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Abstract. Describing the nature and variability of Indian
monsoon precipitation is a topic of much debate in the cur-
rent literature. We suggest the use of a generalized linear
mixed model (GLMM), specifically, the logit-normal mixed
model, to describe the underlying structure of this complex5

climatic event. Several GLMM algorithms are described and
simulations are performed to vet these algorithms before ap-
plying them to the Indian precipitation data. The logit-normal
model was applied to light, moderate, and extreme rainfall.
This work provides a novel use of GLMM and promotes its’10

addition to the gamut of tools for analysis in studying climate
phenomena.

1 Introduction

Explanation of Indian monsoon precipitation has been a chal-15

lenging problem in physics as well as data analysis. In this
paper, we focus on statistical analysis of the summer mon-
soon precipitation data, to provide insight symbiotic with
deterministic physics modeling. Previous statistical analysis
studies regarding precipitation in Indian monsoons have ex-20

plored two main areas- identifying methodology of data anal-
ysis and covariate selection.

The establishment of appropriate statistical methodology
for explanation and prediction of precipitation, while si-
multaneously capturing underlying variability, is paramount.25

These methods are used in identification of trends for predic-
tion, however, trends tend to be inconsistent across studies
and may relate to linked variability on different temporal and
spatial scales as noted by Turner and Annamalai (2012).

For instance, Goswami et al. (2006) used daily central In-30

dian rainfall and found rising trends in frequency and magni-
tude of extreme rain events along with decreasing light and
moderate rainfall. While validating their 2006 study, Ghosh
et al. (2012) indicated increasing spatial variability in ob-
served Indian rainfall extremes. They also found that mod-35

erate rainfall increased in central India despite a decreasing

trend in occurrence of moderate rainfall. For high and ex-
tremely high rainfall, they noted a few locations experienced
a significant upward or downward trend, however, most grid
boxes showed a lack of trend.40

A similar study conducted by Ghosh et al. (2009) used a
finer spatial scale and indicated a mixture of increases and
decreases of extreme rainfall events dependent on location.
An increasing trend in exceedances of 99th (extreme) per-
centile daily rainfall was discovered by Krishnamurty et al.45

(2009). On the other hand, they stated many parts of India ex-
hibited a decreasing trend for exceedances of the 90th (mod-
erate to extreme) percentile. Increases in the frequency of
both light and moderate to extreme rainfall events were ob-
served in Singh et al. (2014), along with decreasing proba-50

bility of regional rainfall events and higher variability in the
intensity of these events.

These studies utilized parametric – regression, extreme
value theory, time series methods – and nonparametric statis-
tical techniques, yet their lack of unanimity suggests impor-55

tant properties of the Indian monsoon remain partially mis-
understood.

In view of the above, we propose adding the generalized
linear mixed model (GLMM) as a potential framework for
analysis of Indian monsoon precipitation data. A GLMM is60

a broader framework compared to the standard (linear, log-
linear, logistic, or other) regression in that there are random
effects involved. This implies part of the signal is random,
and changes from one set of circumstances to another. In the
current context, a GLMM may be suitable for capturing lo-65

cal, instantaneous variability. Such local variability may arise
from cloud and other physical micro-properties. When there
is no such local variability, an appropriate variance compo-
nent in the GLMM would be zero, thus, recovering the true
underlying “fixed-effects” regression model.70

The second principal focus of literature has been identi-
fying relevant covariates for study of Indian monsoon pre-
cipitation. Certain oscillations are commonly useful predic-
tors for precipitation. For instance, the synoptic activity in-
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dex (SAI) developed in Ajayamohan et al. (2008) corre-75

lated strongly with frequency of extreme rainfall. The In-
dian Ocean Dipole (IOD) studied in Rajeevan et al. (2008)
was shown to modulate inter-annual, inter-decadal and long-
term trends of extreme rainfall events. Most commonly, the
El Niño-Southern Oscillation (ENSO) (Kumar et al. (1999);80

Li and Yanai (1996); Prell and Kutzback (1992); Turner and
Annamalai (2012)) is cited as a driver of the monsoon.

Several other climactic predictors of monsoons have been
proposed in the literature including Himalayan/Eurasian
snow extent (Kumar et al. (1999)), Pacific trade winds (Li85

and Yanai (1996)), atmospheric CO2 concentration (Prell and
Kutzback (1992)), and tropospheric temperature difference
(Xavier et al. (2007)). Unfortunately, none have been con-
clusively attributed for the monsoon rainfall which suggests
an intricate relationship between some or all of these factors.90

Because explicit attribution to covariates may not be possi-
ble, GLMM is a logical model for Indian monsoon precipita-
tion. It allows underlying randomness to drive observed data
in a particular hierarchy while still accounting for hypothe-
sized drivers of rainfall.95

This paper provides an introduction on extending GLMMs
to climate applications. Three paradigms of estimation- ap-
proximate likelihood, method of moments, and Bayesian-
were tested using four separate algorithmic implementations.
The methods of estimating GLMMs were penalized quasi-100

likelihood, penalized iteratively reweighted least squares,
method of simulated moments, and data cloning. The theory
and limitations of these estimates are described in detail, then
utilized in simulations to test the validity of the methodology.

