
Dear Dr. Maraun, 
 
The following are duplicates of the responses I previously posted on the interactive 
discussion in response to the three reviewers. In addition, I am adding a copy of the 
revised text showing all the changes. 
 
In the following document, the reviewers original comments are in italics, my response is 
in plain text, and any changes made to the revised text is in quotation marks. If the 
change is within previous text, I indicate it is new by enclosing in []. 
 
I hope you find this revised manuscript is suitable for publication.   
 
Cheers, 
 
Don Chambers 
 
 
Response to Reviewer # 1 
1. Pag 1836, line 12 
The signal on which you run the EMD is built only trough noise. Explain better this, 
please. You should also explain why this experiment is interesting for the target of your 
paper. 
 
I tried to explain the motivation in the following paragraph, but I can see now that could 
be confusing. Thus, I have substantially revised this section to better explain my 
motivation by bringing that discussion into this paragraph and expanding it. I also believe 
this will answer several of your other questions, notable Comments 6, 7, and 8. 
 

“Moreover, Wu and Huang (2004) have shown that EMD behaves as a low-pass 
filter. If one runs random noise with a normal Gaussian distribution through the process, 
low-frequency signals will be seen in the resulting IMFs. They found there is roughly a 
doubling of the average period with each subsequent mode. This is a significant issue. It 
means that any random (or near-random, high-frequency) signal will propagate into low-
frequency signals in the recovered IMFs. Wu and Huang (2009) proposed a method to 
quantify the uncertainty caused by this behavior by computing an ensemble mean of 
IMFs, starting from the same time-series but with different amounts of added random 
noise. 

However, this method ignores that all geophysical time-series have an underlying real 
signal that has high variance and little serial correlation; i.e., a high-frequency, near-
random signal. This “signal” will also be filtered by the EMD process and will likely 
appear as a quasi-stationary oscillation in higher order IMFs that is not real. Although 
adding multiple realizations of random noise to a time-series will account for uncertainty 
in the IMFs from random error in the measurement, it will not account for the shifting of 
high-frequency signal to low-frequency signal in the recovered IMFs from the high-
frequency signal. One of the assumptions in EMD processing is this is captured in the 
lowest IMFs. Our testing indicates it is not. 



To demonstrate the potential size of this problem, we ran EMD on a monthly-
resolution time-series that is 150-years long with randomly-correlated values that have a 
standard deviation of 60 mm. We used 60 mm because this is the standard deviation of 
residual monthly sea level at San Francisco after fitting and removing a quadratic 
function plus annual and semiannual sinusoids, so is representative of high-frequency sea 
level at a typical site, although some sites can have significantly higher variability. We 
ran another case using a colored noise model that exactly reproduces the autocovariance 
of the San Francisco tide gauge residuals. The results were nearly identical to the ones 
shown with the random residuals, so we choose to use random values as they are faster to 
compute for the several thousand simulations we plan to run. The EMD finds IMFs that 
have quasi-period fluctuations of nearly 60-years and amplitudes as large as 10 mm 
(Figure 1); fluctuations at quasi-30-year periods are the same magnitude.” 
 
2. Pag 1839, line 7 
I suggest to insert the value of the correlation of SOI and PDO also before you have 
worked on them. 
 
We have added that information in the revision: 
 
“Secondly, because the two indices are slightly correlated (-0.21, p < 0.001) due to 
similar interannual (< ten year) variations…” 
 
3. Pag 1840, line 11 
Where will you note that none accurately captures the input seasonal variation? 
 
We note it right there. We do not show it, because it is beyond the scope of the paper and 
most authors use EMD to extract low-frequency variations, not seasonal. This is 
discussed in the introduction. Thus, we feel showing this is irrelevant.  
 
4. When you compute the correlation between the “best IMF” and the simulated 
oscillation for the 1000 simulations, it should be interesting for the reader seeing an 
histogram (for the case 1) to have a better idea of the distribution of this parameter (with 
also a mean value with error). 
 
We have added a new figure (Figure 4 in revision) and added the statistics. The new text 
reads: 
 
“Figure 4 shows the histogram of computed correlations. Note that the correlations were 
not the same in every simulation. The 13-year oscillation had a mean correlation of 0.66 
(standard deviation = 0.09), the 55-year had a mean of 0.52 (standard deviation = 0.11), 
while the mean correlation of the 80-year signal was 0.74 (standard deviation = 0.09).” 
 
5. 
Pag 1842, line 12 
Please, explein better the following part, it is not clear: “We isolated this signal by 
looking at the autocorrelation of the remaining IMFs uncorrelated with either PDO or 



ENSO. The IMF with an autocorrelation greater than 0.9 at a lag of 1 year was 
selected.“ 
 
I can see this was a little confusing. I’ve modified the text thusly: 
 
“In addition, we found in nearly every case (99%) the EMD computed one to two IMFs 
with a periodic signal that did not correlate highly with either PDO or ENSO, but had a 
low-frequency. Because this was not always contained in a single IMF between the two 
prescribed periodic fluctuations, we had to adapt a method to search for it. We isolated 
this signal by looking at the autocorrelation of the IMFs after removing those correlated 
with PDO or ENSO, as well as the last mode. To find the mode with the longest-period 
fluctuation, we examined the autocorrelation at a 1-year lag. Only IMFs with an 
autocorrelation greater than 0.9 at a lag of 1-year were examined, and if two existed, the 
one with the higher autocorrelation was selected.” 
 
6. Pag 1836, from line 20 
You cite (Wu et al., 2004) saying what they do in their paper, but I know that they do an 
other thing. I know that they propose a test useful when you analyze a signal in which is 
present some noise. The test is useful to identify the IMFs due to noise (“non significative 
IMFs”), in such a way to not consider them for a physic discussion about the intrinsic 
oscillations present in the signal. Perhaps do you talk about the work present in the other 
reference you cite in line 20, or about (Wu et al., 2007)? This confused me because you 
propose your approach as alternative also to their works, but actually I have a comment 
exactly on the test of (Wu et al., 2004), in particular I don’t understand why you don’t 
apply the test (and so I write what follow in 8). 
 
Thanks for pointing out the citation was wrong. You are correct; it should be Wu and 
Huang (2009), for their Ensemble EMD. I have corrected this in the text (see reply for 
Point 1). As far as why I don’t compute the confidence tests of modes described in Wu 
and Huang (2004), I don’t need to, since I know what the signal should be and can 
compare the IMFs to it. This is a much more stringent test than the statistical testing of 
Wu and Huang (2004), which assumes high-frequency signal is properly captured in low 
IMFs and does not distort higher IMFs. I will discuss this more in my response to 
Comment 8. 
 
7. You decide to use the random noise to represent high-frequency variability. You chose 
a noise with a variance to match the variance of the difference between the original data 
and the model. This signal is actually due both to noise part and some other signal with 
appreciable characteristic frequencies (one way to appreciate these is, for example, 
applying the EMD on this). So using the noise to represent this “high frequency 
variability”, you actually represent only the noise of this (and you should say this). 
 
Here is where we begin to disagree. Using the random values is not just representing 
noise in this simulation. It is representing the magnitude of high-frequency variability 
that is real signal in a simple, repeatable simulation. Real signals will of course have 
serial correlations in the data, but for tide gauge measurements they are not large after a 



few months. I actually did test with a colored-noise model that reproduces the 
autocovariance of the San Francisco tide gauge residuals quite well. The results were no 
different than the random values, so I chose to only discuss those as they are more easily 
reproduced.  
 
I added a comment regarding this in the section I added to your Comment 1: 
 
“We ran another case using a colored noise model that exactly reproduces the 
autocovariance of the San Francisco tide gauge residuals. The results were nearly 
identical to the ones shown with the random residuals, so we choose to use random 
values as they are faster to compute for the thousands of simulations we plan to run.” 
 
