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     Abstract 9 

 10 

    The development of Benjamin–Feir instability of Stokes waves in the presence of variable current is presented. We employ 11 

a model of a resonance system having three coexisting nonlinear waves and nonuniform current. The model considers essential 12 

variations of the wave numbers and frequencies of interacting waves due to significant adverse current rising up to wave 13 

blocking value. The modulation instability of Stokes waves in nonuniform moving media has special properties. Interaction 14 

with countercurrent accelerates the growth of sideband modes on a short spatial scale. An increase in initial wave steepness 15 

intensifies the wave energy exchange accompanied by wave breaking dissipation, results in asymmetry of sideband modes and a 16 

frequency downshift with an energy transfer jump to the lower sideband mode, and depresses the higher sideband and carrier 17 

wave. Nonlinear waves may even overpass the blocking barrier produced by strong adverse current. The frequency downshift of 18 

the energy peak is permanent and the system does not revert to its initial state. We find reasonable correspondence between the 19 

results of model simulations and available experimental results for wave interaction with blocking opposing current. Large 20 

transient or freak waves with amplitude and steepness several times those of normal waves may form during temporal nonlinear 21 

focusing of the resonant waves accompanied by energy income from sufficiently strong opposing current. We employ the 22 

resonance model for the estimation of the maximum amplification of wave amplitudes as a function of opposing current value 23 

and compare the result obtained with recently published experimental results and modeling results obtained with the nonlinear 24 

Schrödinger equation. 25 

 26 
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 28 
 29 
  1. Introduction 30 

  31 

      The problem of the interaction of a nonlinear wave with large-scale current remains an enormous challenge in physical 32 

oceanography. In spite of numerous papers devoted to the analysis of the phenomenon, some of the relatively strong effects still 33 

await a clear description. The phenomenon can be considered the discrete evolution of the spectrum of the surface wave under 34 

the influence of nonuniform adverse current. Experiments conducted by Chavla & Kirby (2002) and Ma et al. (2010) revealed 35 
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that sufficiently steep surface waves overpass the barrier of strong opposing current on the lower resonant Benjamin–Feir 36 

sideband. These reports highlight that the frequency step of a discrete downshift coincides with the frequency step of 37 

modulation instability; i.e., after some distance of wave run, the maximum of the wave spectrum shifts in frequency to the lower 38 

sideband. The intensive exchange of wave energy produces a peak spectrum transfer jump, which is accompanied by essential 39 

wave breaking dissipation. The spectral characteristics of the initially narrow-band nonlinear surface wave packet dramatically 40 

change and the spectral width is increased by dispersion induced by the strong nonuniform current.  41 

       This paper considers a model of wave resonance in the presence of large-scale variable current with strong emphasis on 42 

the development of Benjamin–Feir (BF) instability.  43 

       Modulational instability (BF instability) (Benjamin and Feir, 1967) is a fundamental principle of nonlinear water wave 44 

dynamics. This phenomenon is of the utmost importance for the description of dynamics and downshifting of the energy 45 

spectrum among sea surface waves, the formation of freak (or giant) waves in oceans and wave breaking. In modern nonlinear 46 

physics, BF instability is considered a basic process that classifies the qualitative behavior of modulated waves (“envelope 47 

waves”) and may initialize the formation of stable entities such as envelope solitons.    48 

       The stationary nonlinear Stokes wave is unstable in response to perturbation of two small neighboring sidebands. The 49 

initial exponential growth of the two dominant sidebands at the expense of the primary wave gives rise to an intriguing 50 

Fermi–Pasta–Ulam recurring phenomenon of the initial state of wave trains. This phenomenon is characterized by a series of 51 

modulation–demodulation cycles in which initially uniform wave trains become modulated and then demodulated until they are 52 

again uniform (Lake et al., 1978). However, when the initial slope is sufficiently steep, the long-time evolution of the wave train 53 

is different. The evolving wave trains experience strong modulations followed by demodulation, but the dominant component is 54 

the component at the frequency of the lower sideband of the original carrier. This is the temporary frequency downshift 55 

phenomenon. In systematic well-controlled experiments, Tulin and Waseda (1999) analyzed the effect of wave breaking on 56 

downshifting, high-frequency discretized energy, and the generation of continuous spectra. Experimental data clearly show that 57 

the active breaking process increases the permanent frequency downshift in the latter stages of wave propagation.  58 

     The BF instability of Stokes waves and its physical applications have been studied in depth over the last few decades; a 59 

long but incomplete list of research is Lo and Mei (1985), Duin (1999), Osborne, Onorato, and Serio (2000), Trulsen et al. 60 

(2000), Janssen (2003), Segur et al. (2005), Zakharov et al. (2006), Bridges & Dias (2007), Hwung, Chiang and Hsiao (2007), 61 

Chiang and Hwung (2010), Shemer (2010), and Hwung, Chiang, Yang  and Shugan (2011). The latter stages of one cycle of 62 

the modulation process have been much less investigated, and many physical phenomena that have been observed 63 

experimentally still require extended theoretical analysis. 64 

     Modulation instability and the nonlinear interactions of waves are strongly affected by variable horizontal currents. Here, 65 

we face another fundamental problem of the mechanics of water waves—interactions with long-scale current. The effect of 66 

opposing current on waves is a problem of practical importance at tidal inlets and river mouths. 67 
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     Even linear refraction of waves on currents can affect the wave field structure in terms of the direction and magnitude of 68 

waves. Waves propagating against an opposing current may have reduced wavelength and increased wave height and steepness.  69 

