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Abstract. Singular spectrum analysis (SSA) is a powerful technique for time series 7 

analysis. Based on the property that the original time series can be reproduced from its 8 

principal components, this contribution will develop an improved SSA (ISSA) for 9 

processing the incomplete time series and the modified SSA (SSAM) of Schoellhamer 10 

(2001) is its special case. The approach was evaluated with the synthetic and real 11 

incomplete time series data of suspended-sediment concentration from San Francisco 12 

Bay. The result from the synthetic time series with missing data shows that the 13 

relative errors of the principal components reconstructed by ISSA are smaller than 14 

those reconstructed by SSAM. Moreover, when the percentage of the missing data 15 

over the whole time series reaches 60%, the improvements of relative errors are up to 16 

19.64, 41.34, 23.27 and 50.30% for the first four principal components, respectively. 17 

Besides, both the mean absolute error and mean root mean squared error of the 18 

reconstructed time series by ISSA are also smaller than those by SSAM. The 19 

respective improvements are 34.45 and 33.91% when the missing data accounts for 20 

60%. The results from real incomplete time series also show that the standard 21 

deviation (SD) derived by ISSA is 12.27mg L-1, smaller than 13.48 mg L-1 derived by 22 

SSAM. 23 
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1. Introduction 25 

Singular spectrum analysis (SSA) introduced by Broomhead and King (1986) for 26 

studying dynamical systems is a powerful toolkit for extracting short, noisy and 27 

chaotic signals (Vautard et al., 1992). SSA first transfers a time series into trajectory 28 

matrix, and carries out the principal component analysis to pick out the dominant 29 

components of the trajectory matrix. Based on these dominant components, the time 30 

series is reconstructed. Therefore the reconstructed time series improves the signal to 31 

noise ratio and reveals the characteristics of the original time series. SSA has been 32 

widely used in geosciences to analyze a variety of time series, such as the stream flow 33 

and sea-surface temperature (Robertson and Mechoso, 1998; Kondrashov and Ghil, 34 

2006), the seismic tomography (Oropeza and Sacchi, 2011) and the monthly gravity 35 

field (Zotova and Shum, 2010). Schoellhamer (2001) developed a modified SSA for 36 

time series with missing data (SSAM), which has been successfully applied to analyze 37 

the time series of suspended-sediment concentration (SSC) in San Francisco Bay 38 

(Schoellhamer, 2002). This SSAM approach doesn’t need to fill missing data. Instead, 39 

it computes the each principal component (PC) with observed data and a scale factor 40 

related to the number of missing data. Shen et al. (2014) developed a new principal 41 

component analysis approach for extracting common mode errors from the time series 42 



with missing data of a regional station network. The other kind of SSA approaches 43 

process the time series with missing data by filling the data gaps recursively or 44 

iteratively, such as the “Catterpillar”-SSA method (Golyandina and Osipov, 2007), the 45 

imputation method (Rodrigues and Carvalho, 2013) or the iterative method 46 

(Kondrashov and Ghil, 2006). 47 

This paper is motivated by Schoellhamer (2001) and Shen et al. (2014) and will 48 

develop an improved SSA (ISSA) approach. In our ISSA, the lagged correlation 49 

matrix is computed with the same way as Schoellhamer (2001), the PCs are directly 50 

computed with both the eigenvalues and eigenvectors of the lagged correlation matrix. 51 

However, the PCs in Schoellhamer (2001) were calculated with the eigenvectors and a 52 

scale factor to compensate the missing value. Moreover, we do not need to fill the 53 

missing data recursively and iteratively as in Golyandina and Osipov (2007). The rest 54 

of this paper is organized as follows: the improvement of SSA for time series with 55 

missing data will be followed in Sect. 2, synthetic and real numerical examples are 56 

presented in Sects. 3 and 4 respectively, and then conclusions are given in last Sect. 5. 57 

2. Improved Singular Spectrum Analysis for Time Series with Missing Data  58 

For a stationary time series xi (1≤ i ≤ N), we can construct an L(N-L+1) trajectory 59 

matrix with a window size L, its Toeplitz lagged correlation matrix C is formulated by 60 
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For matrix C, we can compute its eigenvalues k and the corresponding eigenvectors 64 

kv  in descending order of k (1≤ k ≤ L). Then the ith element of kth principal 65 

components (PCs) ka  is computed by 66 

, 1 ,

1

              1 1
L

k i i j j k

j

a x v i N L 



               (3) 67 

where ,j kv  is the jth element of kv . We compute the kth reconstructed components 68 