Simulation findings showed that penalized quasi-105

likelihood was not accurate for the given application, thus,
the three remaining methods were used to fit logit-normal
models with random intercepts by weather station for Indian
summer rainfall data in light, moderate, and extreme rainfall
classifications. Maximum temperature and elevation were110

consistently significant in the models aligning with the
physics of precipitation. ∆TT - tropospheric temperature
difference- was also significant for many of the models. The
most meaningful finding was a random effect by weather
station was non-negligible in many of the models. This pro-115

vides further credibility to the methodology in applications
to climate. Overall, we feel GLMMs could be a significant
addition to data analytics in climate applications.

The rest of the paper is organized as follows. Section 2
gives a short background on GLMMs and in particular, elu-120

cidates the logit-normal model. The theory of the chosen esti-
mation methods for GLMMs are discussed in Section 3. Sec-
tion 4 furnishes the results of several simulations using these
existing methods. Section 5 applies these methods to mon-
soon precipitation data from India. Finally, Section 6 presents125

conclusions and future work in this area.

2 Overview of Generalized Linear Mixed Models

2.1 Exponential Families

Before discussing GLMMs, we provide preliminaries on the
key component- use of an exponential family for the ob-130

served data. An exponential family probability mass/density
function (pmf/pdf) has several unique properties conducive
to modeling. For further discussion of these properties, refer
to Ch. 2 of Keener (2010). For simplicity, consider a univari-
ate random variable Y distributed as an exponential family.135

The canonical form of the pmf/pdf then can be written:

f(y|η) = exp

{
y · η− c(η)

a(φ)
− r(y,φ)

}
(1)

Note a(·) is a function of a dispersion parameter φ, r(·, ·) is
a function of data and the dispersion parameter, and c(·) is a140

function of parameters and is known as the cumulant func-
tion. The statistic y is complete and sufficient; it is known as
the canonical statistic with corresponding canonical parame-
ter η. An exponential family can be written in a more general
fashion compared to (1), but will not be discussed here for145

simplicity.

2.2 Model Description

A GLMM is a probability model with a hierarchical struc-
ture. Given the latent unobservable second layer, known as
random effects, the top layer has a pdf/pmf following an ex-150

ponential family distribution. Assume the observed data are
independent conditional on the random effects, and that we
have i= 1, . . . ,N observations. Define the ith response as Yi.

Then, we can write a GLMM as:

Level 1:155

Yi|u
ind.∼ f(yi|u) = exp

{
yi · ηi− b(ηi)

a(φ)
− r(yi,φ)

}
, (2)

ηi = xTi β+ zT
i u, (3)

Level 2:
U ∼NM (0,Σ). (4)

160

The p-components of the vector β are called fixed ef-
fects. The random effects covariance Σ is a function of the
q-dimensional (σ1, . . . ,σq) known as variance components.

Fixed covariates are represented by the p× 1 vector xi.
Random covariate vectors for the ith data point and rth vari-165

ance component can be denoted by a mr × 1 vector zir. We
combine the vectors for each variance component to form
the random covariate vector zi =

(
zT
i1, . . . ,z

T
iq

)T
of length

M =
∑q
r=1mr. The random effects vector, U , follows an

M -dimensional normal distribution with mean vector 0 and170

covariance matrix Σ.
In (2), b(·) is a function of only the canonical parameter ηi.

The “linear” part of GLMM comes from the fact that ηi can
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be represented as a linear function of the fixed and random
parameters. r(·, ·) is a function of the data and φ. As before,175

a(·) is a dispersion function.
To illustrate this form, we consider a commonly used ver-

sion of this model, the logit-normal GLMM. The random-
intercept form of this model is:

Level 1: Yi|u
ind.∼ Bernoulli(θi), (5)180

logit(θi) = ηi = xT
i β+ui, (6)

Level 2: Ui
ind.∼ N (0,σ2). (7)

Notice that in this model, zi is a vector with a 1 in the ith

position and 0’s in all other positions.185

Returning to the generic form of the GLMM, the assump-
tion of conditional independence among observations im-
plies the density of Y |u is

f(y|u,β) =

N∏
i=1

f(yi|u,β), (8)
190

and that the joint density of (Y,U) is

f(y,u|β,Σ) = f(y|u,β)f(u|Σ). (9)

However, since random effects are unobserved, in order
to utilize the observed data likelihood, one must find the195

marginal distribution with respect to the observed data Y
only. The log-likelihood is then:

`(β,Σ|Y ) = log

∫
f(y,u|β,Σ)du. (10)

This integral is rarely analytically tractable. Thus, maxi-200

mum likelihood estimation (which is usually preferable when
possible) is very difficult. Many methods for inference have
been proposed. Variants of the most popular methods are ex-
amined in §3.

3 Methods for Estimating in GLMM205

3.1 Likelihood Approximation Methods

Both methods discussed in the following sections make use
of a technique known as Laplace approximation to approx-
imate an integral by a normal distribution (Tierney and
Kadane (1986)). Then (10) can be written as:210

log

∫
f(y|u,β)f(u|Σ)du= (11)

log

∫
exp{logf(y|u,β) + logf(u|Σ)}du (12)

Let

h(u) = log f(y|u,β) + log f(u|Σ). (13)215

Then, we can express the log likelihood as follows:

`(β,Σ;y) = log
∫
eh(u)du. (14)

This expression can now be approximated. To use the ap-
proximation, one first needs the maximizer of the integrand.220

Let u0 be the maximizer of eh(u). Then a Taylor expansion
around u0 yields the approximation to the log-likelihood,

`(β,Σ;y)≈ h(u0) +
q

2
log2π− 1

2
log

∣∣∣∣− ∂2h(u)

∂u,∂uT

∣∣∣∣ . (15)

3.1.1 Penalized Quasi-Likelihood225

Penalized quasi-likelihood (PQL) was proposed by Breslow
and Clayton (1993) to approximate the high-dimensional in-
tegral using Laplace approximation as a method for obtaining
u0 and ∂2h(u)/∂u∂uT. Filling in the details of (13):

h(u) = logf(y|u,β)− 1

2
uTΣu+

q

2
log2π− 1

2
log |Σ| .

