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Abstract. Weakly nonlinear internal gravity waves are
treated in a two-layer fluid with a set of nonlinear
Schrodinger equations. The layers have a sharp interface with
a jump in buoyancy frequency approximately modelling the
tropopause. The waves are periodic in the horizontal but5

modulated in the vertical and Boussinesq flow is assumed.
The equation governing the incident wave packet is directly
coupled to the equation for the reflected packet, while the
equation governing transmitted waves is only coupled at the
interface. Solutions are obtained numerically. The results in-10

dicate that the waves create a mean flow that is strong near
and underneath the interface, and discontinuous at the inter-
face. Furthermore, the mean flow has an oscillatory compo-
nent that can contaminate the wave envelope, and has a ver-
tical wavelength that decreases as the wave packet interacts15

with the interface.

1 Introduction

Earth’s tropopause often has a vertical structure with a very
sudden change in the lapse rate with increasing altitude, and20

a corresponding sudden increase in the buoyancy frequency
N . This sudden increase in N can restrict upwardly prop-
agating internal waves, as has been known for some time
(Scorer, 1949). Observations of flow in the vicinity of the
tropopause has also shown unusual dynamic behavior includ-25

ing high turbulence levels (Partl, 1962; Worthington, 1998;
Wolff and Sharman, 2008; McHugh et al., 2008b) and large
wave amplitudes (McHugh et al., 2008a; Smith et al., 2008).
Turbulence and waves at these altitudes are important aspects
of weather and climate, and serious hazards to aircraft.30

McHugh (2008, 2009) considered horizontally periodic
internal waves interacting with an idealized model of the
tropopause. The waves in McHugh (2009) were uniform

while the waves in McHugh (2008) were confined to a ver-
tical packet and treated with numerical simulations. The re-35

sults indicate that while nonlinear effects are stronger near
the interface even with uniform waves, a modulated ampli-
tude results in a localized jet-like mean flow near the inter-
face that can be strong enough to form a critical layer, with
important consequences for later waves.40

Recently Grimshaw and McHugh (2013) treated weakly
nonlinear two-layer horizontally periodic waves for both un-
steady and steady flow. They show expressions for the wave-
induced mean flow in both layers and show that this mean
flow will be discontinuous at the interface, even when the45

waves have evolved into a steady flow. The same two-layer
flow is treated here, now including the temporal evolution.

A related configuration is a layer with constant N (no in-
terface), treated theoretically by Grimshaw (1975), Shrira
(1981), Voronovich (1982), Sutherland (2006) and Tabaei50

and Akylas (2007). Grimshaw (1975) considered waves with
a background shear flow using the wave action equation.
Shrira (1981) treated weakly nonlinear waves in three dimen-
sions assuming the modulation is the same in all directions.
He derives the nonlinear Schrodinger equation that governs55

the wave packet evolution. Voronovich (1982) also treats
weakly nonlinear waves but restricts attention to the special
case with the modulation along a fixed direction. The weakly
nonlinear waves in Sutherland (2006) are horizontally pe-
riodic with the modulation only in the vertical. Tabaei and60

Akylas (2007) treat weakly nonlinear and finite amplitude
theory with several different configurations for the modula-
tion. Associated numerical simulations with constantN were
performed by Sutherland (2001) in two dimensions.

Packets of internal waves that propagate at a steep angle to65

the horizontal will experience a modulational instability, as
discussed by Sutherland (2001). Wave packets experiencing
this instability will focus wave energy. Waves propagating at
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a shallow angle will defocus. For the waves treated here, this
modulational instability may be important, depending on the70

wavenumbers and on the distance from the wave source to
the interface. However for intermediate propagation angles,
the modulational instability is too slow, and the waves in-
teract with the interface before experiencing any significant
effects.75

The incident waves treated here are partially reflected at
the interface, resulting in incident, reflected, and transmit-
ted wave packets that are governed by coupled nonlinear
Schrodinger (NLS) equations. Similar coupled NLS equa-
tions have been treated previously by Knobloch and Gibbon80

(1991) and Griffiths et al. (2006) starting with model equa-
tions such as the Klein-Gordon equation and groups of arbi-
trarily defined incident waves. The amplitude equations are
similar to the equations given below.

The stability of plane monochromatic internal waves prop-85

agating at an angle to the horizontal were treated by Shrira
(1981) and Tabaei and Akylas (2007), who showed that non-
linearity can lead to instability. Indeed Tabaei and Akylas
(2007) show that the incident waves treated here are unstable
for shallow angles. However the growth rate of the instability90

is second-order in the nonlinearity parameter, and hence the
waves treated here will interact with the interface before this
instability has time to grow significantly.

The reflection of nonlinear internal waves by a sloping
bottom has been treated by several authors, for example95

Thorpe (1987) treats uniform wave trains and Tabaei et al.
(2005) treat wave beams. The results show that the first
few higher harmonics reflect at different angles than the pri-
mary harmonic while higher harmonics are evanescent, sim-
ilar to waves reflecting from the interface treated in McHugh100

(2009). The mean flow in Thorpe (1987) has an oscillatory
component parallel to the slope with wavenumber equal to
the difference between incident and reflected wavenumbers,
and this is also found here. The mean flow in Tabaei et al.
(2005) is more complex as they considered wave beams, and105

they do not report an oscillatory component, however it is
likely present in their calculations. Thorpe (1987) and Tabaei
et al. (2005) do not include a modulation in the wave ampli-
tude and their results do not have the associated mean flow.
The mean flow that is present in Tabaei et al. (2005) is con-110

fined to the region where incident and reflected waves over-
lap. This same feature is true here only for the oscillatory
part of the mean flow. Results for a rigid horizontal lid are
given here at the end for comparison and show that the inter-
face and the rigid lid have similar behavior. The rigid bound-115

ary creates a stronger mean flow due to the stronger reflected
waves.