(RCs) of the time series with the kth PCs as (Vautard et al., 1992) 69 
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Since k, the variance of the kth RC, is sorted in descending order, the first several 71 

RCs contain most of the signals of the time series, while the remaining RCs contain 72 

mainly the noises of time series. Thus the original time series will be reconstructed 73 

with first several RCs. 74 

The SSAM approach developed by Schoellhamer (2001) computes the elements ( )c j  75 

of the lagged correlation matrix by, 76 
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where, both xi and xi+j must be observed rather than missed, 
jN  is the number of the 78 

products of xi and xi+j within the sample index i N j  . Then we compute the 79 

eigenvalues and eigenvectors from the lagged correlation matrix C. The PCs are also 80 

calculated with observed data, 81 
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where
iL  is the number of observed data within the sample index from i to i+L-1. The 83 

reconstruction procedure of time series from PCs is the same as SSA. The scale factor 84 

L/Li is used to compensate the missing value.  85 

In order to derive the expression of computing PCs for the time series with missing 86 

data, the Eq. (3) is reformulated as, 87 
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where, 1 1i N L    , iS  and iS  are the index sets of sampling data and missing 89 

data respectively within the integer interval [ ,  1],i i L   i.e. 0i iS S   and 90 

 , + 1i iS S i i L   . If PCs are available, we can reproduce the missing values. Therefore, 91 

the missing values in Eq. (7) can be substituted with PCs as, 92 
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Substituting Eq. (8) into the second term of the right hand of Eq. (7) yields, 94 
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Collecting all equations of Eq. (9) for k =1,2,…, L, we have,  96 

i i iG ξ y                                 (10) 97 

where,  98 
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Since
iG is a symmetric and rank-deficient matrix with the number of rank-deficiency 101 

equaling to the number of missing data within the interval [xi, xi+L-1], the PCs ,k ia  102 

(k=1, ,2,…,L) are solved with Eq. (10) based on the following criterion (Shen et al. 103 

2014), 104 

1min : T

i i
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where, Λ  is diagonal matrix of eigenvalues 
k , which is the covariance matrix of PCs. 106 

The solution of Eq. (10) is as follows,  107 
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The symbol ‘-’ denotes the pseudo-inverse of a matrix. 109 

If the non-diagonal elements of Gi are all set to zero, the Eq. (14) can be further 110 

simplified as, 111 
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   (15) 112 

Supposing 
1, 2, , 1k k L kv v v L     at the missing data points, the solution of Eq. 113 

(15) will be reduced to Eq. (6). Therefore, the SSAM approach is a special case of our 114 

ISSA approach. By the way, the first several PCs contain most variance; the element 115 

1i jx    can be approximately reproduced with the first several PCs in Eq. (8). 116 



The main difference of our ISSA approach from the SSAM approach of Schoellhamer 117 

(2001) is in calculating the PCs. We produce the PCs from observed data with Eq. (14) 118 

according to the power spectrum (eigenvalues) and eigenvectors of the PCs. While 119 

Schoellhamer (2001) calculates the PCs from observed data with Eq. (6) only 120 

according to the eigenvectors and uses the scale factor L/Li to compensate the missing 121 

value. We have pointed out that this scale factor can be derived from Eq. (15), which 122 

is the simplified version of our ISSA approach, by supposing the missing data points 123 

with the same eigenvector elements. Therefore the performance of our ISSA approach 124 

will be better than SSAM of Schoellhamer (2001). The only disadvantage of our 125 

method is that it will cost more computational effort. 126 

3. Performance of ISSA with synthetic time series 127 

The same synthetic time series as Schoellhamer (2001) are used to analyze the 128 

performance of ISSA compared to SSAM. The synthetic SSC time series is expressed 129 

as, 130 
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where, R(t) is a time series of Gaussian white noise with zero mean and unit standard 132 

deviation;  sc t  is the periodic signal expressed as, 133 
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The periodic signal oscillates about the mean value 100mg/L including the signals 135 

with seasonal frequency 12 / 365 s day  , spring/neap angular frequency 136 

12 /14 daysn    and advection angular frequency   12 / 12.5 / 24  daya   . The one 137 

year of synthetic SSC time series  c t , starting at October 1 with 15-minute time step, 138 

is presented on the bottom of Fig. 1, the corresponding periodic signal  sc t  is 139 

shown on the top of Fig. 1. 140 
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Figure 1. periodic signal  sc t （top）and Synthetic time series（bottom） 142 