(16)

230

This equation is differentiated with respect to u and β
respectively. Further approximations are made within the
derivatives because Σ is also unknown. The approximate
derivatives are used to form estimating equations for the235

mean parameters. For more detailed discussion of these ap-
proximations, please refer to McCulloch and Searle (2010).
The same estimating equations arise from jointly maximiz-
ing

logf(y|u,β)− 1

2
uTΣu, (17)240

with respect to u and β.
These equations are solved by using Fisher scoring as an

iterated reweighted least squares (IRLS) problem. The quasi-
likelihood, logf(y|u,β), is optimized taking into account245

the penalty, 1
2u

TΣu. This penalty term has a shrinkage ef-
fect, i.e. forces values of u to be closer to zero.

Variance components in Σ are subsequently estimated us-
ing a restricted maximum likelihood approach. Further de-
tails on the estimation algorithm are found in §2 of Breslow250

and Clayton (1993).
The function in R which computes PQL estimates is

glmmPQL{MASS}. PQL is reasonably accurate when data
are approximately normal and can be very fast. However, Lin
and Breslow (1996) and others have criticized this method255

for it’s bias in highly non-normal data. It is especially bad
in binomial data with a small sample size or true probabili-
ties near zero or one. Reliance on the quadratic expansion of
the log-likelihood is appropriate with normal random effects,
yet it is very difficult to assess normality of these unobserved260

effects.
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3.1.2 Penalized Iteratively Reweighted Least Squares

Another approach to likelihood approximation is presented
by Bates (2010). The main difference from PQL is that it
attempts to approximate the true likelihood rather than the265

quasi-likelihood.
To understand the approach, first, let U ∼NM(0,Σ).

Consider the decomposition of the random effects covariance
matrix Σ = ΓΓT. Then, U = ΓV where V ∼NM(0, Im).
This implies that the canonical parameter in (3) can be writ-270

ten as

ηi = xT
i β+ zT

i Γv (18)

Substituting in v to (9), we note that f(y,v) is propor-
tional to f(v|y). Thus, v0 is found to maximize f(v|y).275

The penalized iteratively reweighted least squares (PIRLS)
algorithm is as follows.

1. Given starting values forβ, Σ, and v0, evaluate η, µY |v ,
and varY |v . LetW = diag{var−1

Y |v}.

2. Use a Gauss-Newton algorithm to solve280

µV |y = argmin
v

(
||W 1/2(y−µY |v)||2 + ||v||2

)
.

(19)

3. Update the weights, W , and check for convergence. If
not converged, go to step 2.

Once the conditional mode ṽ is determined, a Laplace ap-285

proximation to the deviance (-2* log-likelihood) is evaluated
at ṽ. This evaluation may alternatively be done by Gauss-
Hermite quadrature which is discussed further in Bolker
et al. (2009). The function in R used to compute estimates is
glmer{lme4} . This method can experience similar prob-290

lems to PQL in cases where the random effects are non-
normal. Gauss-Hermite quadrature can allay some of these
issues, but is only computationally feasible for small num-
bers of random effects.

3.2 Method of Simulated Moments295

Jiang (1998) describes methodology known as the method of
simulated moments (MSIM). The method first derives a set of
sufficient statistics. Estimating equations are then obtained
by equating sample moments of sufficient statistics to their
expectations.300

Referring to the model elucidated in (5)-(7), let the dis-
persion function be a(φ) = wi

φ where wi is a weight de-
pending on the exponential family of the response. Let θ =
(β,σ1, . . . ,σq). Restrict all elements of the zi to be either 0
or 1. Represent305

zT
i u= (zT

i1u1, . . . ,z
T
iquq) (20)

= (σ1z
T
i1v1, . . . ,σqz

T
iqvq) (21)

where V r ∼Nmr
(0, Imr

).
Then,310

f(yi|v) = C(yi,θ,φ)∗

exp


(

N∑
i=1

wixiyi

)T

β

φ
+

q∑
r=1

σr
φ

N∑
i=1

wiyiz
T
irvr

 ,
where C(·, ·, ·) represents the other portion of the function.

This yields canonical parameters (β/φ,σ1/φ, . . . ,σq/φ)315

with corresponding sufficient statistics((∑N
i=1wixiyi

)T

,
∑n
i=1wiyizi1, . . . ,

∑N
i=1wiyiziq

)
.

Estimating equations are derived as

n∑
i=1

wixiyi
set
=

n∑
i=1

wixiEθ(yi) (22)

mr∑
l=1

(
n∑
i=1

wizirlyi

)2

set
=

mr∑
l=1

Eθ

(
n∑
i=1

wizirlyi

)2

. (23)320

Note that the expectations on the right hand side are func-
tions of the parameters while the formulae on the left hand
sides are functions of data only. Since the expectations are
not available, they must be estimated by Monte Carlo sim-325

ulation. The system of equations can then be solved for the
parameters using the Newton-Raphson algorithm.

We implemented this method in a newly created R pro-
gram. As shown in Jiang (1998), this method is consis-
tent and is potentially computationally less intensive than a330

Markov Chain Monte Carlo (MCMC) method.