      If the opposing current is sufficiently strong, then the absolute group wave velocity in the stationary frame will become 70 

zero, resulting in the waves being blocked. This is the most intriguing phenomenon in the problem of wave–current interaction 71 

(Phillips, 1977). The kinematics condition for wave blocking can be written as 72 

( ) 0gC U X+ → , 73 

where gC  is the intrinsic group velocity of waves in a moving frame and ( )U X  is slowly varying horizontal current, with X 74 

being the horizontal coordinate in the direction of wave propagation. Waves propagating against opposing current are stopped if 75 

the magnitude of the current, in the direction of wave propagation, exceeds the group velocity of the oncoming waves. This 76 

characteristic feature of wave blocking has drawn the interest of oceanographers and coastal engineers alike for its ability to be 77 

used as signature patterns of underlying large-scale motion (e.g., fresh water plumes and internal waves) and for the 78 

navigational hazard it poses. Smith (1975), Peregrine (1976), and Lavrenov (1998) analyzed refraction/reflection around a 79 

blocking region and obtained a uniformly valid linearized solution, including a short reflecting wave.  80 

       The linear modulation model has a few serious limitations. The most important is that the model predicts the blocking 81 

point according to the linear dispersion relation and cannot account for nonlinear dispersive effects. Amplitude dispersion 82 

effects can considerably alter the location of wave blocking predicted by linear theory, and nonlinear processes can adversely 83 

affect the dynamics of the wave field beyond the blocking point.  84 

      Donato, Peregrine & Stocker (1999), Stocker & Peregrine (1999), and Moreira & Peregrine (2012) conducted fully 85 

nonlinear computations to analyze the behavior of a train of water waves in deep water when meeting nonuniform currents, 86 

especially in the region where linear solutions become singular. The authors employed spatially periodic domains in numerical 87 

study and showed that adverse currents induce wave steepening and breaking. A strong increase in wave steepness is observed 88 

within the blocking region, leading to wave breaking, while wave amplitudes decrease beyond this region. The nonlinear wave 89 

properties reveal that at least some of the wave energy that builds up within the blocking region can be released in the form of 90 

partial reflection (which applies to very gentle waves) and wave breaking (even for small-amplitude waves). 91 

        The enhanced nonlinear nature of sideband instabilities in the presence of strong opposing current has also been 92 

confirmed by experimental observations. Chavla & Kirbi (2002) experimentally showed that the blockage phenomenon strongly 93 

depends on the initial wave steepness; i.e., waves are blocked when the initial slope is gradual (ak < 0.16, where a and k are the 94 

wave amplitude and wave number, respectively). When the slope is sufficiently steep (ak > 0.22), the behavior of waves is 95 

principally different; i.e., waves are blocked only partly and frequency-downshifted waves overpass the blocking barrier. The 96 

lower sideband mode may dramatically increase; i.e., the amplitude may increase several times within a distance of a few 97 

wavelengths.  98 

        Wave propagation against nonuniform opposing currents was recently investigated in experiments conducted by Ma 99 

et al. (2010). Results confirm that opposing current not only increases the wave steepness but also shortens the wave energy 100 
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transfer time and accelerates the development of sideband instability. A frequency downshift, even for very gradual initial 101 

steepness, was identified. Because of the frequency downshift, waves are more stable and have the potential to grow higher and 102 

propagate more quickly. The ultimate frequency downshift increases with an increase in initial steepness.  103 

The wave modulation instability with coexisting variable current is commonly described theoretically by employing 104 

different forms of the modified nonlinear Schrödinger (NLS) equation. Gerber (1987) used the variational principle to derive a 105 

cubic Schrödinger equation for a nonuniform medium, limiting to potential theory in one horizontal dimension. Stocker & 106 

Peregrine (1999) extended the modified nonlinear NLS equation of Dysthe (1979) to include a prescribed potential current. 107 

Hjelmervik and Trulsen (2009) derived an NLS equation that includes waves and currents in two horizontal dimensions 108 

allowing weak horizontal shear. The horizontal current velocities are assumed just small enough to avoid collinear blocking and 109 

reflection of the waves.  110 

    Even though the frequency downshift and other nonlinear phenomena were observed in previous experimental studies on 111 

wave–current interactions, the theoretical description of the modulation instability of waves on opposing currents is not yet 112 

complete. An interaction of an initially relatively steep wave train with strong current nevertheless may abruptly transfer energy 113 

between the resonantly interacting harmonics. Such wave phenomena are beyond the applicability of NLS-type models and 114 

await a theoretical description.  115 

    Another topic of practical interest in wave–current interaction problems is the appearance of large transient or freak waves 116 

with great amplitude and steepness owing to the focusing mechanism (e.g., Peregrine (1976); Lavrenov (1998), White & 117 

Fornberg (1998), Kharif and Pelinovsky (2006); Janssen and Herbers (2009), Ruban (2012)). Both nonlinear instability and 118 

refractive focusing have been identified as mechanisms for extreme-wave generation and these processes are generally 119 

concomitant in oceans and potentially act together to create giant waves.  120 

    Toffoli et al. (2013) showed experimentally that an initially stable surface wave can become modulationally unstable and 121 

even produce freak or giant waves when meeting negative horizontal current. Onorato et al. (2011) suggested an equation for 122 

predicting the maximum amplitude maxA  during the wave evolution of currents in deep water. Their numerical results revealed 123 

that the maximum amplitude of the freak wave depends on / gU c , where U is the velocity of the current and gc  is the group 124 

velocity of the wave packet.  125 

     Recently, Ma et al. (2013) experimentally investigated the maximum amplification of the amplitude of a wave on 126 

opposing current having variable strength at an intermediate water depth. They mentioned that theoretical values of 127 

amplification (Onorato et al. (2011), Toffoli et al. (2013)) are essentially overestimated, probably owing to the effects of finite 128 

depth and wave breaking. 129 

          To address the abovementioned problems, we present a third-order resonance model of BF instability in the 130 

presence of horizontal long-scale current of variable strength. We analyze the interactions of a nonlinear surface wave with 131 

sufficiently strong opposing blocking current and the frequency downshifting phenomenon. The maximum amplification of the 132 

amplitude of surface waves is estimated in dependence from relative strength of opposing current. We take into account the 133 
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dissipation effects due to wave breaking and explore the threshold modification of the Tulin wave breaking model (Tulin (1996); 134 