Although the selection of window length is an important issue for SSA (Hassani 2012, 143 



2013), this paper chooses the same window length (L=120) as that in Schoellhamer 144 

(2001) in order to compare the performance of the proposed method with that of 145 

Schoellhamer (2001). Using the synthetic time series we computed the lagged 146 

correlation matrix and the variances of each mode. The first 4 modes contain the 147 

periodic components, which account for 72.3% of the total variance; particularly, the 148 

first mode contains 50.2% of the total variance. In order to evaluate the accuracies of 149 

reconstructed PCs from the time series with different percentages of missing data, 150 

following the way of Shen et al. (2014), we compute the relative errors of the first 151 

four modes derived by ISSA and SSAM with the following expression, 152 
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where, the symbol ‘T ’ denotes the transpose of a matrix; p denotes relative error; N is 154 

the number of repeated experiments; 
ia  is the reconstructed PCs of ith experiment 155 

from data missing time series, 
0a  denotes the PCs reconstructed from the time series 156 

without missing data. We design the experiment of missing data by randomly deleting 157 

the data from the synthetic time series. The percentage of deleted data is from 10% to 158 

60% with an increase of 10% each time. Then, we reconstruct the first four PCs from 159 

the data deleted synthetic time series using both SSAM and ISSA, and repeat the 160 

experiments for 50 times. The relative errors of the first four PCs are presented in Fig. 161 

2, from which we clearly see that the accuracies of reconstructed PCs by our ISSA are 162 

obviously higher than those by SSAM, especially for the second and fourth PCs. In 163 

the case of 60% missing data, the accuracy improvements are up to 19.64, 41.34, 164 

23.27 and 50.30% for the first four PCs, respectively. 165 
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Figure 2. Relative errors of first four PCs (ISSA: red line; SSAM: black line) 168 

We reconstruct the time series  ĉ t  using the first four PC modes and then evaluate 169 

the quality of reconstructed series by examining the error      ˆ ˆ
sc c ct t t   . For the 170 



cases whose missing data are between 10% to 50% over the whole time series, the 171 

reconstructed component of the time series is calculated only when the percentage of 172 

missing data in the window size is less than 50%; while for the cases whose overall 173 

missing data already reach 60%, it is allowed 60% missing data in the window size. In 174 

Fig. 3, we demonstrate the root mean squared errors (RMSE) of each experiment of 175 

different percentages of missing data. The RMSE is computed with  ĉ t  as 176 
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M
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where M is the number of data points involved in the experiment. 178 
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 179 
Figure 3. RMSE of 50 experiments, (1)~(6) represent percentage of missing data 180 

ranging from 10% to 60% with 10% increments. 181 

As we can see from the Fig. 3, the RMSEs of ISSA are much smaller than those of 182 

SSAM for all same experiment scenarios. In Table 1, we present the mean absolute 183 

reconstruction error (MARE) and mean root mean squared errors (MRMSE) of 50 184 

experiments with different percentages of missing data. 185 

Table 1: Mean absolute reconstruction error and mean root mean squared error of 186 

simulated time series with different percentage of missing data (mg L-1) 187 

Percentage of 

Missing Data 

(%) 

MARE MRMSE 

SSAM ISSA 
IMP 

(%) 
SSAM ISSA 

IMP 

(%) 

0 2.48 2.48 0 2.06 2.06 0% 

10 2.87 2.60 9.41 3.68 3.38 2.21 

20 3.26 2.73 16.26 4.19 3.56 15.04 

30 3.71 2.90 21.83 4.76 3.78 20.59 

40 4.22 3.11 26.30 5.42 4.07 24.91 

50 4.57 3.17 30.63 5.89 4.14 29.71 



60 5.37 3.52 34.45 6.96 4.60 33.91 

SF Bay 

Example 
3.38 3.08 8.87 2.70 2.29 15.19 

Obviously, if there is no missing data, the ISSA coincides with SSAM. If the 188 

percentage of missing data increases, both MARE and MRMSE will become larger. 189 