3.3 Data Cloning

GLMM estimates can be produced in a traditional Bayesian
framework; one must choose priors for the parameters of in-
terest and calculate the posterior distribution by multiplying335

the prior densities by the likelihood, L(β,Σ|Y ), correspond-
ing (10). One may then use MCMC to generate a dependent
sample from the posterior distribution from which estimates
can be derived based on strong laws.

Lele et al. (2010) derived a method called data cloning to340

be used in conjunction with MCMC. The algorithm can be
summarized in the following three steps. First, create a k-
cloned data set yk=(y,y,...,y) where the observed data vec-
tor is repeated k times. Choose a prior distribution π(β,Σ).
Then, the posterior distribution, πk(β,Σ|Y ), which corre-345

sponds to the k-cloned data is

πk(β,Σ|Y ) =
[L(β,Σ|Y )]kπ(β,Σ)∫

(β,Σ)
[L(β,Σ|Y )]kπ(β,Σ)d(β,Σ)

. (24)

Under regularity conditions as k→∞,

πk(β,Σ|Y )→N ((̂β,Σ),
1

k
S−1(̂β,Σ)), (25)350
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where (̂β,Σ) is the MLE of (β,Σ) and S is the Fisher infor-
mation matrix of the original data. Thus, large k means the
posterior distribution is nearly degenerate at the MLE.

To generate a dependent sample from the posterior dis-355

tribution πk(β,Σ|Y ), one may use an appropriate MCMC
algorithm, such as a Gibbs sampler or Metropolis-Hastings
algorithm.

Finally, one can calculate the sample means and variances
of the components of (β,Σ). Estimates of MLEs for (β,Σ)360

correspond to these sample means and approximate vari-
ances of estimated MLEs correspond to k times the posterior
variance of the original data as seen in (25).

This method was implemented using dclone{dclone}
discussed in Solymos (2010) which relies on the well-reputed365

BUGS language for estimation of hierarchical models. The
method is computationally intensive, and it may prove diffi-
cult to assess convergence as with any MCMC implementa-
tion.

4 Logit-normal Simulations370

4.1 Simulation Setup

For subject i where i ∈ (1, . . . ,m) and observation j where
j ∈ (1, . . . ,n) and (µ,σ2) = (2,1), we simulated 100 differ-
ent data sets from the model:

Level 1: Yij |u
ind.∼ Bernoulli(θij) (26)375

logit(θij) = ηi = µ+ui (27)

Level 2: Ui
ind.∼ N (0,σ2). (28)

The number of subjects (m) was set at (10, 50, 200, 1000)
and the observations per subject (n) was set at (2, 10, 50,380

200). All methods were tested at each of these 16 settings.
Means and standard errors over the 100 estimates at each set-
ting were then calculated.

To quantitatively describe the estimation discrepancy be-
tween µ and µ̂m,n, we used squared error loss,385

Q(µ̂m,n) = (µ̂m,n−µ)2. (29)

Because squared error loss is criticized for a bounded param-
eter space, we used Stein’s loss,

S(σ̂2
m,n) =

σ̂2
m,n

σ2
− 1− log

σ̂2
m,n

σ2
, (30)390

to measure how well σ2 was estimated by σ̂2
m,n. A combined

loss was then calculated as

G(µ̂m,n, σ̂
2
m,n) =Q(µ̂m,n) +S(σ̂2

m,n). (31)
395

Ideally, as m,n→∞, G(µ̂m,n, σ̂
2
m,n)→ 0.

4.2 Simulation Estimation Analysis

The estimation results are displayed in Tables 1–4. All meth-
ods failed to reasonably estimate both µ and σ2 in the
smallest scenario with 10 subjects and 2 observations each.400

This was expected because there are not enough replications
within subject to get a meaningful estimate of a variance by
subject.

All other settings for MSIM, dclone, and glmer esti-
mated µ within 2 standard errors. These methods also pro-405

vided reasonable estimates of σ2 for settings other than those
with 10 subjects. The combination of the loss for the two es-
timates went to 0 quickly for all three methods. In general,
estimation by these three methods were unbiased.

The method glmmPQL did not converge to the true values410

of (µ,σ2) as evidenced by combined loss greater than 0 for
all settings. Further, this method displayed an underestimat-
ing bias in both parameters. Also, this function in R could
not produce estimates for some of the 100 data sets in each
setting.415

4.3 Simulation Speeds

Subsequently, we tested 4 of the 16 simulation settings to
determine computing speed of the estimation methods. The
settings used were combinations of (50, 200) subjects with
(10, 200) observations. The system.time() command in420

R was used to record times. Simulations were independently
run on 4 computers, and each estimation method was tested
in sequence in one R script on a single core. Computer spec-
ifications can be found in the appendix.

