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Abstract

Describing the nature and variability of Indian monsoon rainfall extremes is a topic of
much debate in the current literature. We suggest the use of a generalized linear mixed
model (GLMM), specifically, the logit-normal mixed model, to describe the underlying
structure of this complex climatic event. Several GLMM algorithms are described and5

simulations are performed to vet these algorithms before applying them to the Indian
precipitation data procured from the National Climatic Data Center. The logit-normal
model was applied with fixed covariates of latitude, longitude, elevation, daily minimum
and maximum temperatures with a random intercept by weather station. In general,
the estimation methods concurred in their suggestion of a relationship between the10

El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This
work provides a valuable starting point for extending GLMM to incorporate the intricate
dependencies in extreme climate events.

1 Introduction

Indian rainfall extremes have been studied by many in the past few decades with vary-15

ing published results. Goswami et al. (2006) used daily central Indian rainfall in a linear
regression framework and noted significant rising trends in frequency and magnitude of
extreme (≥ 150 mmday−1) rain events. Ghosh et al. (2009) conducted a similar study at
a finer spatial scale, using 1◦×1◦ data vs. the 10◦ latitude×12◦ longitude (central India)
used in Goswami et al. (2006). Their findings indicated more of mixture of increases20

and decreases of extreme rainfall events dependent on location. Ghosh et al. (2012)
expanded on this result and added that there has been increasing spatial variability in
observed Indian rainfall extremes. Methodology in this research included the use of ex-
treme value theory (EVT) as an attempt to account for the modeling of extremes. Turner
and Annamalai (2012) indicated even complex climate models have high uncertainty25
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for projections of monsoon rainfall due to linked variability on different temporal and
spatial scales.

Regression techniques and EVT failed to adequately capture the broad statistical
properties of the Indian summer monsoon precipitation. Several drivers of monsoons
have been proposed in the literature including Himalayan/Eurasian snow extent (Kumar5

et al., 1999), Pacific trade winds (Li and Yanai, 1996), atmospheric CO2 concentration
(Prell and Kutzback, 1992), and most commonly sea surface temperatures (SST) at-
tributed to El Niño-Southern Oscillation (ENSO) (Turner and Annamalai, 2012; Kumar
et al., 1999; Li and Yanai, 1996; Prell and Kutzback, 1992). However, none have been
conclusively shown to drive the monsoon rainfall which suggests an intricate relation-10

ship between some or all of these factors.
Based on the above context, we propose using a generalized linear mixed model

(GLMM) as a potential broader framework for analysis of Indian monsoon precipitation
data. A GLMM is a broader framework compared to the standard (linear, log-linear,
logistic, or other) regression in that there are random effects involved. This implies15

part of the signal is random, and changes from one set of circumstances to another.
In the current context, a GLMM may be a suitable model for capturing local, instanta-
neous variability. Such local variability may arise from cloud and other physical micro-
properties. In case there is no such local variability, an appropriate variance component
in the GLMM would be zero, thus recovering any true underlying “fixed-effects” regres-20

sion model. GLMMs are commonly used in epidemiological and other biostatistical
areas when repeated measures are available for each “subject” (stations, states, etc).
A GLMM essentially allows for some underlying forces to drive the observable data in
a particular hierarchy. This could be key in climate applications as we may not suffi-
ciently be able to attribute drivers of extreme rainfall to observable data. One issue in25

GLMMs that has been studied since their introduction in Stiratelli et al. (1984) is consis-
tent estimation, i.e. with enough observations the estimates essentially represent the
truth.
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This paper provides a glance on how to extend GLMMs to handle climate applica-
tions, where extremes and complicated temporal and spatial dependency patterns are
important. We present a case study on Indian monsoon summer precipitation. One
of our major findings is that the random effect variance component is non-negligible
in the analysis of extreme precipitation due to Indian monsoons. It may be significant5

for light or moderate precipitation as well, although further studies are needed to ver-
ify this claim. The estimates of variability in the models for extreme rainfall indicated
a meaningful correspondence to El Niño events over the time frame examined, which
also deserves further analysis.

Section 2 provides a short background on GLMMs and in particular, elucidates the10

logit-normal model. Section 3 provides a background on the theory and application of
several estimation methods for GLMMs. Section 4 provides the results of several sim-
ulations using these existing methods. Section 5 implements the application of these
methods in their current state on precipitation data from India. Finally, Sect. 6 presents
conclusions and future work in this area.15

2 GLMM background

Assume we have data from an exponential family which are independent conditional
on a vector of unobservable random effects where “subjects” IDs run over i = 1, . . . ,m
and the number of (possibly correlated) measurements per subject is from j = 1, . . . ,ni .
Following the notation of McCulloh and Searle (2010), a GLMM can be written as:20

Yi |U = u
ind.∼ fηi (yi |u) = exp

{
yiηi −b(ηi )

τ2
−c(yi ,τ)

}
ηi = xT

i jβ+zT
i u

U ∼ f (u)
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Here Yi = (Yi1, . . . ,Yini )
T, U is the vector of random effects of suitable length, xi j is

a vector of covariates for the fixed effects of the i th subject at the j th time, and zi is
a vector of covariates for the random effects of i th subject.

A highly applicable version of this model is the logit-normal GLMM. A simple hierar-
chical form of the model is:5

Yi j |u
ind.∼ Bernoulli(θi )

logit(θi ) = ηi = xT
i jβ+ui

Ui
ind.∼ N(0,σ2)

This implies the density for a single observation Yi j is10

fβ,σ(yi j |u) = exp
{
yi j
(
xT
i jβ+ui

)
− log

(
1+exp

(
xT
i jβ+ui

))}
Thus, the density for the i th subject is

fβ,σ(yi |u) = exp


ni∑
j=1

yi j
(
xT
i jβ+ui

)
−

ni∑
j=1

log
(

1+exp
(
xT
i jβ+ui

))
15

The assumption of conditional independence among subjects implies the joint den-
sity of the vectors yi is

fβ,σ(y|u) =
m∏
i=1

fβ,σ(yi |u) (1)

The assumption of independent standard normal random effects implies the joint20

density of (Y,U) is

fβ,σ(y,u) = fβ,σ(y|u)f (u) = fβ,σ(y|u)
m∏
i=1

f (ui ) (2)
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However, since the random effects are unobserved, to utilize the observed data like-
lihood, one must find the marginal distribution with respect to the observed data Y only.

fβ,σ(y) =
∫
fβ,σ(y,u)du (3)

This integral is almost never analytically tractable, thus, maximum likelihood estima-5

tion is very difficult, if not impossible. Many methods for inference have been proposed.
Variants of some of the most popular methods are examined later in this paper.