Moreover, one might expect that by averaging 1000 different IMFs computed from 
different randomly simulated residuals added to the base signal, that the mean would be 
zero. This is NOT the case, and what this simulation clearly demonstrates. This is exactly 
the type of error that can still remain in the Ensemble EMD method, which is what 
motivated this paper.  
 
8. Performing your experiment, in any of 1000 run, I don’t understand why you don’t 
apply the noise test (Wu et al., 2004), that give you the possibility to isolate, and not 
consider, the part of signal due to noise (“non significative signal”). I know that clearly 
in the assumption that you represent the “high frequency signal” with noise, all the noise 
is significative (because you insert it!), nevertheless in this way you discuss also about 
IMFs due to noise. The crucial point of this, is that performing the EMD on a generic 
real signal you can apply the test and so avoid to consider the part of signal due to noise. 
The problem of non apply the test could be that, if you find a “problematic” IMF, you are 
finding a “problem” in a IMF that could be not actually significative (i.e. due to noise), 
so in a IMF that is actually due to a part of signal that you can avoid to consider. I 
observe that you don’t discuss about the first IMFs, and usually applying the test you 
discover that IMFs due to noise are the first but it’s not absolutely a rule; so in any of the 
1000 simulations, if you find a “problem” in one IMF, before say that this is a real 
“problem” you should ascertain that is not due to noise, applying the test. 
 
There is no reason to conduct the significance testing of Wu and Huang (2004) in this 
experiment, as I know what the answer should be and can compare the IMFs to it. This is 
a much more stringent test than the statistical testing of Wu and Huang (2004), which 
assumes high-frequency signal is properly captured in low IMFs and does not distort 
higher IMFs.  This is the whole point of the experiment – to determine if the EMD 
method can find input, known signals in the presence of high-frequency variability with 
realistic variance. Although I have not performed the significance testing, I suspect it will 
say the lowest high-frequency modes are not significant, but the higher, low-frequency 
ones are. Just based on the spread of the ensemble, they appear significant. But they are 
wrong! 
 



I’ve added a paragraph after the discussion of the results for Case 1 to try to highlight the 
probably misinterpretation of an analysis of the EMD results for Case 1. Note, Figure 5 is 
the old Figure 4. 
 
“More importantly, consider the interpretation of the results from this simplistic 
simulation in terms of longer-term climate change if only the EMD results (Figure 5) 
were analyzed. Based only on the returned IMFs, one could easily argue that there was no 
significant low-frequency variation in the sea level before 1950, then a rather dramatic 
rise in the 1970s, followed by a return to normal condition. In fact, there were equally 
large sea level shifts in the early part of the simulated record that were lost due to the way 
the EMD method partitions the real signal. “ 
 
9. Comment on “Case 2” You study if it is possible to reproduce each simulated signal 
trough one IMF. It should be observed a conceptual difference that exist between case 1 
and 2. Actually, in principle, you can reproduce each simulated signal trough one IMF 
(for each signal) only in the case 1, because sinusoids respond to the definition of a IMF 
(Huang et al., 1998 ). In the case 2, instead, because of ENSO/PDO doesn’t respond to 
IMF’s definition, you know already in principle that you can’t capture this signal trough 
a single IMF. In principle, you should need at least two IMF (the sum of two IMF doesn’t 
have to respond to the definition of IMF) to reproduce that signal.  
 
So a part of the signal of ENSO/PDO is diffused (necessarily) in other IMFs and we can 
expect this before performing the EMD. 
 
 
I don’t disagree with anything you say here. I point out what I wrote in the introduction: 
 
“However, there are some potential pitfalls that we believe have not been fully addressed 
in previous papers utilizing the method. First and foremost, EMD is a purely 
mathematical deconstruction of the data, with no regard to intrinsic covariance of the 
signals or physics. Second, it assumes that IMFs are comprised of fluctuating signals 
where the magnitude of nearby peaks and troughs are balanced to create a zero mean – an 
assumption not based on any physical requirement, as real observations can have quite 
large ranges in magnitudes, especially sea level data affected by climate signals and 
synoptic storm events.” 
 
I stand by all of that, which is in close agreement to what you state. EMD is a 
mathematical deconvolution of the data, and no individual mode has any physical 
meaning. But many scientists are trying to analyze individual IMFs for climatic signals. I 
give a list of some I know about in the beginning section. Thus, I believe my analysis of 
whether EMD can extract physically meaningful signals in a single mode is justified. I 
also point out that although you state that in Case 1 you should be able to extract the 
physical modes in a single EMD, I demonstrate that you cannot. 
 
You say (pag 1843, lines 1-4): “We know of none that find multiple modes that add up to 
correlate with an ENSO index. Thus, we argue it is more relevant to quantify if EMD can 



extract physically meaningful climate modes than whether it can extract modes with 
interannual and multi-decadal variability”. Performing the decomposition with other 
techniques you obtain different results, clearly we know that each techniques work in a 
different way. I agree that it’s very important thata technique give you modes that have 
physical meaning. But with EMD, actually mathematically you already know before 
performing the analysis that you can’t obtain this mode in a unique IMF (the same for 
PDO). After a decomposition, for sure if you retain for some reason that physically this 
signal is a “unique signal” you have to sum the IMF that give you the signal (clearly if 
you know already what you want to build, after performing EMD), but EMD can’t say 
this to us (see for example Alberti et al., 2014. NOTE: the citation of this reference 
should be interesting to give the reader the awareness, although this “critical” paper, 
that EMD is a delicate tool but useful when used in the right way). 
 
Thanks for sending me that reference. I had not seen it in my literature review. In that 
case, though, you and your colleagues were using the EMD as a type of low-pass filter by 
adding up the higher modes that did not pass the significance testing. I have no qualm 
with that. I have added a comment on low-pass filtering with EMD in the conclusions: 
 
“EMD is a quick and relatively easy tool to identify possible multidecadal fluctuations in 
a sea level record. However, it should not be used solely to quantify magnitude and 
phase, nor should analysis of climatic signals be based on a single IMF. One should also 
be cautious in interpreting acceleration computed from the final IMF, especially in light 
of the significant errors found in the early and later parts of the low-frequency IMFs 
(Figures 5, 6, and 7). Where EMD has shown to be useful has been in low-pass filtering 
data to reduce the impact of high-frequency variability and noise (e.g., Alberti et al., 
2014). In that case, the sum of the higher IMFs are used as the low-pass filter.” 
 
… 
Besides, looking very crudely at fig. 5 seems that the sum of "unsimulated low frequency" 
IMF and the "PDO IMF" give a good approximation of the total PDO signal, except for 
first years (regarding this, however, I already said in you that it wasn’t clear what you 
said in pag 1842, line 12). 
 
But the change in the early part of the “PDO” IMF could lead to erroneous climatic 
interpretations. I added a small comment to the section where I discussed this, noted here 
in bold. 
 
“As with the ENSO-mode, the mean PDO-mode IMF tracks the general periodicity of the 
PDO, although the amplitudes are on average too small. Again, the standard deviation 
suggests any single simulation would give a considerable range of amplitudes. We note 
that as with the Case 1 results, there is a tendency for an increasing amplitude in time for 
the mean IMF, which could be misinterpreted as a sign of climate change; this is 
inconsistent with the true signal, where the first two peaks in the given PDO signal are 
roughly the same magnitude.” 
 