Huang et al. (2011)). The results of model simulations are compared with available experimental results and theoretical 135 

estimations. 136 

We employ simplified 3-wave quasi-resonance model in the presence of significant opposite current. In the meanwhile, the 137 

evolution of the wave spectrum in the absence of breaking includes energy exchange between the carrier wave and two main 138 

resonant side-bands and spreading of the energy to higher frequencies. Inclusion of higher frequency free waves in the 139 

Zakharov, modified Schrodinger or Dysthe equations is crucial, since the asymmetry of the lower and the upper side-band 140 

amplitudes at peak modulation in non-breaking case results from that. The temporal spectral downshift has been predicted by 141 

computations made by the Dysthe equations (Lo and Mei, 1985; Trulsen and Dysthe, 1990; Hara and Mei, 1991) for a much 142 

more number of excited waves, the same prediction was also made by simulations of fully nonlinear equations (Tanaka,1990; 143 

Slunyaev and Shrira, 2013). Such a conclusion can be made regarding to developing of modulation instability in a calm water.  144 

The developing of modulation instability in the presence of significant adverse current is different. Experimental results of 145 

Chavla and Kirby (2002) and Ma et al. (2010) clearly show that energy spectrum is mostly concentrated in the main triad of 146 

waves and high frequency discretized energy spreading is depressed due to the short wave blocking by the strong enough 147 

adverse current.   148 

   The relatively high initial wave steepness leads to wave breaking dissipation with discriminatory energy loss from the 149 

carrier and higher side-band modes (Tulin and Waseda, 1999). Even those waves which do not blocked lose a considerable 150 

amount of energy due to wave breaking on the strong opposite current. The permanent frequency downshift with final 151 

dominating of the lower subharmonic takes a place and wave system does not revert to its initial state. 3-wave dynamical model 152 

analysis in the presence of significant opposite current therefore can be relevant at the initial stages and also at the further stages 153 

of wave evolution.  154 

Nevertheless the experimental results of Chavla and Kirby (2002) and Ma et al. (2010) on the modulation instability under 155 

the influence of adverse current show that energy spectrum is mostly concentrated in the main triad of waves and high 156 

frequency discretized energy spreading is depressed due to the short wave blocking by the strong enough adverse current. 157 

Higher side band modes have also prevailed energy loss during wave breaking (Tulin and Waseda, 1999). That is why we hope 158 

that our simplified 3-wave dynamical model still have potentiality to adequately describe some prominent features of wave 159 

dynamics on adverse current. 160 

      The paper consists of five sections. General modulation equations that describe the one-dimensional interaction of a 161 

triad of resonant surface waves and nonuniform current are derived in section 2. Section 3 analyzes stationary nondissipative 162 

solutions for adverse and following nonuniform currents and various initial steepness of the surface wave train. We calculate the 163 

maximum amplitude amplification in dependence from relative strength of opposing current and compared it with available 164 

experimental and theoretical results (Toffoli et al., 2013; Ma et al., 2013). The interaction of steep surface waves with strong 165 

adverse current under wave-blocking conditions including wave breaking effects is presented in section 4. Modeling results are 166 



6 
 

compared with the results of a series of experiments conducted by Chavla and Kirby (2002) and Ma et al. (2010). Section 5 167 

summarizes our final conclusions and discussion.  168 

 169 

2. Modulation equations for one-dimensional interaction 170 

   The first set of complete equations that describe short waves propagating over nonuniform currents of much larger scale 171 

were given by Longuet-Higgins and Stewart (1964). Wave energy is not conserved, and the concept of “radiation stress” was 172 

introduced to describe the average momentum flux in terms that govern the interchange of momentum with the current. In this 173 

model, it is also justifiable to neglect the effect of momentum transfer on the form of the surface current because it is an effect 174 

of the highest order (Stocker and Peregrine, 1999).  175 

       We construct a model of the current effect on the modulation instability of a nonlinear Stokes wave by making the 176 

following assumptions. 177 

i). Surface waves and current propagate along a common x-direction.  178 

     ii). By ca , ck and cω  we denote the characteristic amplitude, wave number and angular frequency of the surface waves. 179 

We use a small conventional average wave steepness parameter; 1c ca kε = << .  180 

    iii) The characteristic spatial scale used in developing the BF instability of the Stokes wave is 2/cl ε , where 2 /c cl kπ= is 181 

the typical wavelength of surface waves (Benjamin and Feir, 1967). We consider long-scale slowly varying current ( )U x with 182 

horizontal length scale L of the same order: 2( / )cL O l ε= .  183 

    iv) It is assumed that the ( )U x  dependence is due to the inhomogeneity of the bottom profile h(x), which is sufficiently 184 

deep so that the deep-water regime for surface waves is ensured; i.e., ( 2 ) 1cexp k h−  . The characteristic current length L at 185 

which the function U(x) varies noticeably is assumed to be much larger than the depth of the fluid, ( )h x L . Under these 186 

conditions, shallow water model for the current description may be adopted: U(x)h(x) assumed to be approximately constant, 187 

and the vertical component of the steady velocity field on the surface ( )z xη=  can be neglected. Correspondingly, it follows 188 

from the Bernoulli time-independent equation that the surface displacement induced by the current is small (Ruban, 2012). Such 189 

a situation can occur, for example, near river mouths or in tidal/ebb currents.  190 