3 Methods for estimating in GLMM

3.1 Penalized quasi-likelihood with Laplace approximation

Breslow and Clayton (1993) were the first to introduce a feasible method for compu-10

tation in GLMMs. Penalized quasi-likelihood (PQL) approximates the high-dimensional
integration using the well-known Laplace approximation (Tierney and Kadane, 1986)
and the approximated likelihood function has that of a Gaussian distribution.

There are a few implementations of PQL which were used within the simulations.
The first function, glmer{lme4} , is from a very popular mixed modeling package in15

R. According to Bates (2010), they define the conditional mode, ũ as the value that
maximizes the unscaled conditional density given in Eq. (2). From there, they deter-
mine ũ as the solution to a penalized nonlinear least squares (PNLS) problem solved
by adapting iterative techniques, such as the Gauss–Newton method. Once the algo-
rithm has converged, the method calculates the Laplace approximation to the deviance20

where the Cholesky factor and penalized residual sum of squares are both evaluated
at the conditional mode, ũ.

The second function, glmmPQL{MASS} relies on multiple calls to lme{nlme} which
is the previous version of the lme4 package. PQL is reasonably accurate when the
data are approximately normal and can be very fast depending on the algorithm used25
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for implementation. However, Lin and Breslow (1996) and others have criticized this
method for it’s bias in highly non-normal data.

3.2 Method of simulated moments

Jiang (1998) describes methodology known as the method of simulated moments
(MSIM). The method first derives a set of sufficient statistics. Estimating equations are5

then obtained by equating sample moments of sufficient statistics to their expectations.
An example of the system of equations to solve in the simple logit-normal intercept only
case (xT

i β = µ) are

1
m

m∑
i=1

yi ·
set
= E

(
1
m

m∑
i=1

yi ·

)
= E (Y1·)

1
m

m∑
i=1

y2
i ·

set
= E

(
1
m

m∑
i=1

y2
i ·

)
= E (Y 2

1· )10

The expectations on the right hand side are generated by use of Monte Carlo sim-
ulations and the whole system can then be solved by the Newton–Raphson method
or some asymptotically equivalent algorithm. We implemented this method in a newly
created R package.15

As shown in Jiang (1998), this method is consistent and computationally much less
intensive than a Markov Chain Monte Carlo (MCMC) method. However, limitations in-
clude slow convergence and less than ideal small sample properties.

3.3 Data cloning

GLMM estimates can be produced in a traditional Bayesian framework; one must20

choose priors for the parameters of interest and calculate the posterior distribution
by multiplying the prior densities by the likelihood in Eq. (3). One may then use MCMC
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to generate a dependent sample from the posterior distribution from which estimates
can be derived based on strong laws.

Lele et al. (2010) derived a method called data cloning to be used in conjunction
with MCMC. The basic idea of their algorithm can be summarized in the following
three steps. First, create a k-cloned data set Y(k) = (Y,Y, . . . ,Y) where observed data5

vector is repeated k times. Second, using an MCMC algorithm, generate a dependent
sample from the posterior distribution πk(θ|Y) which corresponds to the k-cloned data.
Third, calculate the sample means and variances of the components of θ; the MLEs
of θ correspond to the sample means and the approximate variances of the MLEs
correspond to k times the posterior variance of the original data. This method was10

implemented using dclone{dclone} discussed in Solymos (2010). This method is
computationally intensive as it involve MCMC, however, it may provide more accuracy
than MSIM in small samples.

As an additional method, we proposed a hybrid method using the nonparametric
bootstrap and the idea of the data cloning method (Boot Dclone). This was done by15

generating the data, running a nonparametric bootstrap on the rows of the data to
create (k −1) new data sets, and then appending the original and all the bootstrapped
data into one large set. From there, the data were processed by dclone as if it were
a single clone. In essence, this created an approximately k-cloned data set to be run
through the appropriate MCMC algorithm.20

4 Simulations

4.1 Simulation setup

Simulations of the intercept only logit-normal mixed model were conducted with all
combinations of 10, 50, 200, and 1000 as the number of subjects (m) and 2, 10, 50,
and 200 observations per subject (n). All 5 methods were tested using 100 random data25
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sets; means and standard errors of the 100 sets of estimates were then calculated. We
set the true values of the parameters as (µ,σ2) = (2,1).

To describe the estimation discrepancy between µ and µ̂m,n, we used squared er-

ror loss, Q(µ̂m,n) = (µ̂m,n −µ)2. Because squared error loss is criticized for a bounded

parameter space, we used Stein’s loss, S(σ̂2
m,n) =

σ̂2
m,n

σ2 −1− log
σ̂2
m,n

σ2 , to measure how5

well σ2 was estimated. A combined loss was then calculated as G(µ̂m,n, σ̂2
m,n) =

Q(µ̂m,n)+S(σ̂2
m,n).

4.2 Simulation analysis

The results of the simulations are displayed in Tables 1–5. Unsurprisingly, all methods
failed to reasonably estimate both µ and σ2 in the smallest scenario with 10 subjects10

and 2 observations each. MSIM, dclone , and glmer estimated µ within 2 standard
errors for all other settings. The methods also provided reasonable estimates of σ2

for settings other than those that involved 10 subjects. In general, these three methods
indicated a mixture of over and under estimates in each parameter showing no obvious
bias.15

Boot Dclone displayed an obvious positive bias for both parameters in all estimates;
this was exceptionally noticeable in settings with only 2 observations. Reasonable es-
timates for µ were made in some of the 200 observations per subject settings; σ2 was
never estimated well.

glmmPQLdid not converge toward true values and seems to display an underesti-20

mating bias in both the µ and σ parameters. There were also issues with the function
being able to produce estimates for some of the 100 simulations.

4.3 Simulation speed comparison

4 of the 16 settings of data were subsequently tested to determine the speed of the
different methods. These were the combinations of 50 and 200 subjects with 10 and25
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200 observations. The system.time() command in R was used to record times.
The simulations were each run on 4 computers in one R script on a single core. The
computers used were:

– assawa: 2010 Frontier i7 8-core Intel i7 940 (2.93 GHz) with 3 GB of RAM

– geneva: 2011 Frontier i7 8-core Intel i7 950 (3.07 GHz) with 6 GB of RAM5

– nokomis: 2012 Optiplex 7010 8-core Intel i7-3770 (3.40 GHz) with 8 GB of RAM

– tilde: 2013 Optiplex 7010 8-core Intel i7-3770 (3.40 GHz) with 8 GB of RAM

MSIM was implemented in two ways for the speed test. In the simplest intercept-
only form of the logit-normal model, the code can be reduced to eliminate the use
of matrices and can handle much larger data. This is the method used in the previous10

section. However, a more general form is needed for problems that included covariates.
This form relies on matrices and cannot work with large data sets at this time. These
methods are referred to MSIM Fast and MSIM Slow respectively. dclone and Boot
Dclone methods were implemented with 5 clones each- a more reasonable setting
than 100 clones for large data.15