We implemented MSIM in two ways for the speed test.425

In the intercept-only model (26)-(28), it is possible to use
a simple algorithm for estimation. However, a more general
form of the algorithm is needed for problems including fixed
covariates. This form relies on matrices and does not work
with large data sets at this time. These methods are referred430

to MSIM Fast and MSIM Slow, respectively.
Results were similar for each of the 4 computers, there-

fore, only one of the sets of results are shown in Table 5. The
results indicated that glmmPQL was fastest in the 50 subject
cases and glmer was fastest in the 200 subject cases. These435

two likelihood methods were the fastest due to the nature of
the approximations that they make. The Bayesian method,
dclone, was slower at about 4 to 25 minutes to produce
estimates. The simple algorithm of MSIM Fast was faster
than dclone and slightly slower than approximation meth-440

ods taking 3 to 6 seconds per run. The MSIM Slow method
was much slower ranging from 1.5 minutes to nearly 4 hours.
The case with 200 subjects 200 observations could not be
handled by this method because the size of matrices and vec-
tors exceeded the storage capacity allowed by R.445
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4.4 Simulation Conclusions

In general, glmer and glmmPQL were the fastest, but
glmmPQL did not provide good estimates. Parameters were
accurately estimated by dclone, but this was much slower
than the approximation methods.450

In the intercept-only implementation, MSIM proved to be
fast, however, was much slower than other methods in it’s
matrix version and failed when too many observations were
used. It should be noted that tuning parameters within each of
the methods, such as convergence criteria for MSIM or num-455

ber of MCMC samples in dclone may impact computing
time significantly.

Based on the output of these simulations, the glmmPQL
method was not consistent. The other three methods- glmer,
dclone, and MSIM- provided estimates with reasonable ac-460

curacy. Therefore, these estimation methods are used to fit
models for Indian monsoon precipitation data.

5 Application in Indian Monsoon Precipitation

5.1 Data

Multiple datasets have been used to study Indian monsoon465

precipitation in the literature of different temporal and spa-
tial granularity. However, the initial goal was to develop and
test the methods on widely and freely available datasets for
the purpose of understanding the usefulness of GLMM in
this context. This led to our selection of the data sources de-470

scribed below.
We chose the National Climatic Data Center (NCDC)1

in the National Oceanic and Atmospheric Administration
(NOAA) to gather latitude (◦), longitude (◦), elevation
(meters), and daily minimum and maximum temperatures475

(◦C). These data were collected from 1 January 1973 to 31
December 2013. Data were queried for all available Indian
stations in the database. This data source was developed for a
wide variety of potential applications, including climate anal-
ysis and monitoring studies that require data at a daily time480

resolution. Quality assurance checks are routinely applied to
the full dataset according to Menne et al. (2012).

We note this data had a large amount of missing obser-
vations, therefore, only stations with at least 5 observations
were included in analysis. One year in particular, 1975, did485

not contain enough data to be included in the analysis. To
elucidate this missingness, on 25 August 2012, there were 33
stations with missing (NA) values, 12 stations with precipi-
tation of 0 mm, and 31 stations with greater than 0mm pre-
cipitation. This implies several stations were not included in490

the data for this day and in general, stations included change
over time. Fig. 1 illuminates the rainfall on this date.

We also included several other covariates of interest. The
first was tropospheric temperature difference (∆TT ): the air

1http://www.ncdc.noaa.gov/

temperature averaged between the levels 600 hPa and 200495

hPa. The hypothesis that Indian ocean warming leads to re-
duction in ∆TT which in turn reduces monsoon circulation
is noted in Xavier et al. (2007). Thus, the inclusion of this co-
variate in the models was relevant. Data were collected from
the National Centers for Environmental Prediction (NCEP)500

Reanalysis site2.
As stated in Wang (2006) and other literature, Indian rain-

fall is strongly associated with ENSO, and onset of discharge
in Nino-3.4 region can lead to drought in India. The occur-
rences of precipitation extremes are thought to be fewer in505

drought years. The Nino-3.4 monthly anomaly series was
gathered for inclusion in the models from the NCEP site
sponsored by NOAA 3.

The Indian Ocean Dipole (IOD) is an irregular oscillation
occurring in the Indian Ocean. It is commonly measured by510

the Indian Dipole Mode Index (DMI) which takes the dif-
ference between SST anomalies in the western and eastern
Indian Ocean. Non-ENSO drought years are associated with
DMI thus, this is a relevant covariate for inclusion in model-
ing. This index was only available for 1973-2010 models and515

data were procured from the Japan Agency for Marine-Earth
Science and Technology (JAMSTEC) site4.

We note that analysis of monsoon precipitation using
thresholds was previously done in Krishnamurty et al.
(2009). Rather than use a fixed threshold for the entirety of520

India, they utilized data derived percentile thresholds which
changed depending on spatial location. However, their re-
search was focused on trend analysis. Since we were able
to include spatial covariates, we only consider fixed thresh-
olds for the entire country found in Attri and Tyagi (2010).525

This report defined 3 categories of rainfall: light rainfall (0<
x < 64.4mmday−1), moderate rainfall (64.4≤ x < 124.4
mmday−1), and extreme rainfall (≥ 124.4 mmday−1).

All stations were were marked each day with indicators
of these categories to be used in the modeling. Only obser-530

vations considered to be within monsoon season were used.
This conservatively included the time period from May 1 to
October 31 (184 days) for each year. We fit models for each
year (excluding 1975) from 1973-2013. To account for spa-
tial variability, we fit a random intercept by weather station535

(WS) in the following logit-normal model:

Level 1: YWS,day|u
ind.∼ Bernoulli(θWS,day), (32)

logit(θWS,day) = xT
WS,dayβ+uWS , (33)

Level 2: UWS
ind.∼ N (0,σ2

WS). (34)
540

2http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.derived.html

3http://www.cpc.ncep.noaa.gov/products/analysis monitoring/
ensostuff/detrend.nino34.ascii.txt

4http://www.jamstec.go.jp/e/
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5.2 Results of GLMMs

To aid interpretation and provide a basis for comparison
among models, we performed tests of significance for both
fixed and random parameter estimates. We also give results
from a goodness-of-fit test for each year’s model.545

In order to provide tests of significance for fixed effect co-
efficients, we propose the following procedure:

1. Run a generalized linear model (GLM) with all eligible
fixed covariates.

2. Run a GLM with all eligible fixed covariates except the550

one we are testing.