 191 
In all following equations, variables and sizes are scaled according to the above assumptions, and made dimensionless using the 192 

characteristic length and time scales of the wave field. 193 

 194 
      The zero-dimensional set of equations for potential motion of an ideal incompressible deep-depth fluid with a free 195 

surface in the presence of current ( )U x is given by the Laplace equation: 196 

0,xx zzφ φ+ = ( ) ( , )h x z x tεη− < < .                                  (1) 197 
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The boundary conditions at the free surface are                                                              198 

2 21 ( ), ( , ),
2t x x zU z x tη φ φ ε φ φ εη− = + + + =                               (2) 199 

, ( , ),t x x x zU z x tη η εφ η φ εη+ + = =                                   (3) 200 

and those at the bottom are      201 

0, ( ).z h xφ → = −                                         (4) 202 

Here, ( , , )x z tφ  is the velocity potential, ( , )x tη is the free-surface displacement, z is the vertical coordinate directed upward and t 203 

is time.  204 

The variables are normalized as 205 

                       

3

2

' ', ' ',

1 ' '', , ,

( ) '( /  ') '( ') ,

c c
c c c

c cc

c p p

g ga a
k k k

z xt t z x
k kgk

U Kx U K k x c U x c

εφ φ ε φ η η η

ε

= = = =

= = =

= =

                     (5) 206 

where g is acceleration due to gravity, 2 /K Lπ= , and pc is the phase speed of the carrier wave, but the primes are omitted in 207 

equations (1)–(4). Note that normalization (5) explicitly specifies the principal scales of sought functions φ and η .                                                                                                                  208 

The weakly nonlinear surface wave train is described by a solution to equations (1)–(4), expanded into a Stokes series in terms 209 

of ε . 210 

      We will analyze the surface wave train as the almost-resonance wave triad of a particular form, which describes the 211 

development of modulation instability in the presence of current. 212 

       For calm water, the initially constant nonlinear Stokes wave with amplitude, wave number and frequency ( 1 1 1, ,a k σ ) is 213 

unstable in response to a perturbation in the form of a pair small waves with similar frequencies and wavenumbers: a 214 

superharmonic wave ( 2 2 1 2 1, ,a k k k σ σ σ= + ∆ = + ∆ ) and subharmonic wave ( 0 0 1 0 1, ,a k k k σ σ σ= −∆ = −∆ ). For most unstable 215 

modes, 1/σ σ ε∆ = and 1/ 2k k ε∆ = , where 1 1a kε = is the initial steepness of the Stokes wave (Benjamin and Feir, 1967). 216 

This is the BF or modulation instability of the Stokes wave.  217 

Kinematics resonance conditions for waves in the presence of slowly variable current are the same with one important 218 

particularity that intrinsic wave numbers and frequencies of resonance waves in the moving frame are variable and modulated 219 

by the current.       220 

     We analyze the problem assuming the wave motion phase ( , )i i x tθ θ=  exists for each resonance wave in the presence 221 

of a slowly varying current ( )U x , and we define the local wave number ik  and absolute observed frequency iω  as                                               222 
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( ) ( ), ,

0,1, 2.
i i i i i ix t

k k U

i

θ ω σ θ= = + = −

=
                          (6) 223 

     For stationary modulation, the intrinsic frequency iσ and wave number ik  for each wave slowly change  in the 224 

presence of variable current, but the resonance condition 225 

                          1 0 2 2ω ω ω≈ +                                      (7) 226 

remains valid throughout the region of wave propagation owing to the stationary value of the absolute frequency for each of the 227 

harmonics.      228 

     The main kinematics wave parameters ( , )i ikσ  together with the first-order velocity potential amplitudes, iφ , are 229 

considered further as slowly varying functions with typical scale, 1( )O ε − , longer than the primary wavelength and period 230 

(Whitham, 1974):                                  231 

                ( , ), ( , ), ( , )i i i i i ix t k k x t x tφ φ ε ε ε ε σ σ ε ε= = = .                    (8)  232 

On this basis, we attempt to recover the effects of long-scale current and nonlinear wave dispersion (having the same order) 233 

additional to the Stokes term with the order of wave steepness squared.   234 

    The solution to the problem, uniformly valid for 3( )O ε , is found by a two-scale expansion with the differentiation:  235 

                        
( ) ,

, , .

i i
i

i
i

k U
t T

k T t X x
x X

σ ε
θ

ε ε ε
θ

∂ ∂ ∂
= − + +

∂ ∂ ∂
∂ ∂ ∂
= + = =

∂ ∂ ∂

∑

∑
                       (9) 236 

Substitution of the wave velocity potential in its linear form, 237 

                               
2

0
sini

i
k z

i i
i

eφ φ θ
=

=

=∑ ,                            (10) 238 

satisfies the Laplace equation (1) to the first order of ε  owing to (8) and gives the additional terms of the second order 2( )O ε :                                      239 

                     (2 2 ) cos ... 0ik z
i iX iX i i iX i ik k k k z eε φ φ φ θ+ + + =  .            240 

      To satisfy the Laplace equation to second order, Yuen and Lake (1982), Shugan and Voliak (1998), and Hwung, Yang 241 

and Shugan (2009) suggested an additional phase-shifted term with a linear and quadratic z correction in the representation of 242 

the potential function φ : 243 
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2

2

0
sin cos ...