According to me, it should be interesting to perform the same experiment using, instead 
of ENSO and PDO signal like simulated signal, some IMFs ("simulated IMFs") obtained 
performing EMD on an other signal. I suggest to do it. You could use also the ENSO and 
PDO to extract and define the "simulated IMFs". I think this procedure should be 
interesting because in this case, like in case 1, the EMD could actually extract the 
"simulated IMFs" in a new IMFs from a theoretical point of view. 
 
I don’t see how this would provide any more insight than the experiments I have already 
conducted and decline to add them. 
 
 
10. Pag 1844, line 1 (About the case 3) 
You say: “By enforcing an unrealistic balance of equal highs and lows, the method 
creates a low-frequency oscillation that does not exist.” However I think that should be 
necessary comment the result of EMD’s application to “case 3” comparing this with 
“case 3 without add the extreme event”. I say this because also in “case 3 without add 
the extreme event” I expect that you will obtain some oscillation that “does not exist” (no 
prescribed oscillations), and this should be clarified. 
 
I showed the result of the random-only case in Figure 1, but I did not reference it here. 
I’ve fixed that in the revision. The addition is shown in bold: 
 
“Because the EMD method implicitly assumes local highs are balanced perfectly by 
nearby lows, it cannot handle an extreme event like this. By enforcing an unrealistic 
balance of equal highs and lows, the method creates a low-frequency oscillation that does 
not exist. Although the random-only case (Figure 1) also produces low-frequency 
erroneous oscillations, the amplitudes are significantly less for the longer-period 
IMFs. With a larger pulse, the magnitude of the error is even higher.” 
 
11. Period IMFs How do you obtain the periods of IMFs? From instantaneous frequency, 
from values peak-peak or? 
 
I assume this refers to the statement: 
 
“Notice the large, non-stationary oscillation with a period of about 10-years in IMF6.” 
!
Since I don’t dwell on the period and just use it to describe a rough period, I don’t feel it 
is necessary to describe the details as it would clutter the text. It is based on dividing the 
length of the time-series by the number of peaks. 
 
Technical Comments 
 
1. Pag 1837, line 7 
Before introduce the cases, you should add that you will analyze three cases. After this 
talk about them. 
 



Two lines above that we state: 
 
“Thus, we propose to test the EMD process not on real observations where one does not 
know the underlying modes, but on three simulated data sets where the modes are 
prescribed.” 
 
2. "Data and methods" 
I suggest to present the three cases in a more schematic way, to give a more immediate 
vision to the reader …  (You could use the same division in “Results and analysis”). I 
suggest also to insert the analytic expression for the third case using a Dirac’s delta to 
underline that is only one the point in which you insert the extreme value. 
 
This is more a matter of writing styles than a technical problem. We prefer the text the 
way it is written. 
 
3. Pag 1842, line 11 
The sentence: 
“In addition, we found in nearly every case (99 %) the EMD computed an IMF with a 
periodic signal between the ENSO and the PDO signal.” 
should be: “In addition, we found in nearly every case (99 %) the EMD computed an 
IMF with a periodicity between the periodicity of the IMFs designed to describe ENSO 
and the PDO.” 
 
That sentence has already been revised according to Comment 5 above: 
 
““In addition, we found in nearly every case (99%) the EMD computed one to two IMFs 
with a periodic signal that did not correlate highly with either PDO or ENSO, but had a 
low-frequency.” 
 
4. Figures In figures in which the average periods of IMFs are missed, I suggest to insert 
them. 
 
I’m sorry, but I do not understand this request and so do not know how to respond. 
 
5.  
Pag 1847, line 10 
The title of the follow reference is not correct. 
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C., and 
Liu, H. H.: The Empirical Mode Decomposition and the Hilbert spectrum for non 
stationary time series analysis, P. R. Soc. London, 454, 903–995, 1998. 
 
Thanks for catching that. One of the pitfalls of typing in reference is missing a word or 
two in the title. 
 
  



 
Response to Reviewer # 2 
 
Comment # 1 
========== 
However, as I understand it, as a simply mathematical procedure the identified signals 
do not necessarily match a “real” signal. Like in a classical EOF analysis, it could 
happen that a “real” signal is actually accounted for by the combination of two or more 
modes. Is this what is happening when more than one IMF is correlated with a climate 
index in case%2?%If%so,%my%feeling%is%that%the%evaluation%of%the%ability%of%EMD%is%not%fair.%%
 
Reply 
===== 
I agree with the reviewer that the “real” signals are likely spread over multiple modes, but 
I’m sure the reviewer also knows that many users of these techniques (EOFs and EMDs 
both) tend to focus on just a single mode and say it’s the ENSO, or PDO mode, for 
example. That is the motivation for this. I have attempted to make this clearer in the 
revision by adding more verbiage in the introduction and conclusions. Here is the new 
text. Updated sentences are in []. 
 
Intro 
 
“However, there are some potential pitfalls that we believe have not been fully addressed 
in previous papers utilizing the method. First and foremost, EMD is a purely 
mathematical deconstruction of the data, with no regard to intrinsic covariance of the 
signals or physics. Second, it assumes that IMFs are comprised of fluctuating signals 
where the magnitude of nearby peaks and troughs are balanced to create a zero mean – an 
assumption not based on any physical requirement, as real observations can have quite 
large ranges in magnitudes, especially sea level data affected by climate signals and 
synoptic storm events. [Thus, it is unlikely that a single IMF from the EMD analysis can 
represent a real, physical climate variation. Because of the assumption in the method, it is 
more likely that multiple modes will be needed to quantify the physical climate mode. 
However, without some a priori knowledge of this mode, how can one know which IMFs 
to add together? In the worst case, the climate signal could be spread among a large 
number of modes. Already, several authors have performed an EMD on ENSO indices 
and argued they have extracted distinct modes of interannual to multi-decadal variability 
(Wu and Huang, 2004; Franzke, 2009; Pecai et al., 2010); their argument based solely on 
the fact such modes are extracted during the EMD process, but with no physical 
explanation for them.]” 
 
And in the Conclusions: 
 
“EMD is a quick and relatively easy tool to identify possible multidecadal fluctuations in 
a sea level record. [However, we have demonstrated that real climatic non-stationary 
signals are generally spread among multiple modes. Analyzing a single IMF for climate 
variability will likely lead to significantly biased interpretations. Thus, we feel that EMD 



analysis should not be used solely to quantify magnitude and phase of non-stationary 
climate variations, nor should analysis of climatic signals be based on a single IMF.]” 
 
 
With these additions to the scope of the paper, we feel our analysis for Case 2 is perfectly 
justified. 
 
Comment # 2 
========== 
What I find most important is the significant difference in the acceleration computed from 
the highest order IMF. In the introduction, the author states that, due to way the last IMF 
is computed, it is equivalent to a direct quadratic fitting of the time series. However, his 
results show that the two fittings differ. The author should explain this apparent 
inconsistency.  
 
Reply 
==== 
The EMD “acceleration” curve is based on a quadractic fit, but only to the final 
oscillatory IMF as discussed in the Introduction. I’ve modified it to make this more clear: 
 
“There is also a subtlety in finding the last IMF that is not discussed in the literature. 
Since the EMD process requires fitting of cubic splines, the last IMF mode that can be 
calculated has more than one local minima and more than one local maxima, but fewer 
than four. The only way to get the final IMF shown in most studies, which shows a 
continuously increasing sea level mode, is to fit a quadratic to the final IMF from the 
EMD process, and plot the resulting fit. [This is conceptually no different than fitting a 
quadratic to the original time series, other than the fact it is done to the final mode, which 
has significant lower variance than the original data. This should] improve the estimate – 
provided there are no systematic errors or biases in the final IMF that would bias the 
result.” 
 