3. Do a likelihood ratio test (LRT) to compare these mod-
els and get a p-value from the asymptotic χ2

1 distribu-
tion.

We recognize this method does not include the variance com-555

ponent and is thus, not the same model that we are proposing.
The likelihood ratio test for GLM described above provides
an idea about the relative important of various fixed effects
covariates that may be influential for light, moderate or heavy
precipitation. The above procedure may be supplemented by560

a multiple testing correction procedure, if needed. The de-
tails of this analysis is available from the authors. Also note
that in this part of the analysis we did not include random
effects, owing to a lack of viable and theoretically justifiable
testing procedure when a random effect is present. Inclusion565

of random effects are likely to reduce variance attributed to
noise, thus typically increasing significance levels.

We chose the GLM with all fixed covariates to provide
a test of goodness-of-fit based on residual deviance being
asymptotically χ2. For details, refer to Faraway (2006). This570

compares the fitted model to the saturated model which con-
tains one parameter for each observation. Failure to reject the
null hypothesis of this test indicates a lack-of-fit.

Finally, a test of the variance component in the GLMM fit
by glmer is done using a LRT with a nonstandard asymp-575

totic distribution. Because our models have a single variance
component, the asymptotic distribution for the LRT corre-
sponds half of the p-value obtained from the χ2

1 distribution
as noted by Zhang and Lin (2008). We only do this test for
glmer since the other two methods do not use maximum580

likelihood, although it should be noted the likelihood pro-
duced by glmer is only approximate. Overall, we take a
cautious view on the interpretation of these tests.

5.2.1 Discussion of Rainfall Models

Results of significance testing for each of the models can be585

found in Table 6. All covariates were significant in the light
rainfall model in the majority of the years. However, 38% of
the years showed lack-of-fit based on the deviance test. The
moderate and extreme rainfall models showed no lack-of-fit,
but had far fewer significant covariates over the years.590

Clearly, maximum daily temperature was important in all
three levels of rainfall aligning with the Clausius-Clapeyron
equation regarding water vapor capacity of the atmosphere.
Minimum temperature was significant in most years for light
and moderate rainfall, but was only significant in a minority595

of the extreme rainfall models.
Elevation was also significant in many years for all rainfall

levels. This aligns with the physical explanations of warm
moist air cooling at higher altitudes to produce precipitation.

Latitude and longitude were both significant in most light600

rainfall years. Moderate and extreme rainfall did not indicate
latitude as significant in most years. Longitude was signifi-
cant in just over half of the extreme models. Coefficient esti-
mates for latitude indicated the probabilities of rain increas-
ing going south to north. Longitude estimates were mostly605

negative indicating a decreasing probability of rainfall going
west to east.

DMI was significant for the majority of light rainfall mod-
els; however, it was significant in very few of the moderate
and extreme models. This corresponds to the DMI influence610

in non-ENSO drought years as hypothesized in previous lit-
erature.

∆TT was significant in most years for all three rainfall
levels corroborating the hypothesis that it is instrumental in
monsoon circulation.615

The Nino 3.4 anomaly index was significant in the ma-
jority of light rainfall models, but in less than 20% of both
moderate and extreme models. This could be related to the
possible weakening of the relationship between ENSO and
the Indian monsoon as noted in Chang et al. (2001) but may620

also be a function of the other covariates included in the mod-
eling.

The station variance component was significant in nearly
all of the light rainfall models. One can note from Fig. 2a,
there is less variability in general in light rainfall even though625

most years are significant. The variance was significant in
about half of the moderate and a quarter of the extreme rain-
fall models. As seen in Figs. 2b–2c, these models tended to
have higher variability than light rainfall even though fewer
years were significant. The variance component does provide630

additional explanation for the rainfall variability and thus,
vets the methodology use in this application. This verifies
the thesis of this paper: that a significant portion of the vari-
ability in any precipitation category is a random component
that is distinguishable from random noise variability.635

5.2.2 Estimation Method Performance

The coefficient estimates over the time period for all fixed
effects at each level of rainfall are depicted in Figs. 3–5.
The three estimation methods tended to produce different
answers on at least a few of the coefficients in each of the640

models. The best agreement amongst all methods occurred in
the estimates for maximum temperature (moderate, extreme),
longitude (light, extreme), and the variance components (all).
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Estimates for glmer and MSIM tended to agree more often
than either agreed with dclone. However, they were fairly645

different in magnitude for several covariates and did not al-
ways trend with each other. Light rainfall models displayed
slightly more disagreement more than moderate and extreme
rainfall.

Standard deviations from dclone estimates indicated650

that the algorithm had likely not converged for all parame-
ters in the 10000 samples taken from the posterior. As men-
tioned in §3.3, one of the issues with using this method is
difficulty in assessing convergence. It would likely require a
much larger sample to provide suitable answers in this ap-655

plication. Based on this, we would say the dclone results
were mostly inconclusive in this application.

The outcome of this application indicated glmer and
MSIM provided more reasonable estimates, however, a
longer run of dclonemay also be useful. The three methods660

are representative of distinct statistical paradigms of estima-
tion including approximate likelihood, Bayesian, and method
of moments. Each of the methods uses a different algorithm
and different assumptions, thus, we recommend use of mul-
tiple methods when applying GLMM in an application.665

6 Conclusions

Outcomes for Indian monsoon rainfall coincide with results
in the Indian monsoon literature providing evidence of the
usefulness of GLMM. Physical constructs are preserved by
the models demonstrated by the importance of elevation,670

maximum temperature, and ∆TT in all levels of rainfall.
Random effects are significant in several of the models in-
dicating promise of modeling some of the unobservable and
complicated interactions that underly climate patterns.