2
i i

i
k z k ziX i

i i iX i
i

ke z z eφφ φ θ ε φ θ
=

=

  = − + +  
  

∑ .          (11) 244 

     Exponential decaying of the wave’s amplitude with increasing –z is accompanied by a second-order subsurface jet owing 245 

to slow horizontal variations in the wave number and amplitude of the wave packet.   246 

The free-surface displacement ( , )x tη η=  is also sought as an asymptotic series: 247 

                           2
0 1 2 ...η η εη ε η= + + + ,                           (12) 248 

where 0 1,η η , and 2η are (1)O functions to be determined. Using expressions (10) and (11) subject to the dynamic boundary 249 

condition (2), we find the components of the free-surface displacement: 250 

        
2

0
0

cos ,
i

i i i
i

η σ φ θ
=

=

=∑                                                             (13)                                                                                                                                                                            251 

2 2
2 2

1
0 0

2 22 2
2 2

0 0

 = - ( sin sin ) cos[2 ]/2

( - )  cos[ - ] /2 ( )  cos[ ] /2

i i

iT i iX i i i i
i i

j ji i

i j i j i j i j i j i j i j i j
i j i i j i

U kη φ θ φ θ φ θ

σ σ σ σ φφ θ θ σ σ σ σ φφ θ θ

= =

= =

= == =

= ≠ = ≠

+ + +

+ + +

∑ ∑

∑∑ ∑∑
,              (14)                                                                                252 

2
2 2 5 2 2

0

2 2 2 2 2 2
2 0 1 0 1 0 1 0 0 1 1 2

2 2 2 2 2 2
1 2 1 2 2 1 2 2 1 1 0

2 2 2
0 1 2 0 1 2 0 1 2

(3 (2 + ) (2 - ))cos[ ]-

8   ( + 2 )( - 4  +2 ) cos[ + ]-

  ( + 2 ) ( - 4  +2 ) cos[ + ]-

2      ( + + )(

i i i i j i j i i
i j i

φσ φ σ σ σ σ σ θ

η φ φ σ σ σ σ σ σ σ σ θ ϕ

φ φ σ σ σ σ σ σ σ σ θ ϕ

φ φ φ σ σ σ σ σ σ

= ≠

+

− =

∑ ∑

2 2 2
0 0 1 1 1 2 2 1-2 + -2 + ) cos[ ]

 
σ σ σ σ σ σ σ θ ϕ

 
 
 
 
 
 
 
 − 

,                      (15) 253 

where ϕ  is a slowly varying phase-shift difference: 1 0 22ϕ θ θ θ= − − . 254 

Only the resonance terms for all three wave modes are included in the third-order displacement (15). 255 

       Substitution of the velocity potential (11) and displacement (13)–(15) into the kinematics boundary condition (3) gives, 256 

after much routine algebra, relationships between the modulation characteristics of the resonant wave: 257 
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2 2 3 2 5 2 3 2 2 2 3 2 2
0 0 0 0 0 1 1 1 0 1 0 2 2 2 0 2 0

2 2 3 2
1 2 1 2 3 2 2 3

1 1 2 1 2 2
0

2 2 3 2 5 2 3 2 2 2 3 2 2
2 2 2 2 2 0 0 0 0 2 2 1 1 1 1 2 2
2 2 3 2

1 0 1 0

2

= + ( + (2 - )+ (2 - )) +

 (2 -2 +2 - ) cos[ ];

= + ( + (2 - + )+ (2 - + ))+

(2

k

k

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ

σ σ σ σ σ σ ϕ
φ

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ

σ
φ

+ +

3 2 2 3
1 0 1 0 1 0

2 2 3 2 5 2 3 2 2 2 3 2 2
1 1 1 1 1 0 0 0 0 1 1 2 2 1 1 2 2
2 2 4 3 2

0 2 0 1 2 0 0 1 0 1 1 2
2 2 2 3 2 2 3

0 1 1 2 2 2 1 1 2 1 2 2

-2 +2 - ) cos[ ];

= + ( + (2 - + ) + ( - +2 ))+
 ( - - ( - ) + 

( - +2 )+ (- + - + )) cos[ ];

k

σ σ σ σ σ ϕ

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ ϕ




















              (16)                                               258 

   259 

 

3 2 3 2 2 32 2 2
0 0 0 0 1 2 0 1 2 1 1 2 1 2 2

0

2 3 3 2 2 32 2 2
2 2 2 2 1 2 0 0 1 1 0 1 0 1 0

2

2 42 2 2
1 1 1 1 1 2 0 0 1 2 0

1

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ];
2

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ];
2
1[ ] [( ( ) ) ] (

2

T X

T X

T X

U X

U X

U X

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ φ σ εφ φ φ σ σ σ σ
σ

+ + =

+ + =

+ + = − 3 2
0 1 0 1 1 2

2 2 2 3 2 2 3
0 1 1 2 2 2 1 1 2 1 2 2

( - )

( - +2 )- ( - + - ))Sin[ ];

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ ϕ









− − +

+

             (17) 260 

  The formulas (16) represent the “intrinsic” dispersion relations of the nonlinear wave for each of the resonant harmonics in 261 

the presence of current, U(X). Equation (17) yields the known wave action law with the energy exchange terms on the right side 262 

of the equations.  263 

The obtained system of equations (16), (17) in the absence of current is similar to classical Zakharov equations for discrete 264 

wave interactions (Mei et al., 2009); it has a strong symmetry with respect to indexes 0 and 2. The main property of the derived 265 

modulation equations is the variability of interaction coefficients in the presence of variable current.  266 