The results given below show that the incident and re-
flected waves combine for a short period to create a strong
localized mean flow under the interface that is discontinu-120

ous at the interface, as in Grimshaw and McHugh (2013).
Furthermore there is an oscillatory component of the mean
flow with a vertical wavenumber that increases as the wave

packet interacts with the interface. Section 2 provides the ba-
sic equations and interfacial boundary conditions. Section 3125

chooses the wave modes to be included. Section 4 discusses
the important mean flow, and then section 5 determines the
amplitude equations. Results are discussed in section 6, fol-
lowed by conclusions.

2 Basic equations130

The flow is treated as incompressible and inviscid, and atten-
tion is restricted to two-dimensions. The stratification is due
to the presence of a non-diffusing quantity, and the flow is
assumed to be Boussinesq. The flow is then governed by

Du

Dt
=− 1

ρ0

∂p

∂x
, (1)135

Dw

Dt
=− 1

ρ0

∂p

∂z
− b, (2)

∂u

∂x
+
∂w

∂z
= 0, (3)

140

Db

Dt
−N2w = 0, (4)

where
D

Dt
=
∂

∂t
+u

∂

∂x
+w

∂

∂z
,

the velocity is (u,w), the dynamic pressure is p, ρ0 is an
average (constant) density, b is the buoyancy, defined by145

b=
g(ρ− ρ̃)

ρ0
, (5)

ρ̃ is the background density, and N is the buoyancy fre-
quency, defined by

N2 =−gρ̃z
ρ0

. (6)

The base state must satisfy the equation of static equilibrium,150

∂p̃

∂z
=−ρ̃g, (7)

where p̃ is the background pressure. The lower and upper
layers have buoyancy frequency N1 and N2, respectively.

The kinematic condition on the interface between the lay-
ers is155

ηt +uηx = w, (8)

which holds on the interface z = η, where η is the vertical
displacement of the interface. Expand in a Taylor series in
the same manner usually used for free surface flow:

160

ηt +

[
u+uzη+

1

2
uzzη

2 + · · ·
]
ηx

=

[
w+wzη+

1

2
wzzη

2 + · · ·
]
, (9)
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now on z = 0.
The dynamic condition is continuity of total pressure pT165

across the interface. The total pressure is segmented into two
parts:

pT = p̃+ p. (10)

As the pressure difference along the interface is zero, the di-
rectional derivative of the pressure difference along this in-170

terface is also zero. This directional derivative may be written
as

∂

∂x
+ ηx

∂

∂z
, (11)

which results in[( ∂
∂x

+ ηx
∂

∂z

)
p+ ηxp̃z

]+
−

= 0 (12)175

on z = η. The equations of motion may now be used to elim-
inate the derivatives of the dynamic pressure, giving[(
ut + (uu)x + (wu)z

)
+ ηx

(
wt + (uw)x + (ww)z + b

)
+ ηx

1

ρ0
p̃z

]+
−

= 0 (13)180

on z = η. A Taylor series is used as before, leading to

(
1 + η

∂

∂z
+ · · ·

)[(
ut + (uu)x + (wu)z

)
+ ηx

(
wt + (uw)x + (ww)z + b

)]+
−

185

− ηx
[
ηN2 +

η2

2!

d

dz

(
N2
)

+
η3

3!

d2

dz2

(
N2
)

+ · · ·
]+
−

= 0

(14)

on z = 0.

3 A vertically modulated wavetrain

The waves are horizontally periodic but modulated vertically.190

Define the following variables:

ξ = x− cpt,
ζ = εz, (15)
τ = εt,

195

where ε is small and measures the vertical packet length, and
cp is the horizontal phase speed.

The linear solution for a wave with upward group velocity
is

w = αI(τ,ζ)ei(kξ−n1z) + cc, (16)200

where k, n1 are the horizontal and vertical wavenumbers, re-
spectively. All wavenumbers are assumed positive. The dis-
persion relation is

c2p =
N2

1

k2 +n21
. (17)

Here α is small and measures the strength of the vertical ve-205

locity, and cc means complex conjugate.
When an interface is included, the solution in the lower

layer requires the addition of reflected waves:

αR(τ,ζ)ei(kξ+n1z) + cc. (18)

Higher harmonics are expected in a Boussinesq fluid with210

constant N (no interface) only as a result of the modula-
tion, and these harmonics can be made weaker by choosing
a slower modulation. The higher harmonics are©(εα2) and
need not be included.