The GLMM methods explored in this article purposely675

included several styles of estimation including approximate
likelihood, Bayesian, and method of moments type estima-
tors. Each exhibited some drawbacks, thus, use of at least
two out of three of the best methods, glmer, MSIM, and
dclone, in the context of any application will help verify680

consistency of estimates. Use of multiple methods will pro-
vide researchers with higher confidence in results and will be
more robust to limitations of any of the individual methods.

Since the relevance of GLMM in this context has been es-
tablished, climate model output, such as that of CMIP5, will685

be explored to gain deeper intuition of the nature of this ran-
dom effect. Further work on GLMMs may include studying
other proposed drivers of Indian monsoons in their contribu-
tions to fixed or random effects. Additional random effects
that include spatial correlation will be tested in future work.690

We also note that this model could be pursued in the future
as a multinomial logit model.

It was suggested that Normalized Difference Vegetation
Index (NDVI) may be a useful covariate for understanding
feedback of vegetation on precipitation. However, data cov-695

erage was limited, thus, it was not included in our models. It
will be examined more closely in future modeling efforts.

Providing improvements to the GLMM estimation meth-
ods is another open research area. One limitation of GLMM,
as presented here, is the reliance of modeling random ef-700

fects as normal. Expanding the possible distributions of ran-
dom effects to include extreme value distributions would be
a breakthrough in mixed modeling. Providing more conclu-
sive tests of significance for fixed and random effects is also
important.705

Appendix A

Additional Specifications for Simulations and Applica-
tions

Computers Used

– assawa: 2010 Frontier i7 8-core Intel i7 940 (2.93 GHz)710

with 3 GB of RAM

– geneva: 2011 Frontier i7 8-core Intel i7 950 (3.07 GHz)
with 6 GB of RAM

– nokomis: 2012 Optiplex 7010 8-core Intel i7-3770
(3.40 GHz) with 8 GB of RAM715

– tilde: 2013 Optiplex 7010 8-core Intel i7-3770
(3.40 GHz) with 8 GB of RAM

MSIM Fast

– Number of Monte Carlo simulations: 100000

MSIM Slow720

– Number of Monte Carlo simulations: 100

– Convergence criterion for Newton Raphson Method:
Euclidean norm of change ≤ .01

Dclone

– Clones: 5725

– Prior for µ: N(0, 1
0.0001 )

– Prior for 1
σ2 : Gamma(0.01,0.01)

– Adaptation length: 100

– Markov chain length after adaptation: 10000
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Fig. 1. Observed Indian rainfall (in mm) on 25 August 2012, shown
in contours. Markers indicate NCDC NOAA data status of individ-
ual stations.
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Fig. 2a. Weather station standard deviation estimates for logit-
normal models with light Indian rainfall (0< x≤ 64.4 mmday−1)
as the response from 1973-2013. Estimates over time indicate vari-
ability near 0, however, most of the glmer estimates are significant
at the 0.05 level.
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Fig. 2b. Weather station standard deviation estimates for logit-
normal models with moderate Indian rainfall (64.4 ≤ x < 124.4
mmday−1) as the response from 1973-2013. Approximately half
of the glmer estimates are significant at the 0.05 level.
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Fig. 2c. Weather station standard deviation estimates for logit-
normal models with extreme Indian rainfall (≥ 124.4 mmday−1)
as the response from 1973-2013. Approximately one quarter of the
glmer estimates are significant at the 0.05 level.

1980 1990 2000 2010

Year

S
td

. D
ev

. b
y 

W
ea

th
er

 S
ta

tio
n

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

MSIM
dclone

glmer
Sig. at 0.05



L. Dietz and S. Chatterjee: Logit-Normal Mixed Model for Indian Monsoon Rainfall Precipitation 11

Fig. 3. Fixed coefficient estimates for logit-normal models with light Indian rainfall (0< x < 64.4 mmday−1) response from 1973-2013.
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Fig. 4. Fixed coefficient estimates for logit-normal models with moderate Indian rainfall (64.4 ≤ x < 124.4 mmday−1) response from
1973-2013.
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Fig. 5. Fixed coefficient estimates for logit-normal models with extreme Indian rainfall (≥ 124.4 mmday−1) response from 1973-2013.
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Table 1. MSIM Simulation Results: µ= 2,σ2 = 1

# of Obs. per Subject
Par. Sub. 2 10 50 200

10 17.41(4.38) 2.11(0.07) 2.05(0.03) 2.00(0.01)
µ 50 2.08(0.05) 1.98(0.02) 2.02(0.01) 2.00(0.00)

200 2.01(0.03) 1.98(0.02) 1.99(0.01) 1.99(0.00)
1000 2.00(0.04) 1.99(0.01) 2.01(0.01) 2.00(0.00)
10 741.99(302.51) 1.71(0.33) 1.16(0.09) 0.97(0.04)

σ2 50 1.02(0.10) 0.98(0.05) 0.98(0.02) 0.99(0.01)
200 0.87(0.05) 0.97(0.03) 0.98(0.02) 0.99(0.01)
1000 0.92(0.06) 0.99(0.02) 1.00(0.02) 1.00(0.01)
10 2885.74(1016.73) 4.32(0.71) 1.14(0.33) 0.09(0.01)
50 3.29(0.58) 0.19(0.02) 0.04(0.01) 0.01(0.00)