Modulation equations (16) and (17) are closed by the equations of wave phase conservation that follow from (6) as the 267 

compatibility condition (Phillips, 1977):                                           268 

                             
( ) 0,

0,1, 2.
iT i i Xk k U

i
σ+ + =

=
                              (18) 269 

The derived set of nine modulation equations (16)–(18) form the complete system for nine unknown functions 270 

( , , , 0,1, 2i i ik iσ φ = ). 271 

3. Nondissipative stationary-wave modulations  272 
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Let us analyze the stationary-wave solutions of the problem (16)–(18) supposing that all unknown functions depend on the 273 

single coordinate X. Then, after integrating (18), we have the conservation law for the absolute frequency of each wave: 274 

                              
,

0,1,2.
i i ik U const

i
σ ω+ = =
=

                             (19) 275 

The wave energy action laws for resonant components take the form  276 

2 2 3 2 3 2 2 3
0 0 1 2 0 1 2 1 1 2 1 2 2

0

2 2 3 2 3 2 2 3
2 2 1 2 0 1 0 1 0 1 0 1 0

2

2 2 2 4 3 2
1 1 1 2 0 0 1 2 0 0 1 0 1 1 2

1
2 2 2

0 1 1 2 2

1[( ) ] (2 -2 +2 - ) Sin[ ]
2

1[( ) ] (2 -2 +2 - ) Sin[ ]
2
1[( ) ] ( ( - )

2

( - +2 )

X

X

X

U

U

U

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ

+ =

+ =

+ = − − − +

3 2 2 3
2 1 1 2 1 2 2- ( - + - ))Sin[ ]σ σ σ σ σ σ σ ϕ













            (20) 277 

 278 
To perform the qualitative analysis of the stationary problem, we suggest the law of wave action conservation flux in a slowly 279 

moving media as analogue of the three Manley-Rowe dependent integrals: 280 

2 2 2
2 2 0 0 1 1

2 0 1

2 2
1 1 0 0

1 0

2 2
1 1 2 2

1 2

2 2
0 0 2 2

0 2

1 1 1 ;
2 2 2

1 1 1 ;
2 2 2

1 1 1 ;
2 2 2

1 1 .
2 2

U U U const

U U const

U U const

U U const

φ σ φ σ φ σ
σ σ σ

φ σ φ σ
σ σ

φ σ φ σ
σ σ

φ σ φ σ
σ σ

     
+ + + + + =     

    
    + + + =      


    + + + =       
   

+ − + =   
  





 281 

These integrals follow from the system (20) with acceptable accuracy 4( )O ε for the stationary regime of modulation. The 282 

second and third relations here clearly show that the wave action flux of the side bands can grow up at the expense of the main 283 

carrier wave flux. The last relationship manifests the almost identical behavior of the main sidebands for the problem of their 284 

generation due to Benjamin-Feir instability.    285 

      Typical behavior of wave instability in the absence of current is presented in Fig. 1a for a Stokes wave having initial 286 

steepness 0.1ε = . Two initially negligible side bands (II) and (III) exponentially grow at the expense of the main Stokes wave 287 

(I), and after saturation, the wave system reverts to its initial state, which is the Fermi–Pasta–Ulam recurrence phenomenon. 288 

One can see here also the characteristic spatial scale for the developing of modulation instability 2(1/( ))cO k ε . 289 
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           The development of modulation instability on negative variable current 2
0 0( 200) , 0.1,U U Sech x Uε= − = −    is 290 

presented in Fig. 1(b). The modulation instability develops far more quickly on opposing current and reaches deeper stages of 291 

modulation. The energetic process is described as follows. The basic Stokes wave (I) absorbs energy from the counter current U 292 

and its steepness increases. This in turn accelerates the wave instability; there is a corresponding increase in energy flow to the 293 

most unstable sideband modes (II) and (III). Wave refraction by current is acting simultaneously with nonlinear wave 294 

interactions. The linear modulation model (Gargett & Hughes, 1972; Lewis et al., 1974) assumes the independent variations of 295 

harmonics with current and gives much larger maximum amplitude of the carrier wave (IV). It just adsorbs energy from the 296 

adverse current.  297 

 298 
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 299 

 300 

FIG. 1. (a) BF instability without current. (b), (c) Modulation of surface waves by adverse current 2
0 0( )U U Sech x xε= −   , 301 

( 0 0.15U = − ); (b) 0 200x = , (c) 0 400x = . (d) phase difference function 1 0 2[ ] 2 [ ] [ ] [ ]X X X Xϕ θ θ θ= − − , 302 

1 0 2[0] 0; [0] [0] / 4θ θ θ π= = = − , (e) Modulation of surface waves by adverse current 2
0 02 ( )U U Sech x xε= −   , ( 0 0.2U = − ), (f) 303 

Modulation instability for following current ( 0 0.16U = , 0 400x = ).   (g), (h) Functions of wave amplitude and wave number 304 

respectively for 0 0.2U = − . (I), (II), (III) Amplitude envelopes of the carrier, superharmonic and subharmonic waves, 305 

respectively. (IV) Linear solution for the carrier envelope. The initial steepness of the carrier wave is 0.1ε = , side band initial 306 

amplitudes are equal to 0.1ε  . (i) Relative distortion of the linear dispersion relation for the case (g), (I) – carrier, (II) – higher 307 

side band. 308 

 309 

  The region of the most developed instability corresponds to the spatial location of the maximum of the negative current 310 

