
Reply to all Referee comments 1 

Reply to reviewer#1: 2 

 3 

C1: 9 (and everywhere): "principal" not "principle" 4 

R1: All the word “principle” has been replaced by “principal”. 5 

 6 

C2: 68: Please rewrite, the current meaning is unclear 7 

R2: Thanks! The sentence has been rewritten as “the SSAM approach developed by Schoellhamer 8 

(2001) computes the elements c(j) of the lagged correlation matrix by,” 9 

 10 

C3: 70: Please rewrite, the "pair of no missing data" is unclear 11 

R3: Thanks! The sentence is revised as “where, both xi and xi+j must be observed rather than 12 

missed, 
jN  is the number of the products of xi and xi+j within the sample index i N j  ”. 13 

 14 

C4: 95: Please rewrite, the meaning is unclear 15 

R4: Thanks! The sentence has been rewritten as “The solution of Eq. (10) is as follows,” 16 

 17 

C5: 111: Do you refer to white noise? If yes -- indicate this, if not -- explain the correlation structure 18 

of the time series. 19 

R5: Thanks for your comment! The R(t) time series refers to the Gaussian white noise. And we have 20 

revised the sentence as “R(t) is a time series of Gaussian white noise with zero mean and unit 21 

standard deviation”. 22 

 23 

 24 

Reply to reviewer#2: 25 

 26 

C1: 13-16: Please split this long sentence into two. Also, please rephrase the statement to better 27 

explain what % improvement means. Rewrite "missing data reaches 60%" as "the number of the 28 

missing data reaches 60% of the trajectory length" or something similar. 29 

R1: According to your suggestion, we have rewritten this sentence as “The result from the 30 

synthetic time series with missing data shows that the relative errors of the principal 31 

components reconstructed by ISSA are much smaller than those reconstructed by SSAM. 32 

Moreover, when the percentage of the missing data over the whole time series reaches 60%, the 33 

improvements of relative errors are up to 19.64, 41.34, 23.27 and 50.30% for the first four 34 

principal components, respectively.” 35 

 36 

C2: 53-55: Please explain how the lagged matrix is constructed. Please define standardized time 37 

series. 38 

R2: Thanks for your suggestion! First, we have added the lagged matrix C, the correspondent 39 

revision is its Toeplitz lagged correlation matrix C is formulated by 40 
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Each element  c j  is computed by 42 
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The standardized time series here means the stationary time series, so we change the word 44 

“standardized” into “stationary”. 45 

 46 

C3: 65-66: Why "On the other hand"? 47 

R3: Thanks! “On the other hand” is changed to “Thus”. 48 

 49 

C4: 75-76: What do you mean by "not proven"? Also, is this the only difference from Schoellhamer? 50 

Please discuss the novelty of your approach explicitly in the introduction and abstract. 51 

R4: Thanks for your important suggestions. Schoellhamer [2001] used a scale factor L/Li in 52 

calculating the principal component ak,I, but he did not tell us the reason of using such a scale 53 

factor. In order to avoid confusion we have deleted the sentence “However, this scale factor is not 54 

proved in Schoellhamer (2001)” in the revised version.  55 

Yes, the method of calculating the principal component is the main difference of our approach 56 

from Schoellhamer [2001]. We have pointed out in the abstract and introduction that our 57 

approach is derived based on the property that the original time series can be reproduced from its 58 

principal components, and Schoellhamer’s approach is just a special case of our approach.  59 

 60 

C5: 97-98: Please explain what you mean by "neglecting" elements. 61 

R5: “neglecting elements” means the elements are set to zeros. The sentence is revised as “If the 62 

non-diagonal elements of Gi are set to zero”. 63 

 64 

C6: 203-204: Please rewrite as "as the number of missing points get larger" 65 

R6: According to your suggestion the sentence “As the missing data get larger” has been revised 66 

as “As the fraction of missing data increases,”. 67 

 68 

C7: Thank you for addressing the comments in my initial review. The revised manuscript, however, 69 

still does not explain what are the differences of the proposed approach from that of Schoellhamer 70 

(2001). Please think of adding a separate paragraph that will clearly explain those differences. I'll 71 

proceed with publication in NPG Discussion section as soon as this change is implemented. 72 

 73 

R7: We have added a separate paragraph at the end of section 2 to explain the differences as 74 

follows: “The main difference of our ISSA approach from the SSAM approach of Schoellhamer 75 

(2001) is in calculating the PCs. We produce the PCs from observed data with Eq. (14) according 76 

to the power spectrum (eigenvalues) and eigenvectors of the PCs. While Schoellhamer (2001) 77 



calculates the PCs from observed data with Eq. (6) only according to the eigenvectors and uses 78 

the scale factor L/Li to compensate the missing value. We have pointed out that this scale factor 79 

can be derived from Eq. (15), which is the simplified version of our ISSA approach, by supposing 80 

the missing data points with the same eigenvector elements. Therefore the performance of our 81 