In Table 1, all the MARE and MRMSE of ISSA are smaller than those of SSAM. 190 

When the percentage of missing data reaches 50%, the MARE and MRMSE are 191 

3.17mg L-1 and 4.14 mg L-1 for ISSA, and 4.57 mg L-1 and 5.89 mg L-1 for SSAM, 192 

respectively. The improved percentage (IMP) of ISSA with respect to SSAM is also 193 

listed in Table 1. As the missing data increases, the IMPs of both MARE and 194 

MRMSE increase as well. Moreover, when the synthetic time series with the missing 195 

data is same as the real SSC time series of Fig. 4, the IMPs of MARE and MRMSE 196 

are 8.87% and 15.19%, respectively. 197 

4. Performance of ISSA with real time series 198 

The mid-depth SSC time series at San Mateo Bridge is presented in Fig. 4, which 199 

contains about 61% missing data. This time series was reported by Buchanan and 200 

Schoellhamer (1999) and Buchanan and Ruhl (2000), and analyzed by Schoellhamer 201 

(2001) using SSAM. We analyze this time series using our ISSA with the window 202 

size of 30h (L=120) comparing with SSAM. The first 10 modes represent dominant 203 

periodic components as shown in Schoellhamer (2001) which contain 89.1% of the 204 

total variance. Therefore, we reconstruct the time series with first 10 modes when the 205 

missing data in a window size is less than 50%. 206 
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Figure 4. Mid-depth SSC time series at San Mateo Bridge during water year 1997 208 

The residual time series, e.g. the differences of observed minus reconstructed data, 209 

are presented in Fig. 5. The maximum, minimum and mean absolute residuals as 210 

well as the SD are presented in Table 2. It is clear that both maximum and minimum 211 

residuals are significantly reduced by using ISSA approach. The SD of our ISSA is 212 

reduced by 8.6%. The squared correlation coefficients between the observations and 213 

the reconstructed data from ISSA and SSAM are 0.9178 and 0.9046, respectively, 214 

which reflect that the reconstructed time series with our ISSA can indeed, to very 215 

large extent, specify the real time series. 216 
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Figure 5. Residual series after removing reconstructed signals from first 10 modes 218 

(top: SSAM; bottom: ISSA) 219 

Table 2: Maximum and minimum and mean absolute residuals of SSAM and 220 

ISSA 221 

Residuals(mg L-1) SSAM ISSA 

Maximum 145.05 126.61 

Minimum -432.20 -227.70 

Mean absolute residuals 8.19 8.00 

SD 13.48 12.27 

 222 

 223 

 224 

5. Conclusions  225 

We have developed the ISSA approach in this paper for processing the incomplete 226 

time series by using the principle that a time series can be reproduced by using its 227 

principal components. We proved that the SSAM developed by Schoellhamer (2001) 228 

is a special case of our ISSA. The performances of ISSA and SSAM were 229 

demonstrated with a synthetic time series, and the results show that the relative errors 230 

of the first four principal components by ISSA are significantly smaller than those by 231 

SSAM. As the fraction of missing data increases, the improvement of the relative 232 

error becomes greater. When the percentage of missing data reaches 60%, the 233 

improvements of the first four principal components are up to 19.64, 41.34, 23.27 and 234 

50.30%, respectively. Moreover, when the missing data accounts for 60%, the MARE 235 

and MRMSE derived by ISSA are 3.52 mg L-1 and 4.60 mg L-1, and by SSAM are 236 

5.37 mg L-1 and 6.96 mg L-1. The corresponding improvements of ISSA with respect 237 

to SSAM are 34.45 and 33.91%. When the missing data of synthetic time series is the 238 

same as the real SSC time series, the improvements of MARE and MRMSE are 8.87 239 

and 15.19%, respectively. The SD derived from the real SSC time series at San Mateo 240 

Bridge by ISSA and SSAM are 12.27 mg L-1 and 13.48 mg L-1, and the squared 241 



correlation coefficients between the observations and the reconstructed data from 242 

ISSA and SSAM are 0.9178 and 0.9046, respectively. Therefore, ISSA can indeed, to 243 

a great extent, retrieve the informative signals from the original incomplete time 244 

series. 245 
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