I have also revised the conclusions to explain what must be happening to result in 
different, biased accelerations: 
 
“Finally, authors have asserted that the acceleration that comes out of an EMD process is 
more accurate, as they believe the IMFs better separate the high- and low-frequency 
fluctuations than linear least squares. [Their argument assumes that the high-frequency 
variations and shorter-period non-stationary signals in the original time-series are biasing 
a quadratic fit to the original data. By eliminating these signals in the EMD process in 
specific IMFs, they believe the final IMF contains the “true” acceleration plus residual 
low-frequency variability.] Our experiments, however, show the opposite. The quadratic 
fit to the last IMF is either no more accurate than one fit with least squares to the full, 
unfiltered data set, or, in some cases, is significantly biased. In the experiment with 
ENSO- and PDO-like oscillations, the acceleration estimated from the final IMF was 
nearly 100% too large on average. In individual experiments, the error was even more. 



[This is most likely due to the aliasing behavior of EMD, where some of the high-
frequency variance is aliased into the low-frequency modes, as we have demonstrated.]” 
 
  



Response to Reviewer # 3 
 
Comment # 1 
========== 
The first comment is related to the title. A major part of this manuscript deals with the 
identification of an acceleration in sea level. This should be included in the title. 
 
Reply 
===== 
That’s a good suggestion. I’ve changed the title to: 
 
Evaluation of Empirical Mode Decomposition for Quantifying Multi-Decadal Variations 
and Acceleration in Sea Level Records 
 
Comment # 2 
========== 
You should discuss your results with respect to those from figures 3 and 4 in Franzke 
(2009, http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-11-00293.1). Franzke 
already showed, in a different simulation study, that EMD and wavelet methods perform 
worse compared to classical approaches such as OLS when searching for a known trend. 
Your results clearly underpin this finding. Franzke, however, argued that this is only the 
case if the real signal is known. If there is an exponential trend and you fit a linear, he 
suggests that EMD is the better choice, since the error bars of a linear OLS will increase 
exponentially. My personal opinion is a bit different to that. I prefer to apply different 
linear and nonlinear approaches to search for the real signal rather than using one 
individual model. I think that this issue still needs further independent investigations: of 
course not here, but you should discuss this point. 
 
Reply 
===== 
Note: The paper mentioned is from 2011, not 2009. 
Thanks for pointing me to that paper. I did comment on another Franzke paper (one from 
2009), but that was on using EMD on climate indices. I had not found this second paper 
in my literature review, probably because it dealt with apply EMD to SST data, not sea 
level. But after reading it, I see your point. I’ve added some commentary on that paper in 
both the Introduction and the Conclusions. It’s repeated below: 
 
In the Introduction, after discussing fitting quadratic terms to the highest IMF. 
 
“However,!Franzke!(2011)!conducted!an!experiment!of!detecting!non=linear!trends!
(i.e.,!an!acceleration)!to!a!small!suite!of!100!simulated!temperature!time=series,!
using!different!methods!including!ordinary!least!squares!and!EMD.!The!results!
showed!no!statistically!significant!improvement!in!EMD.!In!fact,!in!most!tests,!
ordinary!least!squares!computed!a!non=linear!trend!closer!to!the!input!signal.”!
 
In the conclusions, when discussing the recovery of acceleration: 



 
“Finally,!authors!have!asserted!that!the!acceleration!that!comes!out!of!an!EMD!
process!is!more!accurate,!as!they!believe!the!IMFs!better!separate!the!high=!and!low=
frequency!fluctuations!than!linear!least!squares.!Their!argument!assumes!that!the!
high=frequency!variations!and!shorter=period!non=stationary!signals!in!the!original!
time=series!are!biasing!a!quadratic!fit!to!the!original!data.!By!eliminating!these!
signals!in!the!EMD!process!in!specific!IMFs,!they!believe!the!final!IMF!contains!the!
“true”!acceleration!plus!residual!low=frequency!variability.!Even!Fanzke!(2011),!
who!demonstrated!that!EMD!was!no!better!than!this!than!ordinary!least!squares!
and!a!parametric!model!argued!that!EMD!was!still!better!if!the!trend!was!non=linear,!
especially!exponential.!Our!experiments,!however,!show!the!opposite.!The!quadratic!
fit!to!the!last!IMF!is!either!no!more!accurate!than!one!fit!with!least!squares!to!the!
full,!unfiltered!data!set,!or,!in!some!cases,!is!significantly!biased.” 
 
 
Comment # 3 
========== 
You decided to use random noise for the residual signal. However, Dangendorf et al. 
(2014, http://onlinelibrary.wiley.com/doi/10.1002/2014GL060538/abstract) have shown 
that the residual signal (after accounting for ENSO variations) in San Francisco is long-
term correlated. Did you test whether a different choice of residual noise (i.e. long-term 
correlated noise, for instance simulated with an ARFIMA model) affects your 
simulations? 
 
Reply 
==== 
I did test a colored noise model (based on a AR(3) model) in an early experiment, and 
found the results were not significantly different than using random noise. I chose to use 
random noise for faster computations and to make it easier to reproduce my results. I 
make a note of that in the revised manuscript in the introduction. 
 
“We!ran!another!case!using!a!colored!noise!model!that!exactly!reproduces!the!
autocovariance!of!the!San!Francisco!tide!gauge!residuals.!The!results!were!nearly!
identical!to!the!ones!shown!with!the!random!residuals,!so!we!choose!to!use!random!
values!as!they!are!faster!to!compute!for!the!several!thousand!simulations!we!plan!to!
run.” 
  



 
Comment # 4 
========== 
 
Case 3: You include an extreme event in terms of monthly means. This is not a storm 
surge in its classical expression, which is defined as a high frequency event with a 
duration of a few hours or days. Your extreme event is rather comparable to an 
anomalous ENSO event connected with larger scale ocean dynamics 
 
Reply 
==== 
True, this is not a storm surge, but the reflection of a storm surge in a monthly average. 
For example, Tropical Storm Debby in June 2012 caused a storm surge of more than a 
meter at the tide gauge. This is reflected in the monthly mean for June as the highest June 
mean value in the record.  
 
I have addressed your point with a slight revision of the sentence: 
 
“Case!3!starts!as!the!baseline!model,!adds!random!noise!with!a!standard!deviation!of!
60!mm!(representative!of!the!high=frequency!variability!in!San!Francisco!sea!level),!
then!adds!an!extra!350!mm!for!January!1956!to!represent!the!signal!of!a!large!
anomalous!high=water!event,!such!as!the!effect!of!a!large!storm!surge!event!on!the!
monthly!average,!a!large!flooding!event!from!sustained!rainfall,!or!climatic!
variations!in!winds!that!can!cause!sustained!high!water!levels.” 
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Abstract. The ability of empirical mode decomposition (EMD) to extract multidecadal 

variability from sea level records is tested using three simulations: one based on a series of 

purely sinusoidal modes, one based on scaled climate indices of El Niño and the Pacific Decadal 

Oscillation (PDO), and the final one including a single month with an extreme sea level event. 