ISSA approach will be better than SSAM of Schoellhamer (2001). The only disadvantage of our 82 

method is that it will cost more computational effort.” 83 

 84 

Reply to reviewer#3: 85 

 86 

C1: ISSA improves SSAM by reformulating the calculation of PCs (equation 7) to incorporate RCs for 87 

missing values (equations 8 to 14). The improvement is small for mostly complete time series and 88 

increases as the quantity of missing data increases. I encourage the authors to post ISSA code for 89 

others to use. 90 

R1: Thanks for your kindly suggestion. We will modify our code and post it soon. 91 

 92 

C2: It appears that ISSA Eigenvectors v are calculated as they are in SSAM from the Toeplitz matrix 93 

formed from equation 5. This ISSA step should be added to the manuscript.  94 

R2: We add the sentence in page 1951, line 9 “Then we compute the eigenvalues and eigenvectors 95 

from the lagged correlation matrix C”. 96 

 97 

C3: The eigenvectors are then used to create matrix G. It appears that matrix G must be created 98 

and equation 14 solved for each time step i. This is a large increase in computational effort 99 

compared to SSAM, which should be stated in the manuscript. 100 

R3: We add the sentence in page 1953, line 23 “The only disadvantage of our method is that it 101 

will cost more computational effort.” 102 

 103 

C4: In equation 11, the sums are for all times in the window with a missing value. The values of the 104 

eigenvector do not change with time, so the sum can be replaced with Nm, the number of missing 105 

values in the window (e.g. ∑ 𝑣1,𝑗𝑣2,𝑗 = 𝑁𝑚𝑣1,𝑗𝑣2,𝑗). If Nm=0, equation 10 reduces to equation 3. 106 

R4: The values of the eigenvector vary with the subscript j, so the ∑ 𝑣1,𝑗𝑣2,𝑗 ≠ 𝑁𝑚𝑣1,𝑗𝑣2,𝑗. 107 

 108 

C5: p1953, line 8-13: Equation 15 is used to compare SSAM and ISSA which is good to include but 109 

the approach contains a contradiction that should be explained. To compare their results to SSAM, 110 

the authors set non-diagonal element in equation 11 to zero but also assume 𝑣𝑘,𝑖 = 𝐿−1/2, in 111 

which case the diagonal elements would equal 𝑁𝑚/𝐿 where 𝑁𝑚 is the number of missing data 112 

points in the window. The authors should explain this contradiction. For the case where 𝑁𝑚/𝐿 ≪113 

1, this contradiction would be minor. Is this contradiction inherently assumed in the formulation 114 

of SSAM, and if so, does it explain the relatively improving performance of ISSA as 𝑁𝑚/𝐿 (% 115 

missing data in table 1) increases? SSAM performance declines when  𝑁𝑚/𝐿 > 0.5  which is 116 

roughly when the diagonal elements of equation 11 become less than the non-diagonal 117 

elements—could this be the cause? Or does the ISSA assumption that missing values can be 118 

represented by an RC expression create this contradiction? Missing values are ignored when 119 

calculating the eigenvectors in both methods, but ISSA does not ignore missing values when 120 

calculating PCs. 121 



R5: Thanks for your comment. The Schoellhamer (2001) did not tell us the reason to choose the 122 

scale factor 𝐿 𝐿𝑖⁄ . And, we find when 𝑣𝑘,𝑖 = 𝐿−1/2 and non-diagonal elements equal to zero are 123 

both satisfied, we can get the same formula as in Schoellhamer (2001). Thus, we assume it is he 124 

ignored this contradiction that makes his method poorer than ours. 125 

 126 

C6: p1948 abstract: Add that the improvement is small for mostly complete time series and 127 

increases as the quantity of missing data increases. Because of this, I suggest changing ‘much 128 

smaller’ to ‘smaller’. 129 

R6: We have changed ‘much smaller’ to “smaller”. 130 

 131 

C7: p1948, line 16: define SD 132 

R7: SD means “standard deviation” 133 

 134 

C8: p1948, line 17: A difference of 1.2 mg/L (~10%) is within typical measurement error. 135 

