
Response to the editor:

Dear Roger,
I have now completed the revisions to my paper. I have changed the

discussion of the derivation, as I outline below, and clarified my arguments
in favor of the linear interfacial conditions. However, plots of the integral of
ū show that as the packet transits the interface, this integral is not perfectly
constant. The error here is due to the lack of nonlinear effects at the interface,
as suggested by referee #2. I spent a significant effort attempting to include
the nonlinear interfacial effects, but this is extremely complicated and will
have to wait. So I have retained the linear version of the interfacial equations
and argue that they are approximate, as you suggested.

Also, I discovered that the plots of mean flow in my previous submission
in the upper layer had the wrong scale and the mean flow appeared to be
weaker in the upper layer than they should have. The results were correct
but the graphics were wrong. I have now corrected this problem.

Detailed responses to your remarks are below:

1. ...has raised serious concerns over the scaling of the amplitude equa-
tions...

Due to the continued criticism of the scaling that I was using, I have
now changed this aspect of the paper and use the usual NLS scaling that
you mention. The final NLS equations are the same except without the
confusion of mixing of orders. Really only the derivation is different
and admittedly better than my previous submission. I am using an
approach similar to that of Schrira (1981), which includes all slow scales
at first. This approach is in fact helpful when treating the interfacial
conditions.

2. ...the structure suggests that the choice α ≈ ε should be made, and you
have put α/ε = 4. These small parameters can be chosen independently
as you have done, but the balance α ≈ ε must hold.

I agree that dispersion and nonlinearity must be approximately in bal-
ance. But the actual numerical value of ε that results in this balance is
not well-defined. The value for ε, which measures how slowly the wave
amplitude is changing, is usually the inverse of the length of the packet,
and it is the ’length’ that requires definition. There are several obvious
choices. My choice is to use the overall length, which with my choice of
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packet shape (raised cosine) is well-defined. Another choice might be
the Full Width at Half Maximum (FWHM). Sutherland (2006) used
a Gaussian packet shape, e−z

2/2σ2
and defined the packet length to

be 1/σ, which seems appropriate but in fact is a much smaller length
than my choice. If the two packet shapes have the same FWHM, then
my value for ε is 4

√
2 ln2 times Sutherland’s value. This means that

with my definition of ε, α/ε ≈ 4. The behavior of the wave packet in
the simulations agree with this choice. Furthermore, with n1/k = 0.4
and α = ε = 0.1, the simulations show that dispersion dominates and
nonlinearity is unimportant.

I was tempted to change the definition so that the values of ε and α
are equal and nonlinearity and dispersion are in balance, however there
is no obvious choice with the raised cosine, so I have maintained my
definition and have added a discussion of the numerical value of ε.

3. ...Indeed there is also the claim that...your uniformly stratified case is
incorrect.

The previous work by Sutherland (2006) had an extra term, that be-
ing the third derivative, Izzz, as you mention. I added this term and
repeated some calculations to match the results shown by the referee.
This required substantial work as the third derivative term results in a
numerical method that is more unstable, however eventually I suc-
ceeded in getting it to work. As expected, the results in a single
layer match what the referee shows in his results for the case where
n1/k = 1/

√
2. I show a plot of this result in my response to the referee.

However, since the nonlinear terms appear at O(α3), then this third
order term does not appear until the next order and therefore need not
be included. When written in slow variables, this third-order term has
ε for a coefficient. However when reverted back to original variables
the ε disappears, as for all of the linear terms. But this does not mean
they are all of the same order. I have not included the third-order term
in my results and do not feel it should be included for this scaling.

The issue is really only important for the case where n1/k = 1/
√

2,
which is dispersion-free without the third derivative term. I have
greatly reduced the discussion of this dispersion-free case. You sug-
gested that I omit it entirely, but I use this case to make several points,
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and so I retain some of the discussion but I have added a comment on
the dispersion term used by Sutherland.

With regard to two-layer simulations of the referee, I would point out
that importantly, he is not allowing slip at the interface, which must
occur in inviscid flow. He would likely argue that he has artificial
damping that acts like viscosity and eliminates the slip. However he
then has a thin boundary layer that is governed completely by his
artificial damping! This is a critical issue with this problem. If the
nonlinear theory that allows slip does not match the DNS that do not
allow slip, then the least confidence has to be directed at the DNS. I do
not agree with the referee that his simulations are the ’right’ answer.

4. Turning to the interface issue...it is not clear to me that (14) written
is correct...

I have expanded my discussion of the interfacial conditions extensively.
Indeed there are interactions with second-harmonics that appear, as
you suggested. However all of these nonlinear terms are still at O(α2),
raising the question of their importance. When the Schrodinger equa-
tion is written in terms of slow variables, and ε = α, then there are no
small parameters present, and all terms are in balance, as they must
be. There are an infinite series of other terms that are traditionally ne-
glected due to the presence of a small parameter taken to some power
(including the Izzz term of Sutherland (2006)). But the interfacial con-
ditions written in terms of slow variables do have the small parameters
present, in particular the α2 for all nonlinear terms, and by the same
argument used for the Schrodinger equations, these terms can be safely
neglected.

On the other hand, the vertical integral of ū is not perfectly constant,
suggesting that nonlinear terms be retained. When the Schrodinger
equation and the interfacial conditions are written in terms of original
variables x, z, t rather than slow variables, then the nonlinear terms
appear with the coefficient α2 in both Schrodinger equation and inter-
facial conditions, an appealing consistency. I attempted to include the
nonlinear terms in the interfacial conditions, but they turn out to be
extremely complicated, and so this will have to wait for a sequel. In
the present manuscript I clarify these issues and then proceed with the
linear interfacial conditions, arguing that these are a reasonable ap-
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proximation. In the end, as I mention above, the plots of the integral
of ū show that there is an error with these linear interfacial conditions.

5. ...you need to check that the vertical integral of ū is indeed preserved
across the interface...

I have done this and included a plot in the manuscript. Overall this
plot shows that ū is approximately constant, as discussed above.

I feel that I have successfully addressed the concerns of all referees, and
this paper is ready for publication.
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Response to referee #1:

Thank you once again for your comments. My manuscript has now been
significantly improved as a result of your comments, the comments of the
other referees and the editor, and also my own additional work.

As a result of a referee comment, I discovered that the plots of mean
flow in the upper layer had the wrong scale in my previous submission and
appeared to be weaker than they should have. The results were correct but
the graphics were wrong. I have now corrected this problem.

Detailed responses to you specific questions and comments are provided
below. You will find that I agree now with some of your comments, but
disagree with others.

1. . . . the interface conditions are truncated at an amplitude-order, incon-
sistent with the rest of the weakly nonlinear analysis.

As a result of your concerns and the concerns of others, I have changed
the discussion of the derivation of the equations. My new derivation
is more like that of Shrira where all slow scales are retained up to the
order where nonlinear terms first appear.

As I now show, when the Schrodinger equations are written in terms of
the slow variables, if α = ε then there are no small parameters present
and all terms are in balance. The corresponding interfacial conditions
show that the nonlinear terms written in terms of the slow variables
have α2 as a coefficient. This suggests that the nonlinear terms in the
interfacial conditions do not need to be included. It is this argument
that I have tried to make previously. The decision to delete a term is
generally made when equations are written in slow variables: after all,
there are an infinite set of linear dispersion terms that seem to be the
same order when written in original variables, but clearly should not
be included.

On the other hand, plots of the integral of ū show that this quantity
is not perfectly constant, as it should be to conserve momentum. The
error, while relatively small, is indeed due to the nonlinear contributions
in the interfacial conditions. It is this fact that has convinced me that
the nonlinear terms should in some way be retained, even though the
weakly nonlinear theory suggests otherwise. I now agree with you on
this particular issue.
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However, as I now discuss, these nonlinear terms have great complexity
and it was not possible to include them in a timely manner for this
paper. Hence I have not included them and argue that this is at least a
reasonable approximation, based on the above. Indeed, the same plots
of ū that indicate that these terms should be retained also show that
their inclusion is a minor adjustment in the reflection and transmission
coefficient. Hence my overall results will remain intact.

2. . . . I have simply run a series of fully nonlinear numerical simulations
using parameters provided by the author in his different scenarios.

Your single-layer simulations have n1/k = 1/
√

2. This is a special
case where the primary dispersion term has a coefficient of zero, as
I had discussed previously. But a fully nonlinear simulation has all
dispersions contributions, not just the Izz term, which accounts for the
difference between your single layer results and my previous results.

Sutherland (2006) included a third derivative term Izzz, which strictly
speaking is higher order for this problem, as is evident when the equa-
tions are written in terms of slow variables. However for this special
case where n1/k = 1/

√
2, this extra term seems to provide approx-

imately the correct dispersion. I repeated this case with this third
derivative term included, and results are shown in the figure. These
results seem to match your figure quite well, and this confirms that the
difference between the two approaches for this special case is due to
this third derivative term.

For other parameter values the third-derivative term appears to be
quite unimportant, although causes significant numerical difficulties.
Hence this third derivative term is not included here. Furthermore, I
have deleted my discussion of the special case n1/k = 1/

√
2. I really

only used this case to show how well the numerical methods work.

You also show two-layer simulations of this same special case, and men-
tion results for n1/k = 0.4. However, as shown previously in Grimshaw
and McHugh (2013) and here, the mean flow is discontinuous at the
interface. Thus any full simulation of a two-layer inviscid flow must
allow slip at the interface. I attribute any difference in the results
with n1/k = 0.4 to the fact that you are not allowing such slip. This
is a critical issue and a strength of my results, as slip is allowed. A
direct numerical simulation that allows slip is a challenging endeavor.
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An alternative simulation is viscous, which has a very thin boundary
layer at the interface, introducing a different set of challenges. I am
presently working on both types of simulations, but such results will
not be available in time for a comparison any time soon.

3. . . . As is well established in the literature, momentum conservation re-
quires the vertical integral of ū to be contant over time . . .

I agree as mentioned above and I have included a plot in the manuscript.
Overall this plot shows that ū is approximately constant, as discussed
above.
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Figure 1: Vertical profiles of the wave magnitudes A (left panel) and mean
flow (right panel) at three times in one layers. The parameter values are
n1/k = 1/

√
2, N2/N1 = 1, ε = 0.025, and α = 0.1. The third order derivative

is included.
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Response to referee #2:

Thank you for your comments. My manuscript has now been significantly
improved as a result of your comments, the comments of the other referees
and the editor, and also my own additional work.

As a result of a referee comment, I discovered that the plots of mean
flow in the upper layer had the wrong scale in my previous submission and
appeared to be weaker than they should have. The results were correct but
the graphics were wrong. I have now corrected this problem.

Detailed responses to you specific questions and comments are provided
below. In most cases I have altered the manuscript as a result of your re-
marks:

1. . . . a major concern would be whether or not the coupled amplitude equa-
tions (and the associated numerical algorithms) actually capture the
dynamics of the full nonlinear system, in an appropriate weakly non-
linear regime. If an asymptotic analysis is carried out consistently (all
terms and boundary conditions treated to the same order) then I gener-
ally expect that the reduced system is physically sound, meaning that (i)
it will give the correct behavior in a certain weakly nonlinear regime,
(ii) appropriate conservation laws (e.g., energy, momentum) won’t be
violated. Here, there is a mixing of orders . . .

As a result of your concerns and the concerns of others, I have changed
the discussion of the derivation of the equations. My new derivation
is more like that of Shrira (1981) where all slow scales are retained up
to the order where nonlinear terms first appear. The final nonlinear
Schrodinger equations are basically the same as before, except now
there is no confusion over the mixing of orders. In the end I write them
in terms of original variables instead of slow variables, as do previous
authors. I have not shown all of the details, but the essentials are here
and show that my system of equations is sound in a rigourous manner.
As such my approach corresponds to your item (i) above.

My previous derivation was an attempt to get these same results with-
out introducing for the intermediate slow scales. However the new
derivation is admittedly clearer and has helped me explain the final
form of the interfacial conditions.

2. I am guessing that a comparison with full nonlinear solutions is out of
the scope of this study...
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The mean flow in the inviscid case is discontinuous at the interface,
hence a full numerical solution would have to allow slip. This makes
such a simulation very challenging and, yes, outside the present scope.
An alternative simulation would be to include viscosity, but then there
would exist a very thin viscous layer that would require resolution and
would add different features to the problem. This would be an inter-
esting result, but not quite a direct confirmation of the inviscid results
given here, which is what I think you were suggesting.

3. . . . perhaps the author can reassure me with something about conserva-
tion of energy. What I have in mind is simply calculations of domain-
integrated energy . . .

Other referees also have suggested that I show such results, so I have
added time histories of ū. In the present theory the integral of ū is
proportional to the integral of the sum of the amplitudes squared, e. g.
the kinetic energy. Using a periodic box that extends vertically outside
the limits of the wave packet, it can be shown that the vertical integral
of ū must be constant with time. However my results show that there
is an error when the packet transits the interface. This means that
momentum is not perfectly conserved. I now discuss this in several
locations. Without the interface, this integral is conserved quite accu-
rately. Hence the error must be caused by the interfacial conditions,
as suggested by another referee. These linear interfacial conditions are
creating transmitted and reflected waves that are somewhat too large
or small, depending on the wave parameters. The correction for this
issue is to include nonlinear terms in the interfacial conditions, which
has proven to be very complicated. Since the error is relatively small, I
have retained only the linear interfacial conditions. Note that the over-
all dynamics will be the same with more accurate interfacial conditions,
and my results are still approximately correct.

In response to your detailed comments,

1. Line 42: you say that Grimshaw and McHugh (2013) treat ’unsteady
and steady flow’, and then a few lines later (line 47) say that you
now include the ’temporal evolution’. What is the distinction between
unsteady flow and temporal evolution?
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The unsteady results in Grimshaw and McHugh (2013) are expressions
for the mean flow in terms of the wave packet shape, in particular
at large times after the waves have interacted with the interface. That
paper then uses those unsteady results to evaluate the steady case. The
evolution of a particular wave packet was not considered in Grimshaw
and McHugh (2013). I have reworded this section to avoid confusion.

2. Introduction: wouldn’t the paragraph starting at line 85 be better imme-
diately after that ending at line 75, since they both talk about stability
issues?

I have made this change.

3. At what point is the buoyancy frequency taken to be a piecewise con-
stant? On line 152 there is reference to buoyancy frequencies N1 and
N2 (rather implying two constants, since otherwise one would just have
N(z)), but on the next page there are terms in dN2/dz.

The equations in section 2 apply to any vertical profile N(z). I have
changed the wording here by moving the mention of N1 and N2 to the
end of this section and adding a comment about the derivatives of N2.

4. I believe there to be a sign error in (13) - it should be −ηx? - but (14)
is nevertheless correct.

I have corrected this typo.

5. Can you please include a reference (if possible) around line 213, to
justify the stated amplitude of the higher harmonics that arise due to
modulation.

I have rewrittent this paragraph and added a reference to Thorpe (1968)
and Grimshaw (1976).

6. Line 244: in my original review, I asked ’is there a reference for the re-
flection and transmission coefficients’? The author said that he ’added
several references here’, but none are evident near line 244. Since these
coefficients have surely been given elsewhere, it would be nice to show
awareness of this and confirm consistency with previous results! I guess
this counts as good scholarship.

I apologise for not including that reference originally. In fact I have not
been able to find explicit reference to these formulas in the context of
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internal waves. However exactly these same formulas appear in optics,
going back to Fresnel in 1823. I now make reference to a book by Born
that discusses this optics example.

7. I was confused by some of the terminology relating to the asymptotics:
(a) on line 213 you say that the O(εα2) (nonlinear modulational) terms
are small and need not be included. Do you mean that these terms are
of O(εα2) relative to the leading order terms (which themselves are
of O(α)? I would like to see this clarified because there are terms of
absolute magnitude O(εα2) (or relative magnitude O(α2)) in (31), (32),
and (34).

The higher harmonics will appear at O(εα2) relative to the the leading
order O(α) terms. But when such higher harmonics are combined with
first-order primary harmonic to contribute to the evolution equation for
the primary harmonic, that term will be O(εα3), and hence negligible.
I have reworded this section for clarification.

8. I was confused by some of the terminology relating to the asymptotics:
(b) The scaling of the mean flow is not done consistently. In (26) ū
has no scaling, but on line 260 we can infer that it scales like α2. This
factore of α2 has then been magically divided out in (27), (28), (29),
(30), (31), etc.

This was an oversight. I have now included α2 in (26) for the mean
quantities, and further discussed the scaling.

9. Line 299: of course, there are terms O(ε4) in (35), so not all term
s higher than quadratic in small parameters have been dropped-but we
know what you mean.

I have adjusted this equation for consistency.

10. Equations (46) and (48): should (uη)x and (uη)ξ be uηx and uηξ? This
has corrected itself by (50).

Equations (46) and (48) are both correct as written. If I use uηx on
the left of (46) say, then I would need to add wzη on the right. I have
used continuity to combine these two terms.

11. There were several issues with dimensions. (a) In (19) and (20), I has
dimensions of speed, assuming that α is dimensionless. However, I is
dimensionless in (56).
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Equation (56) has been corrected to kI/N1, instead of I.

12. There were several issues with dimensions. (b) In line 443, a factor
N2

1/cpσ
2 is introduced, which has dimensions of 1 over speed. However,

in line 446 this factor is written as U (rather misleading for a quantity
with units of 1 over speed!), and then on line (57) U appears as a
dimensionless quantity! Indeed, I find that

N2
1

cpσ2
=

(k2 + n2
1)

3/2

N1k2
,

which is not even close to the expression you give: U = 2(k2 + n2
1)

3/2/k3.

The wording in my previous submission was ’Define U to be this factor,
which after rescaling becomes,’. So I rescaled N2

1/cpσ
2 by multiplying

by k/N1, which gives

U =
k

N1

2N2
1

cpσ2
=

2(k2 + n2
1)

3/2

k3
,

exactly the factor I had previously. I have reworded this section to
clarify this. I now define U in it’s dimensionless form so there are no
units.

13. Section 6 is rather imtimidating at four pages with no subsections. To
aid the reader demarcate the various ideas, I would suggest splitting into
section 6.1 (set-up, lines 393-464), section 6.2 (properties of equations,
lines 465-511), section 6.3 (non-dispersive evolution, lines 512-611),
section 6.4 (dispersive evolutions, lines 612-711), section 6.5 (mean
flow comparisons, lines 712-744), and section 6.6 (rigid lid cases, lines
745-769), or similar.

This suggestion is helpful. I have included these subheadings in the
manner that you describe. Note that the discussion on evolution with-
out dispersion is now reduced as a result of the comments of other
referees.

14. Figure 4 (etc.): I thought that the labelling could have been better. In
particular, what is shown is the wave magnitude (as stated in the cap-
tion), but the axes are labelled k|I|/N1. This is fine for figure 3, but
not for figures 4 and 5 (for example) where |R| and |T | are also shown.
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The explanation of the graphical styles (lines 539-542) would also be
better in the caption to figure 4, with appropriate comment (i.e., same
convection as figure 4) in the captions to figures 5,9,10, etc.

I now show A as a placeholder for |I|, |R|, and |T | in the labels where
appropriate, and I have expanded the captions as you suggest.

15. Line 603: you say that the disturbance velocity ’appeas to be discontin-
uous’ in figure 5. I wouldn’t be able to make such a judgement by eye
from a plot of |I|, |T |, and |R|.
I have reworded this sentence.

16. Line 786: the interface is a region of strong shear even without viscos-
ity!

Yes, I agree. But with viscosity the slip at the interface would be
converted into a region with even stronger shear. Again I have reworded
here.

17. Conclusions. It is nice to see a better discussion of these new results
with those of McHugh (2008) and McHugh et al (2008a). For the for-
mer, what was the value (or values) of n1/k? For the latter, perhaps
the observed waves were strongly nonlinear, and thus in a completely
different regime to this weakly nonlinear study?

For McHugh (2008), n1/k = 0.37, close to the case here with n1/k =
0.4. For McHugh et al (2008a), yes, those waves were likely very large
amplitude and hence strongly nonlinear.
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