The results in Tables 6–9 indicated that glmmPQLwas the fastest in the 50 subject
cases and glmer was fastest in the 200 subject cases. It is not surprising that these two
methods were the best in terms of speed due to the nature of the approximations that
they make. dclone and Boot Dclone were slower. The fastest of either took around
4 min while the longest took nearly 25 min. MSIM Fast was faster than the MCMC20

methods and only slightly slower than the approximations methods at 3 to 6 s per run.
The MSIM Slow method was much slower with the best case scenario of 1.5 min and
the worst case of nearly 4 h. The case with 200 subjects 200 observations could not
be handled because the size of matrices and vectors exceeded the storage capacity
allowed by R.25
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4.4 Simulation conclusions

In general, glmer and glmmPQLwere the fastest, but glmmPQLdid not give good esti-
mates. dclone gave accurate estimation but was much slower than the approximation
methods. Boot Dclone was very poor in both speed and accuracy. MSIM proved to be
reasonably fast in the intercept-only implementation, however, was much slower than5

other methods in it’s matrix version and failed when too many observations were used.
It should be noted that tuning parameters within each of the methods, such as conver-
gence criteria for MSIM or number of MCMC draws in dclone may impact the time
significantly. Because the bootstrapping dclone method and glmmPQL showed poor
accuracy in the simulations, neither will be used in the following application section.10

5 Application in Indian rainfall extremes

5.1 Data

We applied the logit-normal mixed model to Indian rainfall data using fixed covariates of
latitude (◦), longitude (◦), elevation (m) and daily minimum and maximum temperatures
(0.1 of ◦C). Because it is reasonable to assume each weather station is fundamentally15

different, we fit a random intercept by station. Multiple datasets have been used in
the literature of different temporal and spatial granularity, but initially the goal was to
develop and test the methods on one widely and freely available dataset. Thus, the data
were collected from the National Climatic Data Center (NCDC) in the National Oceanic
and Atmospheric Administration (NOAA) from 1 January 1973 to 31 December 2013.20

Data were queried for all available Indian stations in the database. This produced a total
of 149 weather stations with daily precipitation as well as all necessary covariates.

However, as seen in Tables 11–13, 8 of these stations have no actual observations,
14 others have less than 3 observations, and another 22 have less than 1000 out of the
possible days in the date range. As an example, on 8 August 2012 (a date within the25
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rainy season for most of India), there were 33 stations with NA values, 12 stations with
precipitation of 0 mm, and 31 stations with greater than 0 mm precipitation. This implies
several stations were not included in the data for this day and in general, stations
included in the data change over time. Figure 1 illuminates the rainfall on this date.

Attri and Tyagi (2010) in the Indian Meteorological Department Report defined 3 cat-5

egories of rainfall: light rainfall (0 < x < 64.4 mmday−1), light to heavy rainfall (64.4 ≤
x < 124.4 mmday−1), and extreme rainfall (≥ 124.4 mmday−1). All stations were were
marked each day with indicators of these categories to be used in the modeling. Be-
cause of the magnitude of the data, only observations considered to be within monsoon
season were used. This conservatively includes the time period from 1 May to 31 Octo-10

ber (184 days) for each year. In order to understand the changing variability by station
over time we fit models for each year from 1973–2013.

5.2 Results of GLMMs

5.2.1 Light and moderate rainfall results

First, note that all methods failed to produce estimates for the year 1975 because there15

were only 3 stations with observations in the data set. Fixed coefficient estimation for
light rainfall are seen in Fig. 2. Within the light rainfall model, fixed coefficient estimates
remained relatively constant over time in each method, but did show some movement
around the year 2000 especially in the intercept, minimum temperature, and maximum
temperature coefficients. All coefficients other than that of the intercept appear to be20

very close to 0 indicating that they may have little explanatory power in the case of light
rainfall.

Moderate rainfall fixed coefficient estimates found in Fig. 3 showed more of a cyclic
pattern over time. Latitude coefficients tended to increase over time as longitude coeffi-
cients decreased from slightly positive to slightly negative indicating higher incidence of25

moderate rainfall in the west. However, both of these coefficients were very close to 0
over time and may actually not significantly explain rainfall. Minimum temperature and
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maximum temperature also showed mirroring behavior over time but again were very
close to 0. In general, the minimum temperature coefficient decreased as the maximum
temperature coefficient increased.

Variability estimates for light and moderate rainfall can be found in Fig. 4a and b
respectively. Within light rainfall, variability was nearly 0 over time for each of the meth-5

ods. Slight increases were seen in the 1998–1999 and 2002–2004 time periods. MSIM
produced a much higher, and likely anomalous, estimate for 2006 than all other meth-
ods.

Moderate rainfall still indicated relatively low variability with more of a cyclic nature
over time for each of the methods. Peaks were seen in 1976, 1990, 1998–1999, 2002–10

2004 time periods. Methods produced fairly similar estimates of variability save for
the 2008–2012 period when MSIM estimated a slightly lower variability than the other
methods.

5.2.2 Extreme rainfall results

Again, MSIM, glmer , and glmmPQLcould not produce estimates for the year 1975.15

dclone produced reasonable estimates for the extreme rainfall thus, these were used
in the figures for 1975.

The results of the fixed coefficient estimation for annual data are seen in Fig. 5.
Fixed coefficient estimates in the extremes remained relatively constant over time in
each method. glmer disagreed with the other methods in the coefficient estimate of20

maximum temperature but all methods agreed for each of the other fixed coefficients.
Elevation and minimum temperature coefficients were effectively 0 in all methods over
time. Latitude coefficients were mostly positive and longitude coefficients were mostly
negative indicating a higher estimated probability of extreme rainfall in the north west.

Variability estimates for extreme rainfall in Fig. 6a indicated a cyclic pattern in vari-25

ability over time for each of the methods. If we compare the output of the extreme
variability to the monthly Niño–3.4 Sea Surface Temperature (SST) index in Fig. 6b
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provided by NOAA1, a clear connection is noted. This provides a monthly average SST
anomaly in the Niño region from 5◦ N–5◦ S, 120–170◦ W at each time point. Positive
values of this index correspond to El Niño events and negative to La Niña events.

Looking only at the El Niño events classified as a SST anomaly of 0.5 or higher,
one can see most of the higher variability estimates are following this type of event.5

The largest events in the early 1980’s and late 1990’s appear to have an effect on the
variability estimates in the models in the following 5 years.