Loss 200 0.33(0.04) 0.07(0.01) 0.02(0.00) 0.00(0.00)
1000 0.50(0.16) 0.05(0.00) 0.02(0.00) 0.00(0.00)

Table 2. dclone Simulation Results: µ= 2,σ2 = 1

# of Obs. per Subject
Par. Sub. 2 10 50 200

10 13.18(2.65) 2.12(0.05) 2.03(0.03) 2.02(0.04)
µ 50 2.11(0.07) 1.99(0.02) 1.99(0.02) 1.99(0.01)

200 2.05(0.03) 2.02(0.01) 1.99(0.01) 2.01(0.01)
1000 2.01(0.01) 2.00(0.00) 1.99(0.00) 2.00(0.00)
10 7.79(1.79) 1.18(0.11) 0.95(0.06) 0.98(0.05)

σ2 50 1.67(0.33) 1.00(0.05) 0.99(0.03) 1.00(0.02)
200 1.16(0.08) 0.99(0.02) 0.98(0.01) 1.00(0.01)
1000 0.98(0.04) 0.99(0.01) 1.00(0.01) 0.99(0.00)
10 131.65(86.2) 1.26(0.14) 0.32(0.04) 0.31(0.05)
50 1.58(0.44) 0.19(0.02) 0.06(0.01) 0.04(0.00)

Loss 200 0.40(0.06) 0.04(0.00) 0.02(0.00) 0.01(0.00)
1000 0.09(0.01) 0.01(0.00) 0.00(0.00) 0.00(0.00)

Table 3. glmer Simulation Results: µ= 2,σ2 = 1

# of Obs. per Subjects
Par. Sub. 2 10 50 200

10 6.02(0.70) 2.77(0.18) 2.33(0.09) 2.10(0.02)
µ 50 2.18(0.09) 1.99(0.02) 2.02(0.01) 2.00(0.00)

200 2.03(0.04) 1.99(0.02) 1.99(0.01) 1.99(0.00)
1000 2.02(0.04) 1.99(0.01) 2.01(0.01) 2.00(0.00)
10 198.73(81.39) 7.48(1.36) 3.07(0.76) 1.19(0.04)

σ2 50 1.66(0.54) 0.95(0.05) 0.94(0.02) 0.94(0.01)
200 0.93(0.06) 0.97(0.03) 0.97(0.01) 0.98(0.01)
1000 0.97(0.05) 1.00(0.02) 1.00(0.01) 0.99(0.00)
10 270.68(84.19) 13.35(1.91) 3.79(1.12) 0.11(0.02)
50 4.96(1.15) 0.19(0.02) 0.04(0.00) 0.01(0.00)

Loss 200 0.32(0.04) 0.06(0.01) 0.02(0.00) 0.00(0.00)
1000 0.47(0.20) 0.04(0.00) 0.01(0.00) 0.00(0.00)

Table 4. glmmPQL Simulation Results: µ= 2,σ2 = 1

# of Obs. per Subjects
Par. Sub. 2 10 50 200

10 3.10(0.17) 1.92(0.16) 1.34(0.14) 0.68(0.08)
50 1.83(0.06) 1.61(0.03) 1.60(0.02) 1.54(0.01)
200 1.81(0.04) 1.71(0.02) 1.73(0.01) 1.72(0.01)
1000 1.81(0.04) 1.81(0.02) 1.81(0.01) 1.79(0.01)
10 1.71(0.13) 1.26(0.11) 0.81(0.11) 0.26(0.06)
50 0.52(0.06) 0.25(0.04) 0.15(0.04) 0.01(0.01)
200 0.51(0.04) 0.54(0.03) 0.67(0.02) 0.68(0.01)
1000 0.48(0.04) 0.72(0.03) 0.75(0.01) 0.74(0.01)
10 6.04(0.50) 5.95(0.47) 7.80(0.50) 10.21(0.47)
50 4.81(0.44) 5.61(0.38) 6.26(0.31) 7.89(0.12)
200 3.40(0.48) 1.77(0.33) 0.24(0.06) 0.15(0.01)
1000 3.95(0.47) 0.75(0.25) 0.10(0.01) 0.10(0.00)

Table 5. Total System Time (in seconds) Results for nokomis

(# of Subjects, Obs. per Subject)
Method (50,10) (50,200) (200,10) (200,200)
glmer 0.089 0.048 0.080 0.071
PQL 0.286 0.234 0.384 0.394

MSIM Fast 2.576 3.419 2.479 2.483
Dclone 10.028 11.355 38.069 40.004

MSIM Slow 94.729 9363.849 1069.468 -
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Table 6. This table indicates the percentage of significant p-values
at α= 0.05 level for each of the 1973-2013 models. p-values for
fixed coefficients and goodness-of-fit test are from LRTs on GLM
fits. p-values for the variance components are from LRTs that com-
pare GLM and glmer fits.

Variable Light Moderate Extreme
DMI 84% 30% 14%

Nino34 68% 20% 13%
Fixed ∆TT 98% 95% 70%

Elevation 95% 98% 95%
Max. Temp. 100% 98% 100%
Min. Temp. 75% 100% 40%

Latitude 90% 30% 8%
Longitude 90% 33% 55%

Random Station 93% 53% 28%
Lack-of-Fit? 38% 0% 0%