R8: Although the percentage of missing data reaches 61%, but the distribution of observed data 136 

are very concentrated, thus the non-diagonal elements of matrix Gi is very small. Then the 137 

improvement is also very small. 138 

 139 

C9: p1948, line 25-26: use ‘wide’ only once in the sentence. 140 

R9: We have changed the sentence into “SSA has been widely used in geosciences to analyze a 141 

variety of time series”. 142 

 143 

C10: p1949, line 9: Define GNSS 144 

R10: GNSS represents “Global Navigation Satellite System”. 145 

 146 

C11: p1951, line 14: Insert paragraph break where SSAM ends and ISSA starts. 147 

R11: We have revised as above. 148 

 149 

C12: p1953, line 8: Insert paragraph break where ISSA ends and comparison to SSAM begins. 150 

R12: We have revised as above. 151 

 152 

C13: p1954, line 2-3: This section is about synthetic time series, not the real time series, so delete 153 

this sentence. 154 

R13: We have delete this sentence. 155 

 156 

C14: p1954, line 20: Delete ‘even’. 157 

R14: We have delete the word “even”. 158 

 159 

C15: Equation 18: define T (transpose?). 160 

R15: T represents “transpose”. 161 

 162 

C16: p1955, line 8: delete the word ‘clear’. 163 

R16: We have delete the word “clear”. 164 

 165 



C17: p1956, line 19: the mean residual is not represented in table 2. 166 

R17: We have added the mean residual in table 2. 167 

 168 

C18: p1956, line 22: the difference of r2 of 0.9178 and 0.9046 seems to be minor- is this statistically 169 

significant? Autocorrelation would probably have to be considered. 170 

R18: The reason is almost the same with C8. 171 

 172 

C19: Delete ‘As’ in last row, replace with ‘SF’ 173 

R19: We have replaced “As” with “SF”. 174 

 175 

C20: p1957, line 7-8: Change ‘With the missing data gets more, the improvements of the relative 176 

errors becomes more evident.’ to ‘As the fraction of missing data increases, the improvement of 177 

the relative error becomes greater’. 178 

R20: We have change the sentence into “As the fraction of missing data increases, the 179 

improvement of the relative error becomes greater”. 180 

 181 

C21: p1957, line 12: The SSC improvements are minor and within measurement error. 182 

R21: The reason is almost the same with C8. 183 

 184 

Reply to reviewer#4: 185 

 186 

C1: The abbreviation are not proper. For example improved SSA ISSA or similarly SSAM. These 187 

should be changed as it is not common.  188 

R1: The SSAM is the abbreviationused by Schoellhamer (2001) to represent the approach of 189 

Singular Spectrum Analysis for the time series with Missing data. Our approach is an improved 190 

version of SSAM. Thus, we named our approach asISSA to represent improved singular spectrum 191 

analysis. 192 

 193 

C2: The introduction is very poor. They need to inform what are the novelties of the proposed 194 

technique and why its work better than the previous approach. The definition and explanation in 195 

page 1953, just before section 3 should go to introduction as explained above. In fact, this 196 

motivates your work. Of course, it needs to be expended. 197 

R2: Thanks for your suggestion. We have changed the last paragraph of introduction into “This 198 

paper is motivated by Schoellhamer (2001) and Shen et al. (2014) and will develop an improved 199 

SSA (ISSA) approach. In our ISSA, the lagged correlation matrix is computed with the same way 200 

as Schoellhamer (2001), the PCs are directly computed with both the eigenvalues and 201 

eigenvectors of the lagged correlation matrix. However, the PCs in Schoellhamer (2001) were 202 

calculated with the eigenvectors and a scale factor to compensate the missing value. Moreover, 203 

we do not need to fill the missing data recursively and iteratively as in Golyandina and Osipov 204 

(2007). The rest of this paper is organized as follows: the improvement of SSA for time series with 205 

missing data will be followed in Sect. 2, synthetic and real numerical examples are presented in 206 

Sects. 3 and 4 respectively, and then conclusions are given in last Sect. 5.” 207 

 208 

C3: Page 1954: We use the 30 h window size (L=120). This is very important issue. Window length. 209 



You did not mention about selection of window length and moreover, the sensitivity of your 210 

proposed method to L. The following source might are related to window length selection among 211 

many papers on this issue: 1. Multivariate Singular Spectrum Analysis: A General View and New 212 

Vector Forecasting Approach. 2. On the Separability Between Signal and Noise in Singular Spectrum 213 

Analysis. 3. Separability and Window Length in Singular Spectrum Analysis. 4. Hydroelectric Energy 214 

Forecast. 215 

R3: Thank you for suggestion. This paper chooses the same window length as that in Schoellhamer 216 

(2001) in order to compare the results with Schoellhamer (2001). We agree with you that the 217 

window length is an important issue for singular spectrum analysis; therefore we add the following 218 

sentence in page 1954 line 17 “Although the selection of window length is an important issue for 219 

SSA (Hassani 2012, 2013), this paper chooses the same window length (L=120) as that in 220 