(Fig. 1c). As one can see from Fig. 1b, 1c the initial stage of wave-current interaction is characterized by the dominant process - 311 

absorbing of energy by waves where all three waves grow simultaneously. Initial growth of side band modes (Fig.1c) leads to 312 

more deep modulated regime. Increasing of wave steepness in turn accelerates instability and finally these two dominate 313 

processes alternate. Correspondingly, the triggering of this complicate process essentially depends from the displacement of the 314 

current maximum.  315 

Quasi-resonance interaction of waves in the presence of variable current causes some crucial questions about its detuning 316 

properties. Absolute frequencies for the stationary modulation satisfy to resonance conditions (7) for the entire region of 317 
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interaction. But possibly it is not the case for the local wave numbers and intrinsic frequencies - they are substantially variable 318 

due to current effects and nonlinearity. May be due to interaction with current and nonlinearity effects the almost resonance 319 

conditions are totally destroyed due to large detuning? (Shrira and Slunyaev, 2014) 320 

  To clarify this property we present the Fig.1d describing the typical behavior of phase-shift difference function 321 

1 0 2[ ] 2Xϕ θ θ θ= − −  corresponding to wave modulation at Fig.1c. Intensity of nonlinear energy transfer is mostly defined by this 322 

function together with wave amplitudes. (see equations (17), (20)).  Result looks rather surprising - several strong phases’ 323 

jumps take a place with corresponding changing of the wave energy fluxes direction. But in any case we see an intensive 324 

quasi-resonant energy exchange in the entire interaction zone. Quasi-resonant conditions are satisfied locally in space with a 325 

relatively small detuning factor. Qualitatively similar behavior of phase-shift function we found also for other regimes of wave 326 

modulation. 327 

The typical scenario of wave interaction with co propagating current is presented in Fig. 1f. The modulation instability is 328 

depressed by the following current ( ) 0U X >  and the resonant sideband modes develop at a distance from the origin that is 329 

almost twice that in the case of no current.  330 

 Regimes of modulation presented at Fig. 1a-1c demonstrate the strictly symmetrical behavior with respect to the current 331 

peak and wave train returns to its initial structure after interaction with current. The modulation equations permit symmetrical 332 

solutions for the symmetrical current function, but, in general, outside of interaction zone the structure of nonlinear periodic 333 

waves are defined by the boundary conditions and constant Stokes wave is only one of such possibilities. The symmetrical 334 

behavior is typical for a sufficiently long scale current. We present Fig.1e with the asymmetrical modulation properties for the 335 

same wave initial characteristics as for Fig.1c and two time’s shorter space scale of the current. After wave-current interaction 336 

zone we see three waves system with comparable amplitudes and periodic energy transfers.  337 

      The increasing strength of the opposing flow ( 0 0.2U = − ) results in deeper modulation of waves and more frequent 338 

mutual oscillations of the amplitudes (Fig. 1g). There are essential oscillations of wave-number functions of the sideband modes 339 

(II) and (III) (Fig. 1h) owing to the nonlinear dispersion properties of waves. We mention also that the wave number of the 340 

carrier wave in the linear model (IV) is much higher than that in the nonlinear model (I). The width of the wave-number 341 

spectrum of the wave train in the nonlinear model locally increases to almost twice the initial width. To give an idea about the 342 

strength of nonlinearity we present at Fig.1i the distortion of the linear dispersion relation for different modes. As one can see 343 

the effect of nonlinearity for the carrier (at maximum is about 10%) is much less compare to side bands (at peak is more than 344 

30 %). The main impact of nonlinearity comes from amplitude Stokes dispersion.  345 

     To estimate the possibility of generating large transient waves, we employ the resonance model and calculate the 346 

maximum amplification of the amplitudes of surface waves generated in a still water and then undergo a current quickly raised 347 

to a constant value -U. The boundary conditions for the unperturbed waves were taken from experiments conducted by Toffoli 348 

et al. (2013) and Ma et al. (2013). Results of calculations are presented in Fig. 2(a) and 2(b). 349 
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 350 

 351 

 352 

FIG. 2. Nondimensional maximum wave amplitude as a function of / gU C− , where gC is the group velocity of the carrier wave 353 

and 1/ 2E is the local standard deviation of the wave envelope.   354 

(a) Experiments conducted by Toffoli et al. (2013) for carrier wave of period 0.8T s= (wavelength 1mλ ≅ ), initial steepness 355 

1 1 0.063k a = , and frequency difference 1/ 1 /11ω ω∆ = , initial amplitudes of side bands equal to 0.25 times the amplitude of the 356 

carrier wave. Solid dots show measurements made using a flume at Tokyo University and squares show results obtained at 357 

Plymouth University. Line (I) shows the resonance model prediction while line (II) shows the prediction made using Eq. (2) 358 

(Toffoli et al., 2013). 359 

(b) Case T11 in Ma et al. (2013) for carrier-wave frequency 1 1Hzω = , initial steepness 1 1 0.115k a = , initial amplitudes of side 360 

bands equal to 0.05 times the amplitude of the carrier wave and frequency difference 1 1 1/ 0.44a kω ω∆ = . Solid dots show 361 

measurements. Line (I) shows the resonance model prediction, while line (II) shows the prediction made using Eq. (2) (Toffoli 362 

et al., 2013). 363 

    Our simulations confirm that initially stable waves in experiments of Toffoli et al. (2013) undergo a modulationally 364 

unstable process and wave amplification in the presence of adverse current. Maximum amplification reasonably corresponds to 365 

results of experiments in Tokyo University Tank for moderate strength of current. Maximum of nonlinear focusing in 366 

dependence on the value of current is weaker compare to the model of Toffoli et al.(2013).  367 