Visually, this index indicated a similar pattern to the variability estimates by the MSIM
and glmer methods in the later 1980s and MSIM and dclone in the late 1990s to early
2000s. Correlations computed between the December SST Index value and each of10

the variability estimates by method can be seen in Table 10. MSIM variability estimates
had the highest Pearson correlation of 0.27, while dclone had the highest Spearman
correlation of 0.24. Kendall’s τ was not larger than 0.20 for any of the methods. These
correlations seem relatively weak, however, it is well known that ENSO is not the only
relevant underlying cyclic activity to affect climate. It is also likely that there exists a ran-15

dom lag time between an ENSO anomaly and the corresponding effect on precipitation
in the Indian monsoon.

6 Conclusions

We have shown that it is feasible, both theoretically and computationally, to use GLMM
in the context of modeling the precipitation that accompanies the Indian monsoon.20

There appears to be a physical significance to the models based on the connection
of the random effects in the extreme rainfall models to ENSO. This shows promise
for modeling some of the unobservable physical features within the complicated net-
work of interactions the underly extreme climate patterns while maintaining statistical

1http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.
ascii.txt
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integrity. The current methods of GLMM estimation explored in this article all exhibit
some drawbacks, but even so, converged on similar answers in the application to In-
dian monsoons.

Since the relevance of using GLMM in this context has been established, climate
model output, such as that of CMIP5, will be explored to gain deeper intuition of the5

nature of this random effect. Further work on GLMMs in this context may include addi-
tional analysis of ENSO and other proposed drivers of Indian monsoons in their contri-
butions to fixed or random effects.

Providing improvements to the GLMM estimation methods presented here, espe-
cially in computing time for MSIM, is another open research area. One limitation of10

GLMM, as presented in this context, is the reliance of modeling random effects as nor-
mal. Expanding the possible distributions of random effects to include extreme value
distributions would be a major breakthrough in mixed modeling. Addressing the issue
of providing reasonable standard errors for the variance components in GLMM would
also lead to a more conclusive test of significance.15

Appendix A

Additional simulation specifications

MSIM Fast

– Number of Monte Carlo simulations: 100 000

MSIM Slow20

– Number of Monte Carlo simulations: 100

– Convergence criterion for Newton’s Method: Euclidean norm of change ≤ 0.01

Dclone
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– Clones: 100

– Prior for µ: N(0, 1
0.0001 )

– Prior for 1
σ2 : Gamma(0.01,0.01)

– Adaptation length: 100

– Markov chain length after adaptation: 10 0005

Bootstrapping Dclone

– Prior for µ: N(0, 1
0.0001 )

– Prior for 1
σ2 : Gamma(0.01,0.01)

– Adaptation length: 100

– Markov chain length after adaptation: 10 00010

– Number of bootstraps: 99

Appendix B

Application method specifications

MSIM Slow

– Number of Monte Carlo simulations: 10015

– Convergence criterion for Newton’s Method: Euclidean norm of change ≤ 0.01

Dclone

– Clones: 5
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– Priors for β0–β5: N(0, 1
0.0001 )

– Prior for 1
σ2 : Gamma(0.01,0.01)

– Adaptation length: 100

– Markov chain length after adaptation: 10 000
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Table 1. MSIM fast simulation results µ = 2, σ2 = 1.

# of Obs. per Subject
Par. Sub. 2 10 50 200

µ

10 17.41 (4.38) 2.11 (0.07) 2.05 (0.03) 2.00 (0.01)
50 2.08 (0.05) 1.98 (0.02) 2.02 (0.01) 2.00 (0.00)
200 2.01 (0.03) 1.98 (0.02) 1.99 (0.01) 1.99 (0.00)
1000 2.00 (0.04) 1.99 (0.01) 2.01 (0.01) 2.00 (0.00)

σ2

10 741.99 (302.51) 1.71 (0.33) 1.16 (0.09) 0.97 (0.04)
50 1.02 (0.10) 0.98 (0.05) 0.98 (0.02) 0.99 (0.01)
200 0.87 (0.05) 0.97 (0.03) 0.98 (0.02) 0.99 (0.01)
1000 0.92 (0.06) 0.99 (0.02) 1.00 (0.02) 1.00 (0.01)

Loss

10 2885.74 (1016.73) 4.32 (0.71) 1.14 (0.33) 0.09 (0.01)
50 3.29 (0.58) 0.19 (0.02) 0.04 (0.01) 0.01 (0.00)
200 0.33 (0.04) 0.07 (0.01) 0.02 (0.00) 0.00 (0.00)
1000 0.50 (0.16) 0.05 (0.00) 0.02 (0.00) 0.00 (0.00)
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Table 2. Data cloning simulation results µ = 2, σ2 = 1.

# of Obs. per Subject
Par. Sub. 2 10 50 200

µ

10 13.18 (2.65) 2.12 (0.05) 2.03 (0.03) 2.02 (0.04)
50 2.11 (0.07) 1.99 (0.02) 1.99 (0.02) 1.99 (0.01)
200 2.05 (0.03) 2.02 (0.01) 1.99 (0.01) 2.01 (0.01)
1000 2.01 (0.01) 2.00 (0.00) 1.99 (0.00) 2.00 (0.00)

σ2

10 7.79 (1.79) 1.18 (0.11) 0.95 (0.06) 0.98 (0.05)
50 1.67 (0.33) 1.00 (0.05) 0.99 (0.03) 1.00 (0.02)
200 1.16 (0.08) 0.99 (0.02) 0.98 (0.01) 1.00 (0.01)
1000 0.98 (0.04) 0.99 (0.01) 1.00 (0.01) 0.99 (0.00)

Loss

10 131.65 (86.2) 1.26 (0.14) 0.32 (0.04) 0.31 (0.05)
50 1.58 (0.44) 0.19 (0.02) 0.06 (0.01) 0.04 (0.00)
200 0.40 (0.06) 0.04 (0.00) 0.02 (0.00) 0.01 (0.00)
1000 0.09 (0.01) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

212

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/193/2014/npgd-1-193-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/193/2014/npgd-1-193-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 193–233, 2014

Indian Monsoon
rainfall extremes

L. R. Dietz and
S. Chatterjee

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Data cloning bootstrap simulation results µ = 2, σ2 = 1.