Further higher harmonics are generated by nonlinear ef-215

fects at the interface, as shown previously by McHugh
(2009). The modulation of the wavetrain does not exert the
dominant influence on these interfacial harmonics, and in
fact they occur even when the wave amplitude is constant
(no wave packet). Hence these interfacial harmonics cannot220

be weakened by a slow modulation of the wave packet. How-
ever the vertical wavenumber of the interfacial harmonics is
not commensurate with the primary harmonic. Hence these
interface harmonics do not contribute to the evolution of the
primary waves and also need not be included.225

Combining all leading order contributions results in

w = αIei(kξ−n1z) +αRei(kξ+n1z) + cc, z < 0. (19)

The corresponding solution for the upper layer is

w = αT (τ,ζ)ei(kξ−n2z) + cc, z > 0. (20)

The vertical wavenumber in the upper layer is n2, determined230

to first-order by choosing the same k and frequency σ for the
two layers:

σ =
kN1√
k2 +n21

=
kN2√
k2 +n22

. (21)

The linear interfacial conditions result in a relationship be-
tween the amplitudes of the incident, reflected, and transmit-235

ted wave packets at the interface:

R=RI, (22)

T = T I, (23)

on z = 0, where240

R=
n1−n2
n1 +n2

, (24)

T =
2n1

n1 +n2
, (25)

are the reflection and transmission coefficients, respectively.
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4 The mean flow245

Separate all dynamic fields into a ξ-averaged mean and a
fluctuating part:

(u,w,p,b) = (ū+αû, w̄+αŵ, p̄+αp̂, b̄+αb̂), (26)

where the bar indicates mean and the hat indicates the fluctu-
ating part, composed of all wave components. The ξ-average250

will also be indicated with < ·>. Only the horizontal mean
flow ū is needed for the final amplitude equations.

A discussion of the general equations governing the wave-
induced mean flow is given by Andrews and McIntyre
(1978a,b) and Grimshaw (1979). In some cases an explicit255

expression for the mean may be found, as in Dosser and
Sutherland (2011). Following Sutherland (2006), Grimshaw
and McHugh (2013) found that for the present configuration
and accurate to second-order in α,

ū=
N2

cp
< χ2 >,260

w̄ = 0,

where χ is the vertical displacement. While the averaging in
Grimshaw and McHugh (2013) is a x-average and therefore
somewhat different, it is readily shown that the above expres-265

sion is valid here with the ξ-average. The equation governing
the evolution of χ is

Dχ

Dt
= w,

however the linear version −cpχξ ≈ w is adequate, and al-
lows evaluation of ū using (19) and (20). Finally, the mean270

flow in the lower layer is

ū= ūm +
(
ūie

i2n1z + ū∗i e
−i2n1z

)
, z < 0, (27)

where

ūm =
2

cp

N2
1

σ2

(
II∗+RR∗

)
, (28)

275

ūi =
2

cp

N2
1

σ2
I∗R. (29)

There are two parts to this mean flow. One part is ūm, which
is identical to the mean flow that would be obtained if the
incident and reflected wave packets were acting individually,
and the mean flows are merely added. The second part is the280

term containing ūi, which is caused by the interference be-
tween the incident and reflected waves.

In the upper layer,

ū=
2

cp

N2
2

σ2
TT ∗, z > 0. (30)

5 The interaction equations285

The leading order contributions to the primary harmonic
in (1-4) will arise from linear terms and from interactions
between the wave perturbations and the mean flow, as in
Tabaei and Akylas (2007). Hence the leading-order primary-
harmonic terms in (1-4) are290

−cpûξ + εûτ +α2ūûξ +α2ūzŵ =− 1

ρ0
p̂ξ, (31)

−cpŵξ + εŵτ +α2ūŵξ =− 1

ρ0

(
p̂z + εp̂ζ

)
− b̂, (32)

ûξ + ŵz + εŵζ = 0 (33)295

−cpb̂ξ + εb̂τ +α2ūb̂ξ −N2ŵ = 0. (34)

Formally eliminating û, b̂, and p̂ from among these equations
while dropping terms higher than quadratic in the small pa-
rameters results in300 (
− cp

∂

∂ξ
+ ε

∂

∂τ

)2[( ∂
∂z

+ ε
∂

∂ζ

)2
+

∂2

∂ξ2

]
w

−α2cp
∂2

∂ξ2

[
ū
(
wξξ +wzz +

N2

c2p
w
)
− ūzzw

]
= 0. (35)

Equation (35) is a version of the Taylor-Goldstein equation305

for the present configuration. Using (19) and (20) in (35),
again dropping higher order terms, and separating wave com-
ponents results in three amplitude equations, one each for the
incident, reflected, and transmitted wavetrains. For the inci-
dent waves the resulting equation is310 [
DtDzDtDz − k2

(
D2
t +N2

1

)]
I

−α22σ
[
(k2 +n21)kūmI + (k2−n21)kū∗iR

]
= 0,

z < 0, (36)
315

where

Dt = ε
∂

∂τ
− iσ, (37)

Dz = ε
∂

∂ζ
− in1. (38)

Using the expressions for the mean flow, (27) and (30), and320

rearranging gives the final amplitude equation for the inci-
dent waves:

Iτ + cgIζ − iε
1

2
c′gIζζ

+ i
α2

ε

2

σ

[(
k2 +n21

)(
|I|2 + |R|2

)
+
(
k2−n21

)
|R|2

]
I = 0,325

z < 0, (39)
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where cg is the vertical group velocity,

cg = σ
n1

k2 +n21
, z < 0, (40)

and c′g is a derivative of the group velocity:330

c′g =
∂cg
∂n1

= σ
k2− 2n21

(k2 +n21)2
, z < 0. (41)

A similar development for the reflected and transmitted
waves leads to

Rτ − cgRζ − iε
1

2
c′gRζζ335

+ i
α2

ε

2

σ

[(
k2 +n21

)(
|I|2 + |R|2

)
+
(
k2−n21

)
|I|2
]
R= 0,

z < 0, (42)