Schoellhamer (2001) in order to compare the performance of the proposed method with that of 221 

Schoellhamer (2001). Using the synthetic time series we computed the lagged correlation matrix 222 

and the variances of each mode.” 223 

 224 

C4: The performance of the new method should be evaluated with the simulation study. Here the 225 

authors use two series of the data sets. However, to have a comprehensive view, they need to 226 

consider several issues. Table 2: There is no mean and also mean absolute error. The results indicate 227 

that the new approach works better in terms of variance, but reporting mean is important to see 228 

the bias of the residual. Figure 2: is very informative. Accordingly, I would recommend having 229 

similar figure for simulated data. 230 

R4: Thanks for your comments. We have added the mean absolute error in the table 2.Besides, 231 

Figure 2 is the results from simulated data. 232 

 233 
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Improved Singular Spectrum Analysis for Time Series with 254 

Missing Data 255 

Y. Shen1    F. Peng1,2     B. Li1 256 

1. College of Surveying and Geo-informatics, Tongji University, Shanghai, PR, China 257 

2. Center for Spatial Information Science and Sustainable Development, Shanghai, 258 

PR, China 259 

Abstract. Singular spectrum analysis (SSA) is a powerful technique for time series 260 

analysis. Based on the property that the original time series can be reproduced from its 261 

principal components, this contribution will develop an improved SSA (ISSA) for 262 

processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer 263 

(2001) is its special case. The approach was evaluated with the synthetic and real 264 

incomplete time series data of suspended-sediment concentration from San Francisco 265 

Bay. The result from the synthetic time series with missing data shows that the relative 266 

errors of the principal components reconstructed by ISSA are smaller than those 267 

reconstructed by SSAM. Moreover, when the percentage of the missing data over the 268 

whole time series reaches 60%, the improvements of relative errors are up to 19.64, 269 

41.34, 23.27 and 50.30% for the first four principal components, respectively. Besides, 270 

both the mean absolute error and mean root mean squared error of the reconstructed 271 

time series by ISSA are also smaller than those by SSAM. The respective improvements 272 

are 34.45 and 33.91% when the missing data accounts for 60%. The results from real 273 

incomplete time series also show that the standard deviation (SD) derived by ISSA is 274 

12.27mg L-1, smaller than 13.48 mg L-1 derived by SSAM. 275 

Keywords: Time series analysis, Singular spectrum Analysis, Missing Data 276 

1. Introduction 277 

Singular spectrum analysis (SSA) introduced by Broomhead and King (1986) for 278 

studying dynamical systems is a powerful toolkit for extracting short, noisy and chaotic 279 

signals (Vautard et al., 1992). SSA first transfers a time series into trajectory matrix, 280 

and carries out the principal component analysis to pick out the dominant components 281 

of the trajectory matrix. Based on these dominant components, the time series is 282 

reconstructed. Therefore the reconstructed time series improves the signal to noise ratio 283 

and reveals the characteristics of the original time series. SSA has been widely used in 284 

geosciences to analyze a variety of time series, such as the stream flow and sea-surface 285 

temperature (Robertson and Mechoso, 1998; Kondrashov and Ghil, 2006), the seismic 286 

tomography (Oropeza and Sacchi, 2011) and the monthly gravity field (Zotova and 287 

Shum, 2010). Schoellhamer (2001) developed a modified SSA for time series with 288 

missing data (SSAM), which has been successfully applied to analyze the time series 289 

of suspended-sediment concentration (SSC) in San Francisco Bay (Schoellhamer, 290 

2002). This SSAM approach doesn’t need to fill missing data. Instead, it computes the 291 

each principal component (PC) with observed data and a scale factor related to the 292 

number of missing data. Shen et al. (2014) developed a new principal component 293 

analysis approach for extracting common mode errors from the time series with missing 294 



data of a regional station network. The other kind of SSA approaches process the time 295 

series with missing data by filling the data gaps recursively or iteratively, such as the 296 

“Catterpillar”-SSA method (Golyandina and Osipov, 2007), the imputation method 297 

(Rodrigues and Carvalho, 2013) or the iterative method (Kondrashov and Ghil, 2006). 298 