# of Obs. per Subject
Par. Sub. 2 10 50 200

µ

10 14.32 (2.5) 2.50 (0.07) 2.12 (0.04) 2.05 (0.04)
50 4.30 (0.13) 2.32 (0.03) 2.07 (0.02) 2.02 (0.01)
200 4.23 (0.05) 2.34 (0.01) 2.07 (0.01) 2.04 (0.01)
1000 4.13 (0.02) 2.32 (0.01) 2.07 (0.00) 2.02 (0.00)

σ2

10 18.00 (2.08) 2.61 (0.21) 1.26 (0.07) 1.07 (0.06)
50 14.45 (0.76) 2.27 (0.07) 1.29 (0.03) 1.10 (0.02)
200 13.95 (0.36) 2.25 (0.03) 1.29 (0.02) 1.10 (0.01)
1000 13.19 (0.18) 2.25 (0.01) 1.30 (0.01) 1.09 (0.00)

Loss

10 170.18 (103.37) 1.69 (0.35) 0.32 (0.04) 0.29 (0.03)
50 16.90 (1.29) 0.68 (0.05) 0.10 (0.01) 0.05 (0.01)
200 15.60 (0.56) 0.59 (0.02) 0.06 (0.01) 0.02 (0.00)
1000 14.22 (0.25) 0.55 (0.01) 0.05 (0.00) 0.01 (0.00)
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Table 4. glmer simulation results µ = 2, σ2 = 1.

# of Obs. per Subjects
Par. Sub. 2 10 50 200

µ

10 6.02 (0.70) 2.77 (0.18) 2.33 (0.09) 2.10 (0.02)
50 2.18 (0.09) 1.99 (0.02) 2.02 (0.01) 2.00 (0.00)
200 2.03 (0.04) 1.99 (0.02) 1.99 (0.01) 1.99 (0.00)
1000 2.02 (0.04) 1.99 (0.01) 2.01 (0.01) 2.00 (0.00)

σ2

10 198.73 (81.39) 7.48 (1.36) 3.07 (0.76) 1.19 (0.04)
50 1.66 (0.54) 0.95 (0.05) 0.94 (0.02) 0.94 (0.01)
200 0.93 (0.06) 0.97 (0.03) 0.97 (0.01) 0.98 (0.01)
1000 0.97 (0.05) 1.00 (0.02) 1.00 (0.01) 0.99 (0.00)

Loss

10 270.68 (84.19) 13.35 (1.91) 3.79 (1.12) 0.11 (0.02)
50 4.96 (1.15) 0.19 (0.02) 0.04 (0.00) 0.01 (0.00)
200 0.32 (0.04) 0.06 (0.01) 0.02 (0.00) 0.00 (0.00)
1000 0.47 (0.20) 0.04 (0.00) 0.01 (0.00) 0.00 (0.00)
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Table 5. glmmPQLsimulation results µ = 2, σ2 = 1.

# of Obs. per Subjects
Par. Sub. 2 10 50 200

10 3.10 (0.17) 1.92 (0.16) 1.34 (0.14) 0.68 (0.08)
50 1.83 (0.06) 1.61 (0.03) 1.60 (0.02) 1.54 (0.01)
200 1.81 (0.04) 1.71 (0.02) 1.73 (0.01) 1.72 (0.01)
1000 1.81 (0.04) 1.81 (0.02) 1.81 (0.01) 1.79 (0.01)

10 1.71 (0.13) 1.26 (0.11) 0.81 (0.11) 0.26 (0.06)
50 0.52 (0.06) 0.25 (0.04) 0.15 (0.04) 0.01 (0.01)
200 0.51 (0.04) 0.54 (0.03) 0.67 (0.02) 0.68 (0.01)
1000 0.48 (0.04) 0.72 (0.03) 0.75 (0.01) 0.74 (0.01)

10 6.04 (0.50) 5.95 (0.47) 7.80 (0.50) 10.21 (0.47)
50 4.81 (0.44) 5.61 (0.38) 6.26 (0.31) 7.89 (0.12)
200 3.40 (0.48) 1.77 (0.33) 0.24 (0.06) 0.15 (0.01)
1000 3.95 (0.47) 0.75 (0.25) 0.10 (0.01) 0.10 (0.00)
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Table 6. Total system time (in seconds) results for assawa.

(# of Subjects, Obs. per Subject)
Method (50,10) (50,200) (200,10) (200,200)

glmer 0.135 0.076 0.125 0.096
PQL 0.398 0.336 0.554 0.580
MSIM Fast 4.315 5.545 4.026 4.017
Dclone 15.500 17.790 59.519 65.684
Boot Dclone 16.170 18.393 60.257 69.793
MSIM Slow 150.641 14 912.237 1631.360 –
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Table 7. Total system time (in seconds) results for geneva.

(# of Subjects, Obs. per Subject)
Method (50,10) (50,200) (200,10) (200,200)

glmer 0.148 0.079 0.134 0.101
PQL 0.420 0.351 0.564 0.565
MSIM Fast 4.299 5.489 3.936 3.934
Dclone 15.265 17.262 59.059 63.735
Boot Dclone 15.025 16.837 56.941 66.439
MSIM Slow 156.357 13 965.834 1550.543 –
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Table 8. Total system time (in seconds) results for nokomis.

(# of Subjects, Obs. per Subject)
Method (50,10) (50,200) (200,10) (200,200)

glmer 0.089 0.048 0.080 0.071
PQL 0.286 0.234 0.384 0.394
MSIM Fast 2.576 3.419 2.479 2.483
Dclone 10.028 11.355 38.069 40.004
Boot Dclone 9.920 10.433 37.474 41.712
MSIM Slow 94.729 9363.849 1069.468 –
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Table 9. Total system time (in seconds) results for tilde.

(# of Subjects, Obs. per Subject)
Method (50,10) (50,200) (200,10) (200,200)

glmer 0.104 0.046 0.078 0.060
PQL 0.291 0.225 0.372 0.382
MSIM Fast 2.875 3.415 2.475 2.479
Dclone 10.095 10.989 39.086 39.268
Boot Dclone 9.979 10.551 37.743 41.640
MSIM Slow 93.239 9241.401 1057.157 –
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Table 10. Correlations between variability and Nino–34 SST index.

Correlation Type
Method Pearson Spearman Kendall

MSIM 0.27 0.16 0.13
Dclone 0.13 0.24 0.15
glmer 0.11 0.15 0.11
PQL 0.06 0.10 0.06
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Table 11. Summary statistics for Indian rainfall (1973–2013) in mm, Part I.

Station Min 1st Q Median Mean 3rd Q Max NAs #Obs. #Actual Obs.