340

Tτ + cgTζ − iε
1

2
c′gTζζ + i

α2

ε

2

σ

(
k2 +n22

)
|T |2T = 0,

z > 0, (43)

where

cg = σ
n2

k2 +n22
, z > 0, (44)345

and

c′g =
∂cg
∂n2

= σ
k2− 2n22

(k2 +n22)2
, z > 0. (45)

The interfacial conditions must be treated in the same
manner. Keeping only quadratic terms,

ηt + (uη)x = w, (46)350

[
ut + (uu)x + (uw)z

+ ηxwt + ηuzt + ηxb−N2ηηx

]+
−

= 0, (47)
355

on z = 0. Using (15), these are

−cpηξ + εητ + (uη)ξ = w, (48)

[
− cpuξ + εuτ + (uu)ξ + (uw)z + ε(uw)ζ360

− cpηξwξ + εηξwτ − cpηuzξ + εηuzτ − εcpηuζξ

+ ηξb−N2ηηξ

]+
−

= 0, (49)

on z = 0, where higher-order terms have again been deleted.
Using (26) and keeping only terms that contribute to the first365

harmonic gives

−cpη̂ξ + εη̂τ +α2ūη̂ξ = ŵ, (50)

[
− cpûξ + εûτ +α2ūûξ

]+
−

= 0, (51)

on z = 0, after some simplification. Insert (19) and (20) along370

with associated expressions for the horizontal component of
velocity into (50) and (51) and simplify to achieve a relation-
ship between the reflected and transmitted wave amplitudes
R,T and the incident wave amplitude I at the interface:

R+ ε
i

σ
Rτ =

[
n1−n2
n1 +n2

][
I + ε

i

σ
Iτ

]
+©(α2), (52)375

T + ε
i

σ
Tτ =

[
2n1

n1 +n2

][
I + ε

i

σ
Iτ

]
+©(α2) (53)

on z = 0. Hence nonlinear effects in the interfacial conditions
are ©(α2), which is two orders different from the leading
order term in (52) and (53), and therefore higher order (as380

in (39), where quadratic terms are deleted). Hence the non-
linear effects in the interfacial conditions may be neglected
with the present theory. The remaining terms in the interfa-
cial conditions are balanced with the linear conditions,

R=RI, (54)385

T = T I, (55)

on z = 0. Note that these conditions imply continuity of ve-
locity of the wave components. Importantly the total velocity
is not necessarily equal at the interface as the mean flow may390

not be continuous.

6 Results

The amplitude equations (39), (42), and (43) are solved here
numerically. Spatial derivatives are evaluated with second-
order central differences. Temporal integration is achieved395

with the fourth-order Adams-Bashforth method, resulting in
explicit algebraic equations (see Ames (1977) for a general
discussion). The boundary point at the end of the domain
is treated with the second-order upwind scheme. This one-
sided method allows waves to exit the region without re-400

flections (the reflected waves have already been treated in
the derivation of the amplitude equations). Single-layer cases
discussed below employ a total resolution of 1600 gridpoints
while two-layer cases use 800 gridpoints in each layer, which
was found to be adequate for all parameter values. The depth405

of each layer for two-layer cases was set to 4/3 of the packet
length, which also sets the grid spacing. Several cases were
treated with double this resolution to confirm convergence.
The time step was set to avoid numerical instability, gener-
ally being in the range 0.0001<∆t < 0.001.410

All variables are rescaled with the horizontal wavenumber
k and the buoyancy frequency in the lower layer N1. The
buoyancy frequency ratio for two-layer cases is chosen to
have the value N2/N1 = 2, matching approximately Earth’s
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tropopause. The results then depend on three parameters: ε,415

α, and n1/k. The parameter ε is set to be equal to the in-
verse of the packet length, and is chosen to have the value
ε= 0.025. Different values of ε generally showed the same
results as discussed below. The value of α is set to α= 0.1.
Larger values of α means stronger nonlinear effects, with420

consequences that depend on the value of n1/k.
A wave envelope is created at the bottom boundary by im-

posing the value of the real part of I to be the raised cosine
function:

I =
1

2

[
1− cos

τ

εcg

]
, (56)425

τ ∈ [0, εcg], where εcg is equivalent to the wave period times
the number of waves in the wave packet. Other wave packet
shapes, such as a Gaussian shape, have been considered and
produce the same general results.

The behavior of the waves with increasing n1/k is com-430

plicated, and depends partly on the value of the reflection
and transmission coefficients R, T given by (24) and (25),
see figure 1. For very small values of n1/k, R approaches
unity while T approaches zero, indicating that the waves are
nearly perfectly reflected. As n1/k increases, R approaches435

the value 1/3 while T approaches 2/3. Hence for large val-
ues of n1/k, the reflection and transmission coefficients are
approximately constant. Perfect transmission never occurs
for any value of n1/k.

The behavior with increasing n1/k also depends greatly440

on the strength of the mean flow. The results given below
will show that the mean flow given in (27) and (30) increases
strongly with n1/k, as measured approximately by the factor
N2

1

cpσ2 . This increase is primarily due to the direction of the
group velocity becoming more horizontal as n1/k increases.445

Define U to be this factor, which after rescaling becomes

U = 2
(k2 +n21

k2

)3/2
. (57)

Profiles of the mean flow velocity appearing in the figures are
normalized by U .