All simulations include random noise of similar variance to high-frequency variability in the San 

Francisco tide gauge record. The intrinsic mode functions (IMFs) computed using EMD were 

compared to the prescribed oscillations. In all cases, the longest-period modes are significantly 

distorted, with incorrect amplitudes and phases. This affects the estimated acceleration computed 

from the longest periodic IMF. In these simulations, the acceleration was underestimated in the 

case with purely sinusoidal modes, and overestimated by nearly 100% in the case with 

prescribed climate modes. Additionally, in all cases, extra low-frequency modes uncorrelated 

with the prescribed variability are found. These experiments suggest that using EMD to identify 

multidecadal variability and accelerations in sea level records should be used with caution.  
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1. INTRODUCTION 

Over the last decade, several papers have used the method of empirical mode decomposition 

(EMD) (Huang et al., 1998; Huang and Wu, 2008) to evaluate non-stationary patterns in time 

series as disparate as electromyographic signals (Andrade et al., 2006) and sea level (Breaker and 

Ruzmaikin, 2011; Ezer and Corlett, 2012; Ezer et al., 2013; Lee, 2013; Chen et al., 2014). The 

use of EMD in sea level records has been motivated in large part by numerous papers discussing 

the appearance of decadal and longer period fluctuations in tide gauge records and global mean 

sea level estimates based on tide gauge records (e.g., Feng et al., 2004; Miller and Douglas, 

2007; Woodworth et al., 2009; Bromirski et al., 2011; Sturges and Douglas, 2011; Chambers et 

al., 2012; Calafat and Chambers, 2103; Becker et al., 2014; Dangerdorf et al., 2014).  

At first glance, EMD appears to be a useful tool to find non-stationary, low-frequency 

fluctuations in sea level, as it breaks the time-series into a set of Intrinsic Mode Functions (IMFs) 

that have progressively longer quasi-period fluctuations. IMFs extracted from various tide gauge 

records have been shown to be correlated with several climate indices (e.g., Ezer and Corlett, 

2012; Ezer et al., 2013), which gives some credence to extracted signals. Moreover, authors have 

argued that the final IMF, representing the continuously increasing sea level mode, is a better 

representation of an acceleration than simply fitting a quadratic to the original data (Huang and 

Wu, 2008; Ezer and Corlett, 2012; Ezer et al., 2013). 

However, there are some potential pitfalls that we believe have not been fully addressed in 

previous papers utilizing the method. First and foremost, EMD is a purely mathematical 

deconstruction of the data, with no regard to intrinsic covariance of the signals or physics. 

Second, it assumes that IMFs are comprised of fluctuating signals where the magnitude of 

nearby peaks and troughs are balanced to create a zero mean – an assumption not based on any 
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physical requirement, as real observations can have quite large ranges in magnitudes, especially 

sea level data affected by climate signals and synoptic storm events. Thus, it is unlikely that a 

single IMF from the EMD analysis can represent a real, physical climate variation. Because of 

the assumption in the method, it is more likely that multiple modes will be needed to quantify the 

physical climate mode. However, without some a priori knowledge of this mode, how can one 

know which IMFs to add together? In the worst case, the climate signal could be spread among a 

large number of modes. Already, several authors have performed an EMD on ENSO indices and 

argued they have extracted distinct modes of interannual to multi-decadal variability (Wu and 

Huang, 2004; Franzke, 2009; Pecai et al., 2010); their argument based solely on the fact such 

modes are extracted during the EMD process, but with no physical explanation for them. 

The basic idea of EMD is to fit cubic splines to the local maxima and minima of a time-series 

separately, average the splines, then remove the average from the time-series. The process is 

iterated on the residual time-series until the average of the splines converges to have a standard 

deviation less than some pre-set tolerance. This is the first IMF. This is then subtracted from the 

original time-series and the process is repeated until only one minimum and one maximum 

remain. For details of the procedure, readers are referred to the original paper by Huang et al. 

(1998) or more recent applications (e.g., Huang and Wu, 2008; Ezer et al., 2013). 

There is also a subtlety in finding the last IMF that is not discussed in the literature. Since the 

EMD process requires fitting of cubic splines, the last IMF mode that can be calculated has more 

than one local minima and more than one local maxima, but fewer than four. The only way to get 

the final IMF shown in most studies, which shows a continuously increasing sea level mode, is to 

fit a quadratic to the final IMF from the EMD process, and plot the resulting fit. This is 

conceptually no different than fitting a quadratic to the original time series, other than the fact it 
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is done to the final mode, which has significant lower variance than the original data. This should 

improve the estimate – provided there are no systematic errors or biases in the final IMF that 

would bias the result. 

However, Franzke (2011) conducted an experiment of detecting non-linear trends (i.e., an 

acceleration) to a small suite of 100 simulated temperature time-series, using different methods 

including ordinary least squares and EMD. The results showed no statistically significant 

improvement in EMD. In fact, in most tests, ordinary least squares computed a non-linear trend 

closer to the input signal.  

Moreover, Wu and Huang (2004) have shown that EMD behaves as a low-pass filter. If one 

runs random noise with a normal Gaussian distribution through the process, low-frequency 

signals will be seen in the resulting IMFs. They found there is roughly a doubling of the average 

period with each subsequent mode. This is a significant issue. It means that any random (or near-

random, high-frequency) signal will propagate into low-frequency signals in the recovered IMFs. 

Wu and Huang (2009) proposed a method to quantify the uncertainty caused by this behavior by 

computing an ensemble mean of IMFs, starting from the same time-series but with different 

amounts of added random noise. 

However, this method ignores that most geophysical time-series have an underlying real 

signal that has high variance and little serial correlation; i.e., a high-frequency, near-random 

signal. This “signal” will also be filtered by the EMD process and will likely appear as a quasi-

stationary oscillation in higher order IMFs that is not real. Although adding multiple realizations 

of random noise to a time-series will account for uncertainty in the IMFs from random error in 

the measurement, it will not account for the shifting of high-frequency signal to low-frequency 
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Deleted: although the variance of the final
Don Chambers� 1/16/15 10:37 AM
Deleted: EMD mode is far lower 
Don Chambers� 1/16/15 10:38 AM
Deleted: , which
Don Chambers� 1/16/15 10:38 AM
Deleted: should 



 

 5 

signal in the recovered IMFs. One of the assumptions in EMD processing is this is captured in 

the lowest IMFs. Our testing indicates it is not. 

To demonstrate the potential size of this problem, we ran EMD on a monthly-resolution 

time-series that is 150-years long with randomly-correlated values that have a standard deviation 

of 60 mm. We used 60 mm because this is the standard deviation of residual monthly sea level at 

San Francisco after fitting and removing a quadratic function plus annual and semiannual 

sinusoids, so is representative of high-frequency sea level at a typical site, although some sites 

can have significantly higher variability. We ran another case using a colored noise model that 

exactly reproduces the autocovariance of the San Francisco tide gauge residuals. The results 

were nearly identical to the ones shown with the random residuals, so we choose to use random 

values as they are faster to compute for the several thousand simulations we plan to run. The 

EMD finds IMFs that have quasi-period fluctuations of nearly 60-years and amplitudes as large 

as 10 mm (Figure 1); fluctuations at quasi-30-year periods are the same magnitude.  

Thus, we propose to test the EMD process not on real observations where one does not know 

the underlying modes, but on three simulated data sets where the modes are prescribed. We 

believe the differences between the recovered IMFs and given signals will be a better measure of 

the accuracy of the EMD method than what has previously been discussed in the literature. Two 

different simulations will be examined with fluctuating signals and differing random noise to 

represent high-frequency variability: one using purely sinusoidal oscillations with multiple 

periods ranging from 13-years to 80-years, the second with variations based on band-pass filtered 

and scaled El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) indices, 

both with additional random noise applied. The third case will examine a situation with only 

seasonal fluctuations, random noise, and a single month with a variation larger than 3-standard 
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deviations. This represents an extreme event, typically caused by major storm surge, which is a 

common feature in many sea level records. We will demonstrate that the EMD method leads to 

spurious IMFs in all cases, and where the IMFs are correlated with the input signal, their 

amplitudes and phases are significantly biased in many periods of the record.  