BOMBAY SANTACRUZ IN 0.00 0.00 0.00 7.73 3.00 461.00 4063 14 660 10 597
THIRUVANANTHAPURAM IN 0.00 0.00 0.00 5.42 4.10 361.90 4037 14 221 10 184
JAIPUR SANGANER IN 0.00 0.00 0.00 3.24 0.00 828.00 4456 14 619 10 163
POONA IN 0.00 0.00 0.00 2.75 0.50 471.90 4480 14 630 10 150
MANGALORE BAJPE IN 0.00 0.00 0.00 11.41 9.90 404.10 3897 14 037 10 140
MADRAS MINAMBAKKAM IN 0.00 0.00 0.00 4.79 0.80 294.90 4423 14 542 10 119
GOA PANJIM IN 0.00 0.00 0.00 11.75 4.10 614.90 4579 14 685 10 106
CALCUTTA DUM DUM IN 0.00 0.00 0.00 5.35 2.00 383.00 4500 14 458 9958
RATNAGIRI IN 0.00 0.00 0.00 10.29 6.10 389.90 4007 13 952 9945
GAUHATI IN 0.00 0.00 0.00 5.81 4.10 462.00 4491 14 211 9720
BANGALORE IN 0.00 0.00 0.00 3.37 0.80 306.10 4501 14 125 9624
NEW DELHI SAFDARJUN IN 0.00 0.00 0.00 2.46 0.00 262.90 5136 14 681 9545
NAGPUR SONEGAON IN 0.00 0.00 0.00 3.93 0.50 400.10 4580 14 119 9539
AHMADABAD IN 0.00 0.00 0.00 2.82 0.00 400.10 4842 14 147 9305
BHUBANESWAR IN 0.00 0.00 0.00 5.49 1.80 470.90 4763 14 050 9287
PATNA IN 0.00 0.00 0.00 4.07 0.30 462.00 4889 14 102 9213
AURANGABAD CHIKALTH IN 0.00 0.00 0.00 2.57 0.00 361.90 5209 14 271 9062
BHOPAL BAIRAGARH IN 0.00 0.00 0.00 3.86 0.00 470.90 5048 14 092 9044
MACHILIPATNAM IN 0.00 0.00 0.00 3.75 0.30 462.00 4144 13 181 9037
LUCKNOW AMAUSI IN 0.00 0.00 0.00 3.33 0.00 470.90 5278 14 230 8952
PBO ANANTAPUR IN 0.00 0.00 0.00 2.08 0.00 329.90 5130 14 079 8949
TIRUCHCHIRAPALLI IN 0.00 0.00 0.00 2.84 0.00 310.90 4983 13 931 8948
INDORE IN 0.00 0.00 0.00 3.28 0.00 400.10 5047 13 938 8891
SURAT IN 0.00 0.00 0.00 4.19 0.00 405.90 4798 13 689 8891
AGARTALA IN 0.00 0.00 0.00 6.45 4.10 380.00 4376 13 241 8865
COIMBATORE PEELAMED IN 0.00 0.00 0.00 2.09 0.00 371.10 5106 13 920 8814
RAJKOT IN 0.00 0.00 0.00 2.31 0.00 391.90 5356 14 036 8680
CHITRADURGA IN 0.00 0.00 0.00 2.37 0.50 321.10 4308 12 937 8629
SHOLAPUR IN 0.00 0.00 0.00 2.14 0.00 230.10 5916 14 489 8573
GADAG IN 0.00 0.00 0.00 1.98 0.30 370.80 5081 13 643 8562
BELGAUM SAMBRA IN 0.00 0.00 0.00 3.05 1.00 470.90 4559 13 094 8535
JABALPUR IN 0.00 0.00 0.00 4.60 0.50 443.00 5041 13 523 8482
CUDDALORE IN 0.00 0.00 0.00 3.78 0.00 380.00 5436 13 879 8443
NELLORE IN 0.00 0.00 0.00 2.95 0.00 370.10 5682 14 002 8320
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Table 11. Continued.

Station Min 1st Q Median Mean 3rd Q Max NAs #Obs. #Actual Obs.

GWALIOR IN 0.00 0.00 0.00 2.71 0.00 377.40 5273 13 591 8318
JAGDALPUR IN 0.00 0.00 0.00 4.97 2.00 350.00 4847 13 102 8255
BALASORE IN 0.00 0.00 0.00 5.14 2.00 336.00 4460 12 641 8181
KAKINADA IN 0.00 0.00 0.00 3.02 0.00 300.00 5272 13 420 8148
BIKANER IN 0.00 0.00 0.00 1.18 0.00 363.00 5989 14 133 8144
PATIALA IN 0.00 0.00 0.00 4.04 0.00 494.30 4662 12 753 8091
KOZHIKODE IN 0.00 0.00 0.00 7.83 4.10 317.80 5192 13 156 7964
BHUJ RUDRAMATA IN 0.00 0.00 0.00 1.24 0.00 196.10 5751 13 647 7896
DIBRUGARH MOHANBAR IN 0.00 0.00 0.80 8.83 9.90 470.40 3617 11 328 7711
AKOLA IN 0.00 0.00 0.00 2.79 0.00 333.00 5111 12 680 7569
PORT BLAIR IN 0.00 0.00 1.00 9.56 9.90 297.90 3679 11 185 7506
JODHPUR IN 0.00 0.00 0.00 1.47 0.00 490.00 5613 13 056 7443
HISSAR IN 0.00 0.00 0.00 1.47 0.00 224.00 6363 13 783 7420
KURNOOL IN 0.00 0.00 0.00 1.94 0.00 251.00 5415 12 738 7323
PENDRA ROAD IN 0.00 0.00 0.00 4.94 2.80 462.00 4995 12 136 7141
GUNA IN 0.00 0.00 0.00 3.21 0.00 337.10 4822 11 212 6390
KOTA AERODROME IN 0.00 0.00 0.00 2.14 0.00 180.10 5732 11 922 6190
SRINAGAR IN 0.00 0.00 0.00 2.21 0.50 199.90 5981 12 017 6036
RAIPUR IN 0.00 0.00 0.00 3.21 0.00 300.00 1702 7506 5804
M.O. RANCHI IN 0.00 0.00 0.00 5.45 3.30 403.10 4866 10 541 5675
GAYA IN 0.00 0.00 0.00 4.03 1.00 271.00 5139 10 524 5385
GORAKHPUR IN 0.00 0.00 0.00 5.44 1.00 371.10 5001 10 317 5316
TEZPUR IN 0.00 0.00 0.50 6.83 7.10 300.00 3169 8477 5308
RAMGUNDAM IN 0.00 0.00 0.00 3.03 0.00 272.00 5750 10 961 5211
DEHRADUN IN 0.00 0.00 0.00 8.82 7.10 221.70 3579 8618 5039
JHARSUGUDA IN 0.00 0.00 0.00 6.02 4.10 224.00 5368 10 389 5021
JAISALMER IN 0.00 0.00 0.00 1.07 0.00 463.00 6798 11 549 4751
IMPHAL IN 0.00 0.00 0.50 5.48 5.80 461.80 3479 8178 4699
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Table 12. Summary statistics for Indian rainfall (1973–2013) in mm, Part II.