The coefficient of the nonlinear term and the dispersion450

term in the amplitude equation governing the incident waves
(39) are plotted in figure 2. The coefficient value for the non-
linear term can be seen to increase strongly with n1/k, as a
direct result of the mean flow dependence on n1/k. Hence
stronger nonlinear effects are expected as n1/k increases.455

The dispersion coefficient is negative for small values of
n1/k, and changes sign at n1/k = 1/

√
2. As discussed by

Sutherland (2001), the waves experience a modulational in-
stability in the region where this coefficient is negative. As a
result of this instability, a wave packet will initially become460

more focused and grow in amplitude. This dispersion coeffi-
cient is positive for n1/k > 1/

√
2 and reaches a maximum at

n1/k =
√

2. When the coefficient is positive, the wave packet
defocuses.

Some insight is revealed by separating the wave amplitude465

into a magnitude and phase,

I = |I|eiφ,

where φ is the phase of the incident waves. Using this in (39)
and separating real and imaginary parts results in

|I|τ + cg|I|ζ + ε
1

2
c′g

[
|I|φζζ + 2|I|ζφζ

]
= 0, (58)470

φτ + cgφζ + ε
1

2
c′g

[ |I|ζζ
|I| −φ

2
ζ

]
+
α2

ε

1

2

[
(k2 +n21)(|I|2 + |R|2) + (k2−n21)|I|2

]
= 0.

(59)
475

Similar equations can be obtained for the other wave packets.
Equation (58) governs the evolution of the magnitude of the
the incident wave |I|. The influence of the reflected wave R
does not directly appear in (58). Hence when incident and
reflected waves overlap, the reflected wave only affects the480

incident wave packet shape as a result of the evolution of φ
in the dispersion term. For cases where the dispersive effect
is zero or negligible, then (58) becomes

|I|τ + cg|I|ζ = 0, (60)

indicating that the wave packet propagates with the group485

velocity cg but without any evolution in the packet shape,
and unaffected by the reflected wave even when overlapping.

Multiply (58) by |I| and rearrange to obtain( ∂
∂τ

+ cg
∂

∂ζ

)
|I|2 + εc′g

∂

∂ζ

(
|I|2φζ

)
= 0.

For time periods before the incident wave packet reaches the490

interface, this may be integrated to produce

∂

∂τ

∫
|I|2 dζ = 0, (61)

where boundary terms are zero since |I| is zero outside the
wave packet. Equation (61) shows that the spatial integral of
|I|2 is conserved in a layer of constant N , despite the influ-495

ence of dispersion and nonlinearity. Once the incident wave
packet reaches the interface, the incident wave packet begins
to decrease in area as the reflected and transmitted waves are
created. The combination of (58), which shows that |I| is not
influenced by nonlinear effects, and (61), which shows that500

the area of the wave packet is limited, suggest that the inci-
dent wave packet shape will decrease monotonically during
this time.

Equation (59) governs the incident wave phase, and does
explicitly containR. The effect of the dispersion term is com-505

plicated and will be determined with numerical results. How-
ever the nonlinear term in (59) is positive, and in the absence



McHugh: Incidence and reflection of internal waves 7

of dispersion,( ∂
∂τ

+ cg
∂

∂ζ

)
φ < 0.

Hence the nonlinear effect causes the phase to decrease, re-510

sulting in an increase in the oscillations in the phase.
For the numerical results, first consider constant N

throughout and let n1/k = 1/
√

2. This special value of n1/k
has a zero value for the coefficient of the dispersion term.
Figure 3 shows vertical profiles of wave amplitude and mean515

flow at three times for this case. Note that a time value of
zero here corresponds to the wave packet centered at the ori-
gin, which is also the mean position of the interface in two-
layer cases. Each time value in figure 3 shows three panels,
which contain (from left to right in each subfigure) a vertical520

profile of the wave magnitude, the wave phase, and the wave-
induced mean flow. Comparing the left panel in figure 3a to
that in figure 3b and 3c, it can be seen that the wave packet
moves vertically without any significant change in shape, as
predicted by (60). The phase φ under these same conditions525

obeys

φτ + cgφζ +
α2

ε
(k2 +n21)|I|2 = 0. (62)

Since |I| is constant for this case when moving with the
packet, the phase will decrease linearly as a result of nonlin-
earity, as can be seen in figure 3, where oscillations in phase530

develop as the packet ascends.
A corresponding two-layer case is shown in figure 4 using

the same n1/k = 1/
√

2 value as the above one-layer case.
The Brunt-Vaisala frequency ratio is N2/N1 = 2 and the in-
terface is at the center of each panel (z = 0) as indicated with535

a dashed line. The three time values are chosen to correspond
to (a) before the wave packet has reached the interface, (b) as
the packet is transiting the interface, and (c) after the packet
has passed through the interface. The dashed profiles are the
magnitude and phase for the downward moving wave packet540

(the reflected wave), and the solid profiles are the upward
moving waves (incident and transmitted waves). Note that
there is only a single profile for the mean flow in the lower
layer (e.g. no dashed profile) as it is due to the combination
of incident and reflected waves.545

The packet in figure 4a has not interacted with the interface
yet, and hence is identical to the constantN case in figure 3a.
Figure 4b has all three wave packets present simultaneously.
The mean flow at this stage shows the striking discontinuity
at the interface. The reason for this discontinuity is that in550

the lower layer the mean flow is driven by both incident and
reflected wave. Since they both have a horizontal component
of group velocity that is positive, then the mean flow they
generate is positive, despite having a vertical group velocity
that has opposite sign. In contrast, the upper layer only has555

the transmitted wave driving a mean flow, and is therefore
always weaker, even at the interface.

The mean flow in figure 4b also shows oscillations that are
not present before the packet reaches the interface or in the
single layer case. These oscillations are due to the interfer-560

ence mean given by (27) and (29). The interference mean
only occurs under the mean position of the interface, and
only when the incident wave and reflected wave are over-
lapping.