2. DATA AND METHODS 

We use the monthly sea level record from the San Francisco tide gauge for our reference sea 

level record. It was downloaded from the Permanent Service for Mean Sea Level (PSMSL) 

(Woodworth and Player, 2003; PSMSL, 2012). We fit annual and semi-annual sinusoids along 

with a trend and an acceleration term to the data using ordinary least squares to obtain the base-

line sea level variability for our model (ybase), where 

ybase(t) = -78.3 + 0.92*dt + 0.0081*dt**2. + 4.2*cos(2π*dt) - 31.8*sin(2π*dt)     

                 + 20.3*cos(4π*dt) + 17.7*sin(4π*dt),  (1) 

and t is the time in years, with dt = t – 1900.0.  This baseline model is the same for all 

experiments. 

For Case 1, we add three long-period sinusoids (13-years, 55-years, and 80-years) to the 

baseline model along with random noise (ε(t)): 

ycase1(t)  = ybase(t) - 9.8*cos((2π/13)*dt) + 12.5*sin((2π/13)*dt) 

                 - 6.3*cos((2π/55)*dt) + 12.3*sin((2π/55)*dt) 

                + 9.6*cos((2π/80)*dt) -15.2*sin((2π/80)*dt) + ε(t). (2)  

The random noise has a variance to match the variance of the residuals of the real tide gauge data 

minus the model. 1000 different random noise models were applied to create 1000 different 

versions of Case 1 for statistical testing. The periods and amplitudes of the long-period sinusoids 
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were chosen arbitrarily to approximate the level of multidecadal fluctuations in the San 

Francisco sea level record (Figure 2a). 

Case 2 starts from the same baseline model, but instead of prescribing sinusoidal oscillations, 

we use non-stationary climate indices for El Niño-Southern Oscillation (ENSO) variations and 

the Pacific Decadal Oscillation (PDO). We use the Southern Oscillation Index based on the 

pressure differences between Tahiti and Darwin, Australia to represent ENSO variability 

(Trenberth, 1984; Ropelewski and Jones, 1987; downloaded from 

http://www.cgd.ucar.edu/cas/catalog/climind/soi.html on 5 March 2014), and the PDO index 

based on the leading principal component of sea surface temperature in the North Pacific (Zhang 

et al., 1997; Mantua et al., 1997; downloaded from http://jisao.washington.edu/pdo/PDO.latest 

on 5 March 2014).  

Several additional processing steps are required before using these indices for our 

experiment. First, neither index covers the same period as the tide gauge (January 1856 to 

December 2010). The SOI index starts in January 1866 while the PDO index begins in January 

1900. In order to have a simulated record as long as possible, we start in January 1866 and use 

values from the end of PDO record to fill in the missing data before January 1900. Recall we are 

not worried about the “true” ENSO or PDO variability, only a simulation of the type of 

variability and how well EMD can recover it. 

Secondly, because the two indices are slightly correlated (-0.21, p < 0.001) due to similar 

interannual (< ten year) variations, we low-pass the PDO index with a 5-year Gaussian, and 

band-pass filter the SOI by first removing the 5-year Gaussian of the SOI, and then filtering the 

residuals with a 0.5-year Gaussian. After doing this, the correlation between the two filtered 

indices PDOLP(t) and SOIBP(t) is insignificant (-0.003, p < 0.01).  
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The final step is to determine the scaling factor to apply to both the PDOLP(t) and SOIBP(t) 

variations. This is done by first normalizing both time-series by their standard deviation. Then, 

after removing the estimated trend, acceleration and seasonal variations, the sea level data are 

low-pass and band-pass filtered as the climate indices were, and the standard deviation of the 

filtered residuals is calculated. The scaling factor applied to PDOLP(t) is the standard deviation of 

the low-pass filtered sea level residuals (20.8 mm); the scaling factor applied to SOIBP(t) is the 

standard deviation of the band-pass filtered sea level residuals scaled by -1 to account for the fact 

El Niño sea level variations at San Francisco are positive when the SOI is negative (-28.7 mm).  

The final time-series for Case 2 is assembled as for Case 1, including the random noise term 

based on the standard deviation of the residuals and the model: 

ycase2(t)  = ybase(t) – 28.7* SOIBP(t) + 20.8* PDOLP(t) + ε(t), (3) 

noting PDOLP(t) and SOIBP(t) are normalized as described previously. One time-series is shown 

in Figure 2b to show the model does a reasonable job of simulating the San Francisco tide gauge 

record. 

Case 3 starts as the baseline model, adds random noise with a standard deviation of 60 mm 

(representative of the high-frequency variability in San Francisco sea level), then adds an extra 

350 mm for January 1956 to represent the signal of a large anomalous high-water event, such as 

the effect of a large storm surge event on the monthly average, a large flooding event from 

sustained rainfall, or climatic variations in winds that can cause sustained high water levels. Such 

a value is possible in sea level records, depending on the size and duration of the storm (e.g., the 

maximum deviation of monthly sea level residuals after removing a trend for the San Francisco 

tide gauge record is 4.9 times higher than the standard deviation). Moreover, most tide gauge 

records have numerous events instead of just one; San Francisco has six monthly residuals 
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exceeding 200 mm and two exceeding 300 mm. For this study, however, we consider just one to 

demonstrate the effect on EMD if authors do not consider this possibility in their analysis. 

We perform EMD using the EMD Toolkit for SciLab (http://www.scilab.org), based on code 

documented in Rilling et al. (2003). The specific function utilized was emdc, which stops 

iterating when a tolerance is reached. We used a tolerance value of 0.05.  

3. RESULTS AND ANALYSIS 

Figure 3 shows the low-frequency IMFs for a single simulation of Case 1, along with the 

input signals. IMFs 1-5 are all much higher frequency and so are not considered, although we 

will note that none accurately captures the input seasonal variation. However, we point out that 

some of the artifacts shown in Figure 3 for the low-frequency IMFs are a direct result of 

correcting for errors in the higher frequency IMFs not shown, so that the sum of all matches the 

original data. 

The correlation of IMF6 with the prescribed 13-year sinusoid is significant (> 0.5), but not 

high. It is clear there are several periods where the EMD method would suggest no variability at 

a 13-year period (1870-1890, 1950-1970) and other periods (~1910) where the variation is 

significantly faster. Moreover, the amplitude of the recovered IMF is steadily increasing after 

1980, although the phase is about correct. The next IMF is an artifact of the method, with no 

significant correlation with any input signal, yet showing a periodicity of ~20-years with 

amplitudes as high as 20 mm.  

The longer period IMFs also have problems (Figure 3). The one best correlated with the 55-

year sinusoid (IMF8) is out of phase with the real signal until about 1940, and the amplitude is 

increasing in time. The 80-year IMF exhibits a similar behavior of increasing amplitude (Figure 
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3). Finally, the estimated quadratic term to the longest oscillatory IMF (IMF9 in this case), 

significantly underestimates the prescribed acceleration. 

This is just a single example, however. To see if averaging of multiple versions of random 

noise will better match the prescribed signals, we examine the 1000 different IMF clusters from 

the simulations. One cannot simply separate the corresponding low-frequency modes based on 

the IMF number, however, as the total number of IMFs changed from 9 to 11 in the 1000 

different simulations. We found that the 13-year signal was found in IMFs ranging from number 

4 to 7, while the 55-year mode ranged from IMF7-9. The last mode found ranged from IMF9-11. 

Thus, we had to rely on correlation with the known oscillation to identify the relevant IMF. This 

was done by computing the correlation of each recovered IMF from each simulation with the 

prescribed sinusoids. Figure 4 shows the histogram of computed correlations. Note that the 

correlations were not the same in every simulation. The 13-year oscillation had a mean 

correlation of 0.66 (standard deviation = 0.09), the 55-year had a mean of 0.52 (standard 

deviation = 0.11), while the mean correlation of the 80-year signal was 0.74 (standard deviation 

= 0.09).  