Station Min 1st Q Median Mean 3rd Q Max NAs #Obs. #Actual Obs.

SATNA IN 0.00 0.00 0.00 3.27 0.00 302.00 5521 10 156 4635
PANAGARH IN 0.00 0.00 0.00 8.95 2.00 826.30 569 5168 4599
BAREILLY IN 0.00 0.00 0.00 5.36 0.80 470.90 5381 9417 4036
KARAIKAL IN 0.00 0.00 0.00 10.64 2.50 730.00 2120 6151 4031
THANJAVUR IN 0.00 0.00 0.00 7.12 0.00 520.70 0 3584 3584
KAPURTHALA OBSERVATORY IN 0.00 0.00 0.00 5.49 0.00 348.50 0 3472 3472
TUMKUR OBSERVATORY IN 0.00 0.00 0.00 5.54 0.00 448.60 0 3418 3418
CHICKMAGALUR OBSERVATORY IN 0.00 0.00 0.00 6.55 1.80 203.50 0 3315 3315
CHITTORGARH OBSERVATORY IN 0.00 0.00 0.00 5.53 0.00 366.30 0 3275 3275
KHAJURAHO OBSERVATORY IN 0.00 0.00 0.00 8.56 0.00 824.50 0 3271 3271
NORTH LAKHIMPUR IN 0.00 0.00 2.00 11.53 14.00 270.00 4083 7354 3271
KOTTAYAM OBSERVATORY IN 0.00 0.00 0.00 20.37 23.40 397.80 0 3216 3216
MANDYA IN 0.00 0.00 0.00 4.65 0.00 294.60 0 3183 3183
PONDICHERY OBSERVATORY IN 0.00 0.00 0.00 8.69 0.00 810.80 0 3140 3140
ERINPURA OBSERVATORY SR IN 0.00 0.00 0.00 3.79 0.00 428.80 0 3039 3039
KARAIKUDI IN 0.00 0.00 0.00 6.62 0.00 319.50 0 2964 2964
DHAR IN 0.00 0.00 0.00 7.51 0.00 407.90 0 2907 2907
AMRELI IN 0.00 0.00 0.00 1.95 0.00 190.50 0 2872 2872
CHAMBAL OBSERVATORY SR IN 0.00 0.00 0.00 5.17 0.00 769.60 0 2849 2849
SHIRALI IN 0.00 0.00 0.00 26.98 17.35 492.80 0 2692 2692
AMBALA IN 0.00 0.00 0.00 5.07 0.00 397.80 606 3277 2671
PANNA OBSERVATORY IN 0.00 0.00 0.00 11.93 0.00 960.90 0 2662 2662
MATHURA OBSERVATORY IN 0.00 0.00 0.00 5.08 0.00 315.70 0 2657 2657
K. PARAMATHY IN 0.00 0.00 0.00 6.79 0.00 933.50 0 2647 2647
VARANASI B.H.U. OBSERVATORY IN 0.00 0.00 0.00 7.05 0.00 337.80 0 2643 2643
DIU OBSERVATORY IN 0.00 0.00 0.00 5.58 0.00 969.30 0 2630 2630
DHARMAPURI IN 0.00 0.00 0.00 5.69 0.00 187.50 0 2555 2555
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Table 12. Continued.

Station Min 1st Q Median Mean 3rd Q Max NAs #Obs. #Actual Obs.

PASIGHAT AERO OBSERVATORY SR IN 0.00 0.00 0.00 28.85 21.10 912.40 0 2526 2526
ARIYALUR IN 0.00 0.00 0.00 6.30 0.00 327.70 0 2522 2522
SAWAI MADHOPUR OBSERVATORY IN 0.00 0.00 0.00 5.50 0.00 558.80 0 2498 2498
HAZARIBAGH IN 0.00 0.00 0.00 9.45 0.00 337.30 0 2293 2293
SILIGURI IN 0.00 0.00 0.00 11.02 7.90 213.10 1799 4036 2237
HOSHIARPUR OBSERVATORY IN 0.00 0.00 0.00 6.42 0.00 344.20 0 2208 2208
PRADEEP CWR OBSERVATORY IN 0.00 0.00 0.00 8.56 0.80 669.50 0 2084 2084
DAMAN IN 0.00 0.00 0.00 12.64 1.00 510.50 0 2082 2082
BHARATPUR OBSERVATORY IN 0.00 0.00 0.00 4.96 0.00 330.20 0 2028 2028
A.F.CHABUA OBSERVATORY IN 0.00 0.00 0.00 18.38 19.30 337.30 0 1980 1980
RAXAUL IN 0.00 0.00 0.00 10.45 0.00 569.70 0 1949 1949
VISHAKHAPATNAM IN 0.00 0.00 0.00 2.67 0.00 279.90 1250 3055 1805
BAPATALA OBSERVATORY IN 0.00 0.00 0.00 5.05 0.00 246.40 0 1763 1763
GHAZIPUR OBSERVATORY IN 0.00 0.00 0.00 6.21 0.00 360.20 0 1746 1746
HONAVAR IN 0.00 0.80 9.90 23.41 34.00 221.00 1708 3162 1454
BARMER IN 0.00 0.00 0.00 0.26 0.00 39.90 2973 3981 1008
GANGANAGAR IN 0.00 0.00 0.00 0.33 0.00 46.00 3115 4085 970
VIJAYAWADA GANNAVA IN 0.00 0.00 0.00 6.30 5.10 132.10 1445 2263 818
UDAIPUR DABOK IN 0.00 0.00 0.00 0.85 0.00 89.90 2735 3432 697
KOLHAPUR IN 0.00 0.00 0.00 3.09 2.00 199.90 548 1199 651
BARODA IN 0.00 0.00 0.00 2.52 0.00 110.00 388 907 519
DALTONGANJ IN 0.00 0.00 2.00 10.00 13.00 115.10 1682 2192 510
BHAGALPUR IN 0.00 0.00 0.00 1.36 0.00 461.50 2771 3274 503
VELLORE IN 0.00 0.00 0.00 3.13 0.00 80.00 181 558 377
NAGAPPATTINAM IN 0.00 0.00 3.00 15.18 19.10 177.00 1072 1448 376
NEW DELHI PALAM IN 0.00 0.00 0.00 0.00 0.00 0.00 4 378 374
SALEM IN 0.00 0.00 0.00 2.94 1.00 53.10 151 476 325
BAHRAICH IN 0.00 0.00 0.00 2.12 0.00 80.00 170 461 291
PAMBAN IN 0.00 0.00 3.00 13.41 18.05 158.00 1158 1449 291
UDAIPUR IN 0.00 0.00 0.00 2.76 0.00 199.90 168 437 269
JAMNAGAR IN 0.00 0.00 0.00 0.50 0.00 41.90 225 472 247
GOPALPUR IN 0.00 0.00 0.00 2.63 0.00 119.90 124 361 237
VARANASI BABATPUR IN 0.00 0.00 0.00 1.15 0.00 36.10 3246 3468 222
NASIK OZAR IN 0.00 0.00 0.00 5.84 3.00 109.00 103 305 202
JAMMU IN AFB IN 0.00 0.00 0.00 3.42 0.00 300.00 136 288 152
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Table 13. Summary statistics for Indian rainfall (1973–2013) in mm, Part III.