This paper is motivated by Schoellhamer (2001) and Shen et al. (2014) and will develop 299 

an improved SSA (ISSA) approach. In our ISSA, the lagged correlation matrix is 300 

computed with the same way as Schoellhamer (2001), the PCs are directly computed 301 

with both the eigenvalues and eigenvectors of the lagged correlation matrix. However, 302 

the PCs in Schoellhamer (2001) were calculated with the eigenvectors and a scale factor 303 

to compensate the missing value. Moreover, we do not need to fill the missing data 304 

recursively and iteratively as in Golyandina and Osipov (2007). The rest of this paper 305 

is organized as follows: the improvement of SSA for time series with missing data will 306 

be followed in Sect. 2, synthetic and real numerical examples are presented in Sects. 3 307 

and 4 respectively, and then conclusions are given in last Sect. 5. 308 

2. Improved Singular Spectrum Analysis for Time Series with Missing Data  309 

For a stationary time series xi (1≤ i ≤ N), we can construct an L(N-L+1) trajectory 310 

matrix with a window size L, its Toeplitz lagged correlation matrix C is formulated by 311 
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Each element  c j  is computed by 313 
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For matrix C, we can compute its eigenvalues k and the corresponding eigenvectors 315 

kv  in descending order of k (1≤ k ≤ L). Then the ith element of kth principal 316 

components (PCs) ka  is computed by 317 
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where ,j kv  is the jth element of kv . We compute the kth reconstructed components 319 

(RCs) of the time series with the kth PCs as (Vautard et al., 1992) 320 
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           (4) 321 

Since k, the variance of the kth RC, is sorted in descending order, the first several RCs 322 

contain most of the signals of the time series, while the remaining RCs contain mainly 323 

the noises of time series. Thus the original time series will be reconstructed with first 324 

several RCs. 325 

The SSAM approach developed by Schoellhamer (2001) computes the elements ( )c j  326 

of the lagged correlation matrix by, 327 
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where, both xi and xi+j must be observed rather than missed, 
jN  is the number of the 329 

products of xi and xi+j within the sample index i N j  . Then we compute the 330 

eigenvalues and eigenvectors from the lagged correlation matrix C. The PCs are also 331 

calculated with observed data, 332 
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where
iL  is the number of observed data within the sample index from i to i+L-1. The 334 

reconstruction procedure of time series from PCs is the same as SSA. The scale factor 335 

L/Li is used to compensate the missing value.  336 

In order to derive the expression of computing PCs for the time series with missing data, 337 

the Eq. (3) is reformulated as, 338 
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where, 1 1i N L    , iS  and iS  are the index sets of sampling data and missing 340 

data respectively within the integer interval [ ,  1],i i L   i.e. 0i iS S   and 341 

 , + 1i iS S i i L   . If PCs are available, we can reproduce the missing values. Therefore, 342 

the missing values in Eq. (7) can be substituted with PCs as, 343 
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Substituting Eq. (8) into the second term of the right hand of Eq. (7) yields, 345 
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Collecting all equations of Eq. (9) for k =1,2,…, L, we have,  347 

i i iG ξ y                                 (10) 348 
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ξ y                        (12) 351 

Since
iG is a symmetric and rank-deficient matrix with the number of rank-deficiency 352 

equaling to the number of missing data within the interval [xi, xi+L-1], the PCs ,k ia  353 

(k=1, ,2,…,L) are solved with Eq. (10) based on the following criterion (Shen et al. 354 

2014), 355 

1min : T

i i


ξ Λ ξ                             (13) 356 

where, Λ  is diagonal matrix of eigenvalues 
k , which is the covariance matrix of PCs. 357 

The solution of Eq. (10) is as follows,  358 
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i i i i i



ξ ΛG G ΛG y                        (14) 359 

The symbol ‘-’ denotes the pseudo-inverse of a matrix. 360 

If the non-diagonal elements of Gi are all set to zero, the Eq. (14) can be further 361 

simplified as, 362 

, 1 ,2
1,

1

1
   1 ,  1 1

1

i

k i i j j k

j Lj k

i j S

a x v k L i N L
v

 

 

  

      





   (15) 363 

Supposing 
1, 2, , 1k k L kv v v L     at the missing data points, the solution of Eq. (15) 364 

will be reduced to Eq. (6). Therefore, the SSAM approach is a special case of our ISSA 365 



approach. By the way, the first several PCs contain most variance; the element 1i jx    366 

can be approximately reproduced with the first several PCs in Eq. (8). 367 

The main difference of our ISSA approach from the SSAM approach of Schoellhamer 368 

(2001) is in calculating the PCs. We produce the PCs from observed data with Eq. (14) 369 

according to the power spectrum (eigenvalues) and eigenvectors of the PCs. While 370 

Schoellhamer (2001) calculates the PCs from observed data with Eq. (6) only according 371 

to the eigenvectors and uses the scale factor L/Li to compensate the missing value. We 372 

have pointed out that this scale factor can be derived from Eq. (15), which is the 373 

simplified version of our ISSA approach, by supposing the missing data points with the 374 

same eigenvector elements. Therefore the performance of our ISSA approach will be 375 

better than SSAM of Schoellhamer (2001). The only disadvantage of our method is that 376 

it will cost more computational effort. 377 

3. Performance of ISSA with synthetic time series 378 

The same synthetic time series as Schoellhamer (2001) are used to analyze the 379 

performance of ISSA compared to SSAM. The synthetic SSC time series is expressed 380 

as, 381 

       0.2 s sc t R t c t c t                         (16) 382 

where, R(t) is a time series of Gaussian white noise with zero mean and unit standard 383 

deviation;  sc t  is the periodic signal expressed as, 384 

   