So that the lower correlation in the 55-year test did not bias our results, a minimum bound 

was set to 0.5. If two or more modes had correlations > 0.5 with one of the input signals, the one 

with the highest correlation was chosen. Figure 5 summarizes the results, showing the mean IMF 

with the standard deviation as a shaded uncertainty band. Not every simulation found an IMF 

that had a correlation > 0.5 with all the prescribed sinusoids. The 13-year oscillation had 848 

matches, the 55-year only 550, and the 80-year 990. It appears that the extra mode or two that 

often pops up between 13-years and 55-years in the EMD distorts the recovery of the 55-year 

signal (e.g., Figure 3).  
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Although the phase of the mean 13-year IMF is consistent with the prescribed signal, the 

mean amplitude is too small (Figure 5). The standard deviation is also quite high relative to the 

amplitude (80%), suggesting the actual recovered IMF could be nearly zero for any realization, 

or two times too large, depending on how the high-frequency variability affects it. 

For the longer-period oscillations, there is a systematic error in the mean IMF. It is roughly 

the same in both the 55-year and 80-year signal: the phase is only correct at the end of the record, 

and the amplitude is unrealistically increasing in time (Figure 5), from almost no fluctuation at 

the beginning to larger variations than were prescribed at the end. The scatter is again relatively 

large compared to the largest amplitude (60-80%). Finally, the acceleration estimated from the 

final IMF mode is systematically too small (Figure 5). 

We acknowledge this test has its limitations. The final peaks of the 55-year 80-year sinusoids 

are very close to each other. However, a rather simplistic harmonic analysis using least squares 

over ranges of given periods found all three sinusoids precisely with small errors (< 5 mm). If 

EMD can purportedly uncover non-stationary oscillations in a data set accurately, then it should 

be able to compute perfectly stationary ones just as well. The level that EMD cannot do this is a 

reasonable estimate of its accuracy. 

More importantly, consider the interpretation of the results from this simplistic simulation in 

terms of longer-term climate change if only the EMD results (Figure 5) were analyzed. Based 

only on the returned IMFs, one could easily argue that there was no significant low-frequency 

variation in the sea level before 1950, then a rather dramatic rise in the 1970s, followed by a 

return to normal condition. In fact, there were equally large sea level shifts in the early part of the 

simulated record that were lost due to the way the EMD method partitions the real signal.  
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Figure 6 summarizes the results of Case 2, the simulation based on the ENSO and PDO 

indices. As with the experiment in Case 1, 1000 different simulations were run, differing only by 

the random noise. The IMF with the highest correlation greater than 0.5 with both the prescribed 

ENSO and PDO index was averaged. In addition, we found in nearly every case (99%) the EMD 

computed one to two IMFs with a periodic signal that did not correlate highly with either PDO or 

ENSO, but had a low-frequency. Because this was not always contained in a single IMF between 

the two prescribed periodic fluctuations, we had to adapt a method to search for it. We isolated 

this signal by looking at the autocorrelation of the IMFs after removing those correlated with 

PDO or ENSO, as well as the last mode. To find the mode with the longest-period fluctuation, 

we examined the autocorrelation at a 1-year lag. Only IMFs with an autocorrelation greater than 

0.9 at a lag of 1-year were examined, and if two existed, the one with the higher autocorrelation 

was selected. 

We should note that typically there were several IMFs that correlated significantly with the 

ENSO index. For the statistics shown in Figure 6, only the one with the highest correlation was 

chosen. Although we found that by adding the 1-2 additional IMFs to the most significant ENSO 

mode resulted in a better correlation, we felt this was not a fair evaluation of the EMD process. 

ENSO is a physical process, and the relationship between the climate indices and the physics of 

the strength and timing of an ENSO event related to the index has been well established, (e.g., 

Philander, 1990; 2006). Although some authors have run EMD on ENSO indices and argued 

they have extracted distinct modes of interannual to multi-decadal variability (Wu and Huang, 

2004; Franzke, 2009; Pecai et al., 2010), their conclusions are based solely on the fact such 

modes are extracted during the EMD process; they have offered no physical explanation for 

them. We note that other statistical based methods (such as principal component analysis) run on 
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environmental data like sea surface temperature, precipitation, sea level, winds, etc. find modes 

highly correlated with ENSO and PDO indices (e.g., Mantua et al., 1997; Wolter and Timlin, 

1998; Chambers et al., 1999; Bond et al., 2003). We know of none that find multiple modes that 

add up to correlate with an ENSO index. Thus, we argue it is more relevant to quantify if EMD 

can extract physically meaningful climate modes than whether it can extract modes with 

interannual and multi-decadal variability. 

The ENSO-mode IMF on average matches the timing of the input ENSO variability (Figure 

6), although the amplitude is smaller; on average it underestimates the size of the El Niño and La 

Niña events by a factor of 2 to 3. Moreover, the standard deviation is large, ranging from 50% to 

250% of the estimated peak values. This means that no single decomposition exactly matches the 

simulated ENSO variability. Some may catch a peak or two properly, but other El Niño or La 

Niña events are not captured at all.  

The non-simulated low-frequency IMF has a period of between 25-30 years (Figure 5), with 

an average amplitude ranging from 10 mm to 20 mm. This is the same magnitude of variability 

as the PDO-related variability, although IMFs extracted from a single simulation could have an 

amplitude nearly 3 to 4 times higher, based on the standard deviation. Without knowing a priori 

what variations were in the data, this mode would be interpreted as a real, physical oscillation in 

sea level, when in fact it is a bogus artifact of the analysis.   

As with the ENSO-mode, the mean PDO-mode IMF tracks the general periodicity of the 

PDO, although the amplitudes are on average too small. Again, the standard deviation suggests 

any single simulation would give a considerable range of amplitudes. We note that as with the 

Case 1 results, there is a tendency for an increasing amplitude in time for the mean IMF, 
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inconsistent with the true signal, which could be misinterpreted as a sign of climate change; the 

first two peaks in the given PDO signal are roughly the same magnitude.  

Finally, the average long-term rise computed from the last IMF is wrong (Figure 6). The 

trend at 1900 is 36% lower than prescribed, and the overall acceleration is 83% higher.  

Figure 7 shows the results from the EMD of Case 3, with the single extreme event. Notice 

the large, non-stationary oscillation with a period of about 10-years in IMF6. The amplitude 

reaches 25 mm around 1956. Recall that this experiment only included seasonal variations, 

random noise, and this single large event. Because the EMD method implicitly assumes local 

highs are balanced perfectly by nearby lows, it cannot handle an extreme event like this. By 

enforcing an unrealistic balance of equal highs and lows, the method creates a low-frequency 

oscillation that does not exist. Although the random-only case (Figure 1) also produces low-

frequency erroneous oscillations, the amplitudes are significantly less for the longer-period 

IMFs. With a larger pulse, the magnitude of the error is even higher. It does not affect just this 

mode. It also shows up in IMF7 and IMF8, especially distorting the end of the record (Figure 7). 

We have not tested by adding more extreme events, but we would assume it would cause even 

more spurious signals like these. 

 

4. CONCLUSIONS 

While at first glance empirical mode decomposition appears to be a useful tool for 

quantifying non-stationary multidecadal oscillations in sea level records, the results of our 

experiments suggest there are several issues. Probably the biggest one is the fact the EMD 

process applied to random noise consistent with high-frequency sea level variability and single 

extreme events will cause relatively large and systematic multidecadal oscillations that are not 
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real. This will distort any underlying true signal. Our results suggest this is especially a problem 

for the longest period fluctuations; the IMFs are systematically biased away from the true signal, 

both in amplitude and phase. In some cases the amplitude increases in time, which could lead to 

incorrect interpretations regarding acceleration. 