Station Min 1st Q Median Mean 3rd Q Max NAs #Obs. #Actual Obs.

MADURAI IN 0.00 0.00 0.00 2.34 0.00 55.10 46 150 104
CHANDIGARH IAFB IN 0.00 0.00 0.00 0.15 0.00 7.10 34 80 46
KOTA IN RAJASTHAN IN 0.00 0.00 0.00 2.38 0.50 17.00 61 86 25
BANGALORE HINDUSTAN IN 0.00 0.00 0.00 2.47 0.50 20.10 755 770 15
BILASPUR IN 0.00 0.00 0.00 0.00 0.00 0.00 1 3 2
MAINPURI IN 0.00 0.00 0.00 0.00 0.00 0.00 0 2 2
MALDA IN 0.00 0.75 1.50 1.50 2.25 3.00 0 2 2
BETUL IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
CHAIBASA IN 3.00 3.00 3.00 3.00 3.00 3.00 0 1 1
DHOLPUR IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
DUMKA IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
JHALAWAR IN 0.00 0.00 0.00 0.00 0.00 0.00 1 2 1
KHANDWA IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
KHERI IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
MIDNAPORE IN 1.00 1.00 1.00 1.00 1.00 1.00 0 1 1
NALIYA IN 0.00 0.00 0.00 0.00 0.00 0.00 0 1 1
RANCHI IN 2.00 2.00 2.00 2.00 2.00 2.00 2 3 1
AMBIKAPUR IN NA NA NA NA NA NA 1 1 0
KALLAKKURICHCHI IN NA NA NA NA NA NA 1 1 0
NIZAMABAD IN NA NA NA NA NA NA 1 1 0
PACHMARHI IN NA NA NA NA NA NA 1 1 0
SAGAR IN NA NA NA NA NA NA 1 1 0
SANGLI IN NA NA NA NA NA NA 1 1 0
SHIMLA IN NA NA NA NA NA NA 1 1 0
UMARIA IN NA NA NA NA NA NA 1 1 0
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8 L. Dietz and S. Chatterjee: Logit-Normal Mixed Model for Indian Monsoon Rainfall Extremes

Fig. 1. Observed Indian rainfall (in mm) on August 25, 2012, shown in contours. Markers indicate data status of individual stations.

Previously Available
Missing
Available
Rain in mm

Fig. 1. Observed Indian rainfall (in mm) on 25 August 2012, shown in contours. Markers indicate
data status of individual stations.
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Fig. 2. Fixed coefficient estimates for logit-normal models with light Indian rainfall (0< x < 64.4 mm/day) as the response from 1973-2013.
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Fig. 2. Fixed coefficient estimates for logit-normal models with light Indian rainfall (0 < x <
64.4 mmday−1) as the response from 1973–2013.
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10 L. Dietz and S. Chatterjee: Logit-Normal Mixed Model for Indian Monsoon Rainfall Extremes

Fig. 3. Fixed coefficient estimates for logit-normal models with moderate Indian rainfall (64.4≤ x < 124.4 mm/day) as the response from
1973-2013.
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Fig. 3. Fixed coefficient estimates for logit-normal models with moderate Indian rainfall (64.4 ≤
x < 124.4 mmday−1) as the response from 1973–2013.
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Fig. 4a. Weather station variance component estimates for logit-normal models with light Indian rainfall (0< x≤ 64.4 mm/day) as the
response from 1973-2013. Estimates over time indicate variability near 0; the MSIM estimate in 2006 appears anomalous.
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Fig. 4b. Weather station variance component estimates for logit-normal models with moderate Indian rainfall (64.4≤ x < 124.4 mm/day)
as the response from 1973-2013. Estimates over time show cyclic behavior with slight increases in peaks in the late 1990s and early 2000s.
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Fig. 4a. Weather station variance component estimates for logit-normal models with light Indian
rainfall (0 < x ≤ 64.4 mmday−1) as the response from 1973–2013. Estimates over time indicate
variability near 0; the MSIM estimate in 2006 appears anomalous.
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Fig. 4a. Weather station variance component estimates for logit-normal models with light Indian rainfall (0< x≤ 64.4 mm/day) as the
response from 1973-2013. Estimates over time indicate variability near 0; the MSIM estimate in 2006 appears anomalous.
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Fig. 4b. Weather station variance component estimates for logit-normal models with moderate Indian rainfall (64.4≤ x < 124.4 mm/day)
as the response from 1973-2013. Estimates over time show cyclic behavior with slight increases in peaks in the late 1990s and early 2000s.
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Fig. 4b. Weather station variance component estimates for logit-normal models with moderate
Indian rainfall (64.4 ≤ x < 124.4 mmday−1) as the response from 1973–2013. Estimates over
time show cyclic behavior with slight increases in peaks in the late 1990s and early 2000s.
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Fig. 5. Fixed coefficient estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mm/day) as the response from 1973-2013.
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Fig. 5. Fixed coefficient estimates for logit-normal models with extreme Indian rainfall (≥
124.4 mmday−1) as the response from 1973–2013.
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Fig. 6a. Weather station variance component estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mm/day) as the
response from 1973-2013. Estimates are overlaid with ENSO Index anomalies > 0.5 which indicates larger variance estimates lagging
notable El Niño events.
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Fig. 6b. ENSO Index from 1973-2013. SST above 0 corresponds to El Niño events; SST below 0 corresponds to La Niña events.
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Fig. 6a. Weather station variance component estimates for logit-normal models with extreme
Indian rainfall (≥ 124.4 mmday−1) as the response from 1973–2013. Estimates are overlaid
with ENSO Index anomalies > 0.5 which indicates larger variance estimates lagging notable El
Niño events.
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Fig. 6a. Weather station variance component estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mm/day) as the
response from 1973-2013. Estimates are overlaid with ENSO Index anomalies > 0.5 which indicates larger variance estimates lagging
notable El Niño events.
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Fig. 6b. ENSO Index from 1973-2013. SST above 0 corresponds to El Niño events; SST below 0 corresponds to La Niña events.
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Fig. 6b. ENSO Index from 1973–2013. SST above 0 corresponds to El Niño events; SST below
0 corresponds to La Niña events.
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