  

100 25cos 25 1 cos2 sin

        25 1 0.25 1 cos2 sin sin

s s s sn

s sn a

c t t t t

t t t

  

  

   

  
               (17) 385 

The periodic signal oscillates about the mean value 100mg/L including the signals with 386 

seasonal frequency 12 / 365 s day  , spring/neap angular frequency 12 /14 daysn    387 

and advection angular frequency   12 / 12.5 / 24  daya   . The one year of synthetic SSC 388 

time series  c t , starting at October 1 with 15-minute time step, is presented on the 389 

bottom of Fig. 1, the corresponding periodic signal  sc t  is shown on the top of Fig. 390 

1. 391 



 392 

Figure 1. periodic signal  sc t （top）and Synthetic time series（bottom） 393 

Although the selection of window length is an important issue for SSA (Hassani 2012, 394 

2013), this paper chooses the same window length (L=120) as that in Schoellhamer 395 

(2001) in order to compare the performance of the proposed method with that of 396 

Schoellhamer (2001). Using the synthetic time series we computed the lagged 397 

correlation matrix and the variances of each mode. The first 4 modes contain the 398 

periodic components, which account for 72.3% of the total variance; particularly, the 399 

first mode contains 50.2% of the total variance. In order to evaluate the accuracies of 400 

reconstructed PCs from the time series with different percentages of missing data, 401 

following the way of Shen et al. (2014), we compute the relative errors of the first four 402 

modes derived by ISSA and SSAM with the following expression, 403 

   0 0

1 0 0

1
100%

T
N

i i

T
i

p
N 

 
 

a a a a

a a
                     (18) 404 

where, the symbol ‘T ’ denotes the transpose of a matrix; p denotes relative error; N is 405 

the number of repeated experiments; 
ia  is the reconstructed PCs of ith experiment 406 

from data missing time series, 
0a  denotes the PCs reconstructed from the time series 407 

without missing data. We design the experiment of missing data by randomly deleting 408 

the data from the synthetic time series. The percentage of deleted data is from 10% to 409 

60% with an increase of 10% each time. Then, we reconstruct the first four PCs from 410 

the data deleted synthetic time series using both SSAM and ISSA, and repeat the 411 

experiments for 50 times. The relative errors of the first four PCs are presented in Fig. 412 

2, from which we clearly see that the accuracies of reconstructed PCs by our ISSA are 413 

obviously higher than those by SSAM, especially for the second and fourth PCs. In the 414 

case of 60% missing data, the accuracy improvements are up to 19.64, 41.34, 23.27 and 415 

50.30% for the first four PCs, respectively. 416 
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 418 

Figure 2. Relative errors of first four PCs (ISSA: red line; SSAM: black line) 419 

We reconstruct the time series  ĉ t  using the first four PC modes and then evaluate 420 

the quality of reconstructed series by examining the error      ˆ ˆ
sc c ct t t   . For the 421 

cases whose missing data are between 10% to 50% over the whole time series, the 422 

reconstructed component of the time series is calculated only when the percentage of 423 

missing data in the window size is less than 50%; while for the cases whose overall 424 

missing data already reach 60%, it is allowed 60% missing data in the window size. In 425 

Fig. 3, we demonstrate the root mean squared errors (RMSE) of each experiment of 426 

different percentages of missing data. The RMSE is computed with  ĉ t  as 427 

 2

1

ˆRMSE
M

j

j

c Mt


                            (19) 428 

where M is the number of data points involved in the experiment. 429 
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 430 
Figure 3. RMSE of 50 experiments, (1)~(6) represent percentage of missing data 431 

ranging from 10% to 60% with 10% increments. 432 

As we can see from the Fig. 3, the RMSEs of ISSA are much smaller than those of 433 

SSAM for all same experiment scenarios. In Table 1, we present the mean absolute 434 

reconstruction error (MARE) and mean root mean squared errors (MRMSE) of 50 435 

experiments with different percentages of missing data. 436 

Table 1: Mean absolute reconstruction error and mean root mean squared error of 437 

simulated time series with different percentage of missing data (mg L-1) 438 

Percentage of 

Missing Data 

(%) 

MARE MRMSE 

SSAM ISSA 
IMP 

(%) 
SSAM ISSA 

IMP 

(%) 