Moreover, there always appears to be one or more IMFs that are completely spurious 

fluctuations. These are needed to correct the errors in the other IMFs so they all sum to the 

original data. With no knowledge of the underlying physical modes, how is one to know which 

of the signals is spurious? In the articles that have applied EMD to sea level, all long-period 

IMFs have been assumed real and analyzed in regards to climatic or dynamical fluctuations in 

sea level. Based on the results of our experiments, we cannot believe that all the analyzed modes 

are true. 

Finally, authors have asserted that the acceleration that comes out of an EMD process is more 

accurate, as they believe the IMFs better separate the high- and low-frequency fluctuations than 

linear least squares. Their argument assumes that the high-frequency variations and shorter-

period non-stationary signals in the original time-series are biasing a quadratic fit to the original 

data. By eliminating these signals in the EMD process in specific IMFs, they believe the final 

IMF contains the “true” acceleration plus residual low-frequency variability. Even Fanzke 

(2011), who demonstrated that EMD was no better than this than ordinary least squares and a 

parametric model, argued that EMD was still better if the trend was non-linear, especially 

exponential. Our experiments, however, show the opposite. The quadratic fit to the last IMF is 

either no more accurate than one fit with least squares to the full, unfiltered data set, or, in some 

cases, is significantly biased. In the experiment with ENSO- and PDO-like oscillations, the 

acceleration estimated from the final IMF was nearly 100% too large on average. In individual 
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experiments, the error was even more. This is most likely due to the aliasing behavior of EMD 

where some of the high-frequency variance is aliased into the low-frequency modes, as we have 

demonstrated. 

EMD is a quick and relatively easy tool to identify possible multidecadal fluctuations in a sea 

level record. However, we have demonstrated that real climatic non-stationary signals are 

generally spread among multiple modes. Analyzing a single IMF for climate variability will 

likely lead to significantly biased interpretations. Thus, we feel that EMD analysis should not be 

used solely to quantify magnitude and phase of non-stationary climate variations, nor should 

analysis of climatic signals be based on a single IMF. One should also be cautious in interpreting 

acceleration computed from the final IMF, especially in light of the significant errors found in 

the early and later parts of the low-frequency IMFs (Figures 5, 6, and 7). Where EMD has shown 

to be useful has been in low-pass filtering data to reduce the impact of high-frequency variability 

and noise (e.g., Alberti et al., 2014). In that case, the sum of the higher IMFs are used as the low-

pass filter. 

Instead, we believe other more traditional methods, such as harmonic analysis (e.g., 

Chambers et al., 2012), linear regression against climatic indices or physical parameters (e.g., 

Calafat and Chambers, 2013), running means of linear trends evaluated over discrete window-

lengths (e.g., Holgate, 2007; Merrifield et al., 2009), or simply low-pass filtering on different 

time-scales should also be utilized along with EMD to study low-frequency climatic variability. 

This is in order to find possible spurious signals in the IMFs arising from the way the EMD 

process filters random noise and extreme events. At the very least, authors should carefully 

remove extreme events from the sea level records before performing EMD to reduce biasing 
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low-frequency IMFs. Unless other methods are utilized and shown to agree with the EMD 

results, we remain skeptical of many interpretations of EMD processed sea level data. 
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Figure Captions 
 
Figure 1. Low frequency IMFs resulting from EMD of random noise with a standard deviation 
of 60 mm. 
 
 
Figure 2. True monthly sea level recorded at San Francisco tide gauge (blue), and a) simulated 
by a trend + acceleration + seasonal + 13-year, 55-year, and 80-year sinusoidal functions with 
additional random noise (Case 1), and b) simulated by a trend + acceleration + seasonal + ENSO 
+ PDO (Case 2). See text for details. 
 
Figure 3. True oscillations and long-term trend + acceleration (red) for simulation shown in 
Figure 2a, along with the closest correlating IMF (blue). 
 
Figure 4. Histogram of correlation values for IMFs in Case 1 correlated with the (a) 13-year, (b) 
55-year, and (c) 55-year signals. 
 
Figure 5. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs calculated 
from the 1000 different Case 1 simulations, along with the true signal (red). 
 
Figure 6. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs calculated 
from the 1000 different Case 2 simulations, along with the true signal (red). 
 
Figure 7. Low frequency IMFs resulting from EMD of a simulated signal with a trend + 
acceleration + seasonal variations + random noise + a single large anomalous event in January 
1956. 
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Figure 1. Low frequency IMFs resulting from EMD of random noise with a standard 

deviation of 60 mm. 
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Figure 2. True monthly sea level recorded at San Francisco tide gauge (blue), and a) 

simulated by a trend + acceleration + seasonal + 13-year, 55-year, and 80-year sinusoidal 

functions with additional random noise (Case 1), and b) simulated by a trend + acceleration + 

seasonal + ENSO + PDO (Case 2). See text for details. 
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Figure 3. True oscillations and long-term trend + acceleration (red) for simulation shown in 

Figure 2a, along with the closest correlating IMF (blue). 
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Figure 4. Histogram of correlation values for IMFs in Case 1 correlated with the (a) 13-year, 

(b) 55-year, and (c) 55-year signals. 
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Figure 5. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs 

calculated from the 1000 different Case 1 simulations, along with the true signal (red). 
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Figure 6. Mean (solid blue line) and standard deviation (light blue envelope) of IMFs 

calculated from the 1000 different Case 2 simulations, along with the true signal (red). 
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Figure 6. Low frequency IMFs resulting from EMD of a simulated signal with a trend + 

acceleration + seasonal variations + random noise + a single large anomalous event in January 

1956. 
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Moreover, Wu and Huang (2004) have shown that EMD behaves as a low-pass filter. 

If one runs random noise with a normal Gaussian distribution through the process, low-

frequency signals will be seen in the resulting IMFs. They found there is roughly a 

doubling of the average period with each subsequent mode. attempted to account for this 

behavior in the error statistics of their recovered IMFs. This is done by creating several 

pseudo-time-series by adding a small amount of random noise to the original time-series, 

running a large number of EMDs, and considering the average. The standard deviation of 

the differences represents the uncertainty. Hit does not consider the effect of the real 

signal in the tide gauge data that has high variance and little serial correlation. This 

“signal” will also be filtered by the EMD process and will likely appear as a quasi-

stationary oscillation in higher order IMFs that is not real (i.e., similar to the EMD 

filtering of purely random noise shown in Figure 1). 

In a simple example of running 
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Note that we used 60 mm because this is the standard deviation of residual monthly sea 

level at San Francisco after fitting and removing a quadratic function plus annual and 

semiannual sinusoids, so is representative of high-frequency sea level at a typical site, 

although some sites can have significantly higher variability. 
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Wu and Huang (2004) and others (Ezer and Corlett, 2012; Ezer et al., 2013) have 

attempted to account for this behavior in the error statistics of their recovered IMFs. This 

is done by creating several pseudo-time-series by adding a small amount of random noise 

to the original time-series, running a large number of EMDs, and considering the average. 



The standard deviation of the differences represents the uncertainty. However, we see a 

problem with this method. Although adding random noise will account for uncertainty in 

the IMFs from uncertainty in the measurement, it does not consider the effect of the real 

signal in the tide gauge data that has high variance and little serial correlation. This 

“signal” will also be filtered by the EMD process and will likely appear as a quasi-

stationary oscillation in higher order IMFs that is not real (i.e., similar to the EMD 

filtering of purely random noise shown in Figure 1). 
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it does not consider the effect of the real signal in the tide gauge data that has high 

variance and little serial correlation. This “signal” will also be filtered by the EMD 

process and will likely appear as a quasi-stationary oscillation in higher order IMFs that 
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