   Experiments of Ma et al. (2013) (Fig. 2b) show that the development of the modulational instability for a gentle waves and 368 

relatively weak adverse current ( / ~ 0.1gU C − ), see the first experimental point) is limited due to the presence of dissipation. 369 

Our resonance-model simulations are in a good agreement with the experimental values for the moderate values of adverse 370 

current / ~ 0.2 0.4gU C − − . Results of Toffoli et al. (2013) notably overestimate the maximum of wave amplification. 371 

 372 
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4. Wave propagation under the blocking conditions of strong adverse current 373 

 374 

Stokes waves with sufficiently high initial steepness ε  under the impact of strong blocking adverse current ( ( ) gU X C< − ) 375 

will inevitably reach the breaking threshold for the steepness of water waves. We employ the adjusted weakly nonlinear 376 

dissipative model of Tulin (1996), Tulin and Li (1999) and Huang et al. (2011) to describe the effect of breaking on the 377 

dynamics of the water wave.  378 

Dual non-conservative evolution equations for wave energy density 21/ 2E gη= and wave momentum / / ( / k)M E c E ω= = , 379 

or, correspondingly, for energy E and celerity c were rigorously derived (Tulin and Li, 1999) using the variational approach: a 380 

modified Hamiltonian principle involving the modulating wave Lagrangian plus a Work Function representing the 381 

nonconservative effects of wave breaking. It was also shown that these dual equations correspond to the complex NLS equation, 382 

as modified by the non-conservative effects, i.e. to energy and dispersion equations. Wave breaking effects were characterized 383 

by the energy dissipation rate bD and momentum loss rate bM .  384 

An analysis of fetch laws parameterized by Tulin (1996) reveals that the rate of energy loss bD  due to breaking is of 385 

fourth order of the wave amplitude: 386 

2 2/bD E D kω η= , 387 

and 1(10 )D O −= is a small empirical constant. Momentum-loss rate bM was quantified in terms of energy dissipation rate bD and 388 

parameterized in such a way that 389 

(1 )b bcM Dγ= + , 390 

where γ is empirical coefficient, which is varied in the range 0.4 0.7γ = − . Strong plunging breaking corresponds to 0.4γ =  and 391 

weak to 0.7γ = . In all our numerical simulations was chosen 0.4, 0.1Dγ = = .  392 

Tulin & Waseda (1999) through consideration of a multi-modal wave system evolving from a carrier wave and two side 393 

bands, showed that energy downshifting during breaking is determined by the balance between momentum and dissipation 394 

losses, suitably parameterized by the parameter γ :  395 

( )0 2 / ( / )bE E D
t

γ δω ω∂
− =

∂
, 396 

where 0 2,E E  - energy densities of the sub and super harmonics, respectively. The parametric value γ was found to be positive 397 
0γ >  and providing the long term downshifting.  398 

The sink of energy bD and momentum bM due to wave breaking leads to additional terms at the right sides of the wave 399 

energy equations (20) and dispersive equations (16) for each of the waves. Tulin (1996) suggested using sink terms along the 400 

entire path of wave interaction with the wind. The wave dissipation function for the adjusted model (Huang et al., 2011) 401 

includes also the wave steepness threshold function  402 
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1i i i

S

k
H

A
ε σ φ 

− 
  

∑
, 403 

where H is the Heaviside unit step function and SA  is the threshold value of the combined wave steepness i i ikε σ φ∑ , is applied to 404 

calculate energy and momentum losses in a high steepness zones. In our computations the threshold was chosen 0.32SA = . 405 

  The dispersion relations (16) and wave energy laws (20) including break dissipation take the form 406 

 407 
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     (21) 408 

where / 1i i i Sk Aχ ε σ φ= −∑ , and 409 
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 (22)      410 

 411 

  Wave breaking leads to permanent (not temporal) frequency downshifting at a rate controlled by breaking process. A crucial 412 

aspect here is the cooperation of dissipation and near-neighbor energy transfer in the discretized spectrum acting together.  413 

  The numerical simulations for initially high steepness waves ( 0.25ε = ) propagation with wave breaking dissipation is 414 

presented in Fig. 3a-3c. We calculate the amplitudes of surface waves on linearly increasing opposing current 0( )U x U x= − with 415 
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different strength 0U . Most unstable regime was tested for frequency space 1/ω ω ε±∆  , initial side bands amplitudes equal to 416 

0.05 times the amplitude of the carrier wave and most effective initial phases 1 0 2(0) 0, (0) (0) / 4θ θ θ π= = = −  417 

 418 

 419 

 FIG. 3. Modulation of surface waves by the adverse current 0U U x= . (a) -4
0 2.5 10U = − ; (b) -4

0 5 10U = − , (c) -3
0 10U = − . 420 

(I), (II), (III) - amplitude envelopes of the carrier, subharmonic and superharmonic waves, respectively. Initial wave 421 

steepness 0.25ε = , side bands amplitudes equal to 0.05 times the amplitude of the carrier.  422 

   A very weak opposite current 4
0 2.5 10U −= (Fig.3a) has a pure impact on wave behavior: it is finally results in almost 423 

bichromatic wave train with two dominant waves: carrier and lower side band. Frequency downshift here is not clearly seen. 424 

Two times stronger current case with 4
0 5 10U −= is presented in Fig. 3b. We note some tendency to final energy downshift to the 425 

lower side band. Really strong permanent downshift with total domination of the lower side band is seen for two times more 426 

strong current 3
0 10U −= (Fig.3c).  427 

   We also performed numerical simulations for the boundary conditions and the form of the variable current obtained in two 428 

series of experiments conducted