0 2.48 2.48 0 2.06 2.06 0% 

10 2.87 2.60 9.41 3.68 3.38 2.21 

20 3.26 2.73 16.26 4.19 3.56 15.04 

30 3.71 2.90 21.83 4.76 3.78 20.59 

40 4.22 3.11 26.30 5.42 4.07 24.91 

50 4.57 3.17 30.63 5.89 4.14 29.71 

60 5.37 3.52 34.45 6.96 4.60 33.91 

SF Bay 

Example 
3.38 3.08 8.87 2.70 2.29 15.19 

Obviously, if there is no missing data, the ISSA coincides with SSAM. If the 439 

percentage of missing data increases, both MARE and MRMSE will become larger. 440 

In Table 1, all the MARE and MRMSE of ISSA are smaller than those of SSAM. 441 

When the percentage of missing data reaches 50%, the MARE and MRMSE are 442 

3.17mg L-1 and 4.14 mg L-1 for ISSA, and 4.57 mg L-1 and 5.89 mg L-1 for SSAM, 443 

respectively. The improved percentage (IMP) of ISSA with respect to SSAM is also 444 

listed in Table 1. As the missing data increases, the IMPs of both MARE and MRMSE 445 
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increase as well. Moreover, when the synthetic time series with the missing data is 446 

same as the real SSC time series of Fig. 4, the IMPs of MARE and MRMSE are 8.87% 447 

and 15.19%, respectively. 448 

4. Performance of ISSA with real time series 449 

The mid-depth SSC time series at San Mateo Bridge is presented in Fig. 4, which 450 

contains about 61% missing data. This time series was reported by Buchanan and 451 

Schoellhamer (1999) and Buchanan and Ruhl (2000), and analyzed by Schoellhamer 452 

(2001) using SSAM. We analyze this time series using our ISSA with the window size 453 

of 30h (L=120) comparing with SSAM. The first 10 modes represent dominant 454 

periodic components as shown in Schoellhamer (2001) which contain 89.1% of the 455 

total variance. Therefore, we reconstruct the time series with first 10 modes when the 456 

missing data in a window size is less than 50%. 457 

 458 

Figure 4. Mid-depth SSC time series at San Mateo Bridge during water year 1997 459 

The residual time series, e.g. the differences of observed minus reconstructed data, are 460 

presented in Fig. 5. The maximum, minimum and mean absolute residuals as well as 461 

the SD are presented in Table 2. It is clear that both maximum and minimum residuals 462 

are significantly reduced by using ISSA approach. The SD of our ISSA is reduced by 463 

8.6%. The squared correlation coefficients between the observations and the 464 

reconstructed data from ISSA and SSAM are 0.9178 and 0.9046, respectively, which 465 

reflect that the reconstructed time series with our ISSA can indeed, to very large extent, 466 

specify the real time series. 467 
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 468 

Figure 5. Residual series after removing reconstructed signals from first 10 modes 469 

(top: SSAM; bottom: ISSA) 470 

Table 2: Maximum and minimum and mean absolute residuals of SSAM and 471 

ISSA 472 

Residuals(mg L-1) SSAM ISSA 

Maximum 145.05 126.61 

Minimum -432.20 -227.70 

Mean absolute residuals 8.19 8.00 

SD 13.48 12.27 

 473 

 474 

 475 

5. Conclusions  476 

We have developed the ISSA approach in this paper for processing the incomplete time 477 

series by using the principle that a time series can be reproduced by using its principal 478 

components. We proved that the SSAM developed by Schoellhamer (2001) is a special 479 

case of our ISSA. The performances of ISSA and SSAM were demonstrated with a 480 

synthetic time series, and the results show that the relative errors of the first four 481 

principal components by ISSA are significantly smaller than those by SSAM. As the 482 

fraction of missing data increases, the improvement of the relative error becomes 483 

greater. When the percentage of missing data reaches 60%, the improvements of the 484 

first four principal components are up to 19.64, 41.34, 23.27 and 50.30%, respectively. 485 

Moreover, when the missing data accounts for 60%, the MARE and MRMSE derived 486 

by ISSA are 3.52 mg L-1 and 4.60 mg L-1, and by SSAM are 5.37 mg L-1 and 6.96 mg 487 

L-1. The corresponding improvements of ISSA with respect to SSAM are 34.45 and 488 

33.91%. When the missing data of synthetic time series is the same as the real SSC time 489 

series, the improvements of MARE and MRMSE are 8.87 and 15.19%, respectively. 490 

