) and weakly nonlinear evolution (if run with moderately
large amplitude waves). If the author’s weakly nonlinear theory cannot capture aspects
of what fully nonlinear simulations show when run with moderately large amplitude
waves, then it is not a predictive theory.

Rather than re-argue my theoretical concerns, I have simply run a series of fully
nonlinear numerical simulations using parameters provided by the author in his different
scenarios. The simulations have convincingly shown me that the results of the author
in the weakly nonlinear parameter regime he has examined are qualitatively incorrect.
This I demonstrate below.

In trying to reproducing the author’s results I found a typo in boundary condition
(56) that launches the wave. The cosine part should have cos(2πǫcgτ) with τ ranging
from 0 to 1/(ǫcg). (Note that I put the 2π in the cosine rather than in range of τ so
that the wavepacket width is 1/ǫ = 40 as appears to be the case, for example, in Figure
3.)

The results of simulations run with the same parameters as those of McHugh in
his Figures 3 and 4 are shown in Figure 1 below. The structure and amplitude of the
induced mean flow at N1τ = −75 is the same as that of the author at this time (Fig 1a
and d here, and Fig 3a and 4a, right panels in McHugh).

Clearly, even the author’s control case of a wavepacket propagating in uniformly
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stratified fluid is incorrect. The simulations presented in this review clearly show that
the wavepacket does not simply translate upward but its structure also changes. This is
revealed by profiles of the wave-induced mean flow ū, which is related to the amplitude
envelope squared (Figs 1b,c). The result is not surprising. It has previously been shown
that weakly nonlinear effects modulate the envelope of a wavepacket with m(= |n1|) =
−0.7. For example, see the time series of ū in Fig 3e (fully nonlinear simulations) and
Fig 4b (weakly nonlinear equations) of Sutherland (J. Fluid Mech., v 569, pp 249-258
(2006)). If the author had compared his control simulation results with these time
series, as I have suggested in the past, he should have suspected an the error and run
his model with the parameters of that paper ensuring he could reproduce those results
before confidently claiming his model was correct.

Proceeding to simulate the circumstance of the wave encountering enhanced strat-
ification with N2 = 2N1 above kz = 0, the discrepancies persist. The structure and
amplitude of the transmitted waves in Figure 1f, is significantly different from the broad
disturbance above z = 0 in McHugh’s figure 4c, (right panel). On top of the inability of
McHugh’s model to capture the weakly nonlinear evolution in uniformly stratified fluid,
I fully believe the discrepancy is due to the author incorrectly employing interface con-
ditions at z = 0 that neglect weakly nonlinear effects. This I have claimed in previous
reviews, but the author has been insistent that his equations are correct. Outside of the
direct comparison of results, it appears to me that the vertical integral of ū in figure
4c (right panel) of McHugh does not equal the vertical integral of ū in figure 4a (right
panel). As is well established in the literature, momentum conservation requires the
vertical integral of ū to be constant over time. If the author does not have the correct
interface conditions, then momentum conservation is violated, a fundamental flaw.

I have also run simulations with n1 = 0.4k and n1 = k. These likewise show sig-
nificant discrepancies for waves incident upon a layer of enhanced stratification with
N2 = 2N1. In summary, the simulations I have run with the parameters provided
by the author differ qualitatively and quantitatively from those of the author. I can
be confident in the validity of my simulations, because they produced qualitatively and
quantitatively similar results computed separately by solving the nonlinear Schroedinger
equation that describes the weakly nonlinear evolution of internal wave packets. And
they conserve momentum.

I must emphasize that at its core I do like the idea of the author, particularly with
regards to its application to enhanced winds at the tropopause. But this is a theoretical
paper and so it is paramount that the theory is correct in its fundamentals. It is not,
and so I do not find the paper acceptable for publication.
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ū/(N1U/k)

c) N1τ = 75

0 0.5 1 1.5
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Figure 1: Profiles of the induced mean flow ū for a wavepacket in uniformly stratified
fluid computed at times a) N1τ = −75, b) 0 and c) = 75 and for a wavepacket in
stepwise-constant stratification at times d) N1τ = −75, e) 0 and f) τ = 75. In all
cases n1 = k/

√
2, α = 0.1 and ǫ = 0.025. The stepwise-constant stratification has

N2 = 2N1 with N = N2 for kz > 0. By construction, plots a,b,c) should correspond to
the rightmost panels of Figs 3a,b,c) and plots d,e,f) should correspond to the rightmost
panels of Figs 4a,b,c) in the manuscript of McHugh. That they do not, demonstrates
the equations being solved by McHugh do not correctly capture the weakly nonlinear
evolution of the wavepackets.
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