Without dispersion (c′g is zero in the lower layer when565

n1/k = 1/
√

2), the magnitude of the incident waves |I| for
the two-layer case is governed by (60), however the phase
now obeys

φτ + cgφζ570

+
α2

ε

2

σ

[
(k2 +n21)(|I|2 + |R|2) + (k2−n21)|I|2 = 0. (63)

Similarly for the reflected wave packet,

|R|τ + cg|R|ζ = 0, (64)
575

θτ − cgθζ

+
α2

ε

2

σ

[
(k2 +n21)(|I|2 + |R|2) + (k2−n21)|R|2 = 0,

(65)

where θ is the phase of the reflected waves. Equation (64)580

shows that the magnitude of the reflected waves is not af-
fected by lingering presence of the incident waves (and vice
versa as discussed above). However (63) shows that the phase
of the incident waves is connected to the magnitude of both
incident and reflected waves, as is the phase of the reflected585

wave, see (65). Furthermore, since the nonlinear term in both
(63) and (65) is always positive, then the phase for both inci-
dent and reflected waves decreases monotonically.

Figure 4c shows a later time, after the incident wave packet
has been completely converted into reflected and transmit-590

ted wave packets. The wave-induced mean flow is now much
reduced in strength as a result of the smaller amplitude of
both transmitted and reflected waves, as compared to the in-
cident wave in figure 4a. The reflected wave packet retains
the original shape of the incident wave packet with no ap-595

parent change due to the nonlinear interaction at the inter-
face. The coefficient of dispersion in the upper layer is not
zero, and the wave packet shape can be seen to have evolved
somewhat in figure 4c.

A close-up view of the wave amplitude as the wave packet600

is transiting the interface is shown in figure 5 for a sequence
of time values, each profile shifted by a value of 1.5 for dis-
play. Note that the disturbance velocity in this model is con-
tinuous, even though it appears to be discontinuous in fig-
ure 5. Figure 6 shows corresponding profiles of the mean605

flow, which is indeed discontinuous at the interface during
this period. The discontinuity is formed by the ’front’ of the
wave packet and would then be maintained until the ’back’
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of the wave packet terminates the mean flow. Thus the dis-
continuous flow would remain if the waves evolved into a610

uniform field, rather than the finite packet treated here.
The coefficient of the dispersion term is negative when

n1/k < 1/
√

2. The evolution of the wave packet for such a
case is shown in figure 7 for a single layer with constant N
and n1/k = 0.4. This same single-layer case was previously615

treated by Sutherland (2001, 2006), and Tabaei and Akylas
(2007). Figure 7a shows that the wave amplitude and the as-
sociated mean flow are initially focusing energy toward the
center of the wave packet. Figures 7b and 7c show that at
later times the peak in wave amplitude has decreased and620

the wave packet has spread significantly. Even longer times
would show the focusing effect reappearing. This behavior
is due to the modulational instability as discussed by Suther-
land (2001). Figure 8a provides filled contours of vertical ve-
locity for the same time value as figure 7a, demonstrating625

the same general pattern as was found by Sutherland (2006).
Figure 8b shows the pattern at a later time after the wave
amplitude has reached it’s peak and is decreasing.

The two layer case with n1/k = 0.4 is shown in figure 9.
Figure 9a is before the incident wave packet has interacted630

significantly with the interface, and again the results are the
same as the constantN case, figure 7a. In Figure 9b the wave
packet is straddling the interface. The mean flow (right panel)
again shows the oscillations under the interface that is the in-
terference part of the mean flow ūi, although these oscilla-635

tions are somewhat difficult to see due to the different scale
on the abscissa. Also evident in figure 9b are matching oscil-
lations in I (solid line for both magnitude and phase). These
oscillations would not exist without dispersion, as I obeys
(60) without dispersion. Note that these oscillations in I were640

not present with n1/k = 1/
√

2 in figure 4b.
Figure 9c shows the results at a later time after the re-

flected and transmitted wave packets are mostly created. The
magnitude of I (solid line, left panel) still shows signifi-
cant oscillations, while the magnitude of R (dashed line, left645

panel) does not. The mean flow also has matching oscilla-
tions. The incident waves I can only move upwards here,
hence these oscillations in I are part of the tail of the inci-
dent wave packet. Dispersion has caused the incident wave
packet to spread, which continues to interact with the down-650

ward moving reflected wave packet. For this choice of pa-
rameters (ε= 0.025,α= 0.1), the incident wave amplitude
I had reached it’s maximum before interacting with the in-
terface and is decreasing while the packet is spreading. This
feature of the wave packet dynamics seems to enhance the655

interaction between the reflected waves and the tail of the
incident packet.

Figures 10 and 11 again show a close-up view of the
wave amplitudes and mean flow near the interface. Figure 10
shows clearly the formation of these smaller scale oscilla-660

tions in I , and seems to suggest that they are moving down-
ward. However they are not moving downward but becoming
energized by the downward moving reflected wave R.

Figure 12 shows filled contours of vertical velocity, cor-
responding to the constant N case in figure 8b. The wave665

pattern under the interface in figure 12 (the interface is at the
ordinate center) with incident and reflected waves overlap-
ping is nearly that of a standing wave.

Figures 13 and 14 show results for a case when the coef-
ficient of dispersion is positive, n1/k = 1. Figure 13 is the670

single-layer case with constant N while figure 14 is the cor-
responding two-layer configuration with N2/N1 = 2. Fig-
ure 13 shows that as the wave packet ascends in a single
layer, the packet shape tends to spread. The two-layer results
in figure 14b show that the mean flow is again discontinuous675

as the wave packet interacts with the interface, and that the
interference mean is again present. Oscillations in I appear
and spread downward, as before. However the dispersion ef-
fect is dominant here and the transmitted and reflected wave
packets are much reduced in strength as a result. The nonlin-680

ear aspects of the waves become very weak for this case.
The amplitude and phase are governed by (58) and (59).

One of the nonlinear terms in (59) is directly attributed to the
interference mean flow, and has the rescaled coefficient

1− n21
k2
. (66)685

If n1/k = 1 then this coefficient is zero, and hence this non-
linear term does not contribute to the evolution of φ, making
n1/k = 1 a special case. The influence of the interference
part of the mean flow is still felt but indirectly through the
other nonlinear terms in (58) and (59).690

Figures 15 and 16 again show a close-up view of a se-
quence of profiles of the wave magnitude and correspond-
ing mean flow as the packet transits the interface. Figure 16
shows the development of the discontinuity in the mean flow
as well as the appearance of the interference mean flow. An-695

other feature evident in figure 16 is that the oscillations in
the mean flow under the interface are decreasing in length as
time increases. The form of (27) suggests that the oscillation
length should be simply 2π/2n1, which it is when these os-
cillation first appear. However the nonlinear combination of700

I and R alters this length. The effect is present for previous
cases but is not as prominent.

Figure17 shows results for the two-layer case with n1/k =√
2. This value of n1/k corresponds to the maximum value

of the dispersion coefficient in the amplitude equations for705

the lower layer. With such strong dispersion, the wave packet
spreads considerably by the time the packet reaches the in-
terface. The numerical results indicate that with such strong
dispersion, increasing the value of α weakens the interfer-
ence mean and the tendency for these oscillations in the mean710

flow to shorten.
The overall mean-flow strength near the interface is shown

in figures 18-20 for three examples. Each of these figures
show a time evolution of the maximum of the wave packet
amplitude. In figure 18, n1/k = 1/

√
2 and the dispersion is715

zero in the lower layer. For this case the maximum value of
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the wave amplitude is constant until the waves interact with
the interface. While the packet is near the interface, the mean
flow is enhanced due to the combination of the incident and
reflected waves, and also the interference mean. Figure 18720

shows that the mean flow is enhanced by a factor of approxi-
mately 1.75 at the peak. Figure 19 has n1/k = 0.4 and shows
that the maximum value is nearly four times the value of the
mean flow early in the simulation. Also evident here is the
oscillation in the tail of the incident wave packet.725

Figure 20 has n1/k =
√

2 where the dispersion coefficient
is positive and maximum. Here the wave packet is defocus-
ing, resulting in a decrease in the maximum value as the wave
packet ascends. The increase in mean at the interface is not
strong enough to overcome this decrease, and hence the max-730

imum value of mean flow is at the beginning of the simula-
tion. Overall, figures 18-20 indicate that smaller values of
n1/k are more likely to have an enhanced jet-like mean flow
under the interface.

Also in figures 18-20 is a dashed line showing the veloc-735

ity difference at the interface, and a thick solid line show-
ing the maximum of the interference mean. In figure 18 and
20, these two quantities are approximately the same. How-
ever the velocity difference is not caused by the interference
mean, rather they are both caused by the overlapping of the740

incident and reflected wave packets, and hence have approx-
imately the same strength. Note the velocity difference for
n1/k = 0.4 in figure 19 is substantially stronger than the in-
terference mean in figure 18.

If the interface is replaced with a rigid lid, then the waves745

are completed reflected, but otherwise behave in the same
manner as above. The interfacial boundary conditions are re-
placed with

w = 0 (67)

on z = 0, resulting in750

R=−I (68)

on z = 0. The incident and reflected wave amplitudes are still
governed by (39) and (42), while the mean flow is still deter-
mined with (27).

An example case with n1/k = 1/
√

2 is shown in fig-755

ure 21 with vertical profiles of wave magnitude and phase
and the mean flow at three time steps, as before. Notice in
figure 21 that the wave magnitude and mean flow when the
packet is moving upward (N1τ ≈−65) have the same pro-
file after bouncing off the rigid lid and is moving downward760

(N1τ ≈+65). The only difference other than the direction of
propagation is the phase which is more oscillatory. The mean
flow for N1τ ≈ 0 is much stronger than the above case with
an interface as a result of the much stronger reflected wave.
The maximum of the mean flow is now approximately three765

times the mean flow of the incident wave packet, compared
to a factor of 1.75 in the case with the interface. The interfer-
ence mean flow is still clearly present with the rigid lid.

7 Conclusions

Atmospheric observations indicate that the tropopause al-770

titude is more likely to experience turbulence and large
amplitude waves than other altitudes. The abrupt change
in the buoyancy frequency suggests that such observations
are related to the dynamics of internal waves near the
tropopause. Previous numerical simulations conclude that in-775

ternal waves will create a wave-induced jet-like mean flow
in the tropopause vicinity that is likely responsible for at
least some of the observations. An idealized low-dimensional
model of such waves is treated here. The model consists of
three coupled nonlinear Schodinger equations.780

Numerical solutions with with weak dispersion (n1/k =
1/
√

2) show that the wave-induced mean flow is greatest near
and under the interface, similar to previous full numerical
simulations by McHugh (2008). Furthermore, this mean flow
is discontinuous at the interface, and would be a region of785

strong shear in a viscous flow. The previous full numerical
results did not allow the velocity to be discontinuous at the
interface, and this could have impacted the final results in
that study.

However, the results here also show that dispersion may790

dominate the motion, and can act to greatly enhance the jet-
like flow or weaken it, depending on the value of n1/k. With
n1/k < 1/

√
2, the jet-like mean flows are strengthened and

they can happen at any altitude, not necessarily near the in-
terface. With n1/k > 1/

√
2, dispersion tends to smooth the795

localised effects near the interface.
The mean flow found here also has the oscillatory inter-

ference component. The results show that these mean-flow
oscillations are transferred to the wave envelopes, and can
get exaggerated in the tail of the incident wave packet when800

n1/k < 1/
√

2. Furthermore, the vertical wavelength of the
oscillation decreases during the period where incident and
reflected waves overlap. These are nonlinear features of the
waves that do not occur in linear theory. Note that this feature
of the mean flow indicates that the waves create a structure805

that is wider horizontally than the incident waves, but shorter
in the vertical. Hence there is a cascade of energy to ‘flatter’
structures.

The observations of McHugh et al. (2008a) showed layers
at the tropopause region with large values of vertical veloc-810

ity. The terrain was dominated by a single large peak (Mauna
Kea), and thus these structures were likely caused by moun-
tain waves. There are many similarities between those exper-
imental results and the present model results, most notably,
the mean flow oscillations in the model are similar to the815

layer structure in the experiments. However, differences are
also significant, for example, the experiments show large ver-
tical velocity whereas the model finds large horizontal veloc-
ity. A detailed comparison is difficult since the experiments
treated mountain waves, a much more complex wave system.820

Hence it is tempting but premature to connect the mean flow
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oscillations found here to the structures observed in McHugh
et al. (2008a).
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Fig. 3: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in a single layer of constantN with n1/k = 1/

√
2, ε=

0.025, and α= 0.1.
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Fig. 4: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in two layers. The parameter values are n1/k = 1/

√
2,

N2/N1 = 2, ε= 0.025, and α= 0.1.
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Fig. 5: Vertical profiles of the wave magnitude in two layers
for a sequence of times. Each profile is shifted by a value
of 1.5 for display. The parameter values are n1/k = 1/

√
2,

N2/N1 = 2, ε= 0.025, and α= 0.1.
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display. The parameter values are n1/k = 1/
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Fig. 7: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in a single layer of constant N with n1/k = 0.4, ε=
0.025, and α= 0.1.
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Fig. 8: Contours of vertical velocity in a single layer of con-
stant N with n1/k = 0.4, ε= 0.025, and α= 0.1.
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Fig. 9: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in two layers. The parameter values are n1/k = 0.4,
N2/N1 = 2, ε= 0.025, and α= 0.1.
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Fig. 10: Vertical profiles of the wave magnitude in two layers
for a sequence of times. Each profile is shifted by a value
of 1.5 for display. The parameter values are n1/k = 0.4,
N2/N1 = 2, ε= 0.025, and α= 0.1.
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Fig. 11: Vertical profiles of the mean flow in two layers for a
sequence of times. Each profile is shifted by a value of 1.5 for
display. The parameter values are n1/k = 0.4, N2/N1 = 2,
ε= 0.025, and α= 0.1.
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Fig. 12: Contours of vertical velocity at τ =≈ 0 in two lay-
ers. The parameter values are n1/k = 0.4, N2/N1 = 2, ε=
0.025, and α= 0.1.
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Fig. 13: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in a single layer of constant N with n1/k = 1, ε=
0.025, and α= 0.1.
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Fig. 14: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in two layers. The parameter values are n1/k = 1,
N2/N1 = 2, ε= 0.025, and α= 0.1.
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Fig. 15: Vertical profiles of the wave magnitude in two lay-
ers for a sequence of times. Each profile is shifted by a
value of 1.5 for display. The parameter values are n1/k = 1,
N2/N1 = 2 ε= 0.025, and α= 0.1.
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Fig. 16: Vertical profiles of the mean flow in two layers for
a sequence of times. Each profile is shifted by a value of 1.5
for display. The parameter values are n1/k = 1, N2/N1 = 2,
ε= 0.025, and α= 0.1.
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Fig. 17: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
times in two layers. The parameter values are n1/k =

√
2,

N2/N1 = 2, ε= 0.025, and α= 0.1.
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Fig. 18: Time history of the maximum of the mean flow. The
dashed line is the velocity jump at the interface while the
thick solid line that is the maximum the interference mean
ūi. The parameter values are n1/k = 1/

√
2,N2/N1 = 2, ε=

0.025, and α= 0.1.
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Fig. 19: Time history of the maximum of the mean flow. The
dashed line is the velocity jump at the interface while the
thick solid line that is the maximum the interference mean
ūi. The parameter values are n1/k = 0.4, N2/N1 = 2, ε=
0.025, and α= 0.1.
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Fig. 20: Time history of the maximum of the mean flow. The
dashed line is the velocity jump at the interface while the
thick solid line that is the maximum the interference mean
ūi. The parameter values are n1/k =

√
2, N2/N1 = 2 ε=

0.025, and α= 0.1.
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Fig. 21: Vertical profiles of the wave magnitude (left panel),
phase (center panel), and mean flow (right panel) at three
time values with a solid lid, with n1/k = 1/

√
2, ε= 0.025,

and α= 0.1.