The SD derived from the real SSC time series at San Mateo Bridge by ISSA and SSAM 491 
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are 12.27 mg L-1 and 13.48 mg L-1, and the squared correlation coefficients between the 492 

observations and the reconstructed data from ISSA and SSAM are 0.9178 and 0.9046, 493 

respectively. Therefore, ISSA can indeed, to a great extent, retrieve the informative 494 

signals from the original incomplete time series. 495 

 496 

Author contribution 497 

Y. Shen proposed the improved singular spectrum analysis and F. Peng carried out the 498 

FORTRAN program and performed the simulations. Y. Shen, F. Peng and B. Li 499 

prepared the manuscript.  500 

 501 

Acknowledgements 502 

This work was sponsored by Natural Science Foundation of China (Projects: 41274035, 503 

41474017) and partly supported by State Key Laboratory of Geodesy and Earth's 504 

Dynamics (SKLGED2013-3-2-Z). 505 

 506 

References  507 

Broomhead, D.S., G.P. King, Extracting qualitative dynamics from experimental data. 508 

Physica D, 20, 217-236, 1986. 509 

Buchanan, P.A., and C.A Ruhl, Summary of suspended-solids concentration data, San 510 

Francisco Bay, California, water year 1998, Open File Report 99-189, 41 pp., 511 

U.S. Geological Survey, 2000.  512 

Buchanan, P.A., and D. H. Schoellhamer, Summary of suspended solids concentration 513 

data, San  Francisco Bay, California, water year 1997, Open File Report 00-514 

88 URL http://ca.water.  usgs.gov/rep/ofr99189/, 52 pp., U.S. Geological 515 

Survey, 1999. 516 

Golyandina, N., E. Osipov, The “Catterpillar”-SSA method for analysis of time series 517 

with missing data, J. Stat. Plan. Inf., 137, 2642-2653, 2007. 518 

Hassani H., Mahmoudvand R., Zokaei M., et al. On the Separability between signal and 519 

noise in singular spectrum analysis, Fluct. Noise Lett. 11(2), 1-11, 2012. 520 

Hassani H., Mahmoudvand R. Multivariate singular spectrum analysis: a general view 521 

and new vector forecasting approach, Int. J. Energy Stat., 1(1), 55-83, 2013. 522 

Kondrashov, D. M. Ghil, Spatio-temporal filling of missing points in geophysical data 523 

sets, Nonlin. Processes Geophys., 13, 151-159, 2006. 524 

Oropeza, V., M. Sacchi, Simultaneous seismic data denoising and reconstruction via 525 

multichannel singular spectrum analysis, Geophysics, 76(3), 25-32, 2011. 526 

Robertson, A.W. and C. R. Mechoso, Interannual and decadal cycles in river flows of 527 

southeastern  South America, Journal of Climate, 11(10), 2570-2581, 1998.  528 

Rodrigues, P.C., M. de Carvalho, Spectral modeling of time series with missing data, 529 

2013 530 

Schoellhamer, D.H., Factors affecting suspended-solids concentrations in South San 531 



Francisco Bay, California, J. Geophys. Res., 101(C5), 12087-12095, 1996. 532 

Schoellhamer, D.H., Singular spectrum analysis for time series with missing data, 533 

Geophys. Res. Lett. 28(16), 3187-3190, 2001. 534 

Schoellhamer, D.H., Variability of suspended-sediment concentration at tidal to annual 535 

time scales in San Francisco Bay, USA, Continental Shelf Research, 22, 1857-536 

1866, 2002  537 

Shen, Y., W. Li, G. Xu, B. Li. Spatiotemporal filtering of regional GNSS network’s 538 

position time series with missing data using principal component analysis, 539 

Journal of Geodesy, DOI 10.1007/s00190-013-0663-y, Vol.88: 1-12, 2014 540 

Vautard, R., P. Yiou, and M. Ghil, Singular-spectrum analysis: A toolkit for short, noisy, 541 

chaotic signals, Physica D, 58, 95-126, 1992.  542 

Vautard, R. and M. Ghil, Singular spectrum analysis in nonlinear dynamics with 543 

applications to paleoclimatic time series, Physica D, 35, 395-424, 1989.  544 

Wang, X.L., J. Corte-Real, and X. Zhang, Intraseasonal oscillations and associated 545 

spatial-temporal  structures of precipitation over China, J. Geophys. Res., 546 

101(D14), 19035-19042, 1996.  547 

Yiou, P., K. Fuhrer, L.D. Meeker, J. Jouzel, S. Johnsen, and P.A. Masked, Paleoclimatic 548 

variability  inferred from the spectral analysis of Greenland and Antarctic ice-549 

core data, J. Geophys. Res., 102(C12), 26441-26454, 1997. 550 

Zotova, L.V., C.K. Shum, Multichannel singular spectrum analysis of the gravity field 551 

from grace satellites, AIP Conf. Proc., 1206, 473-479, 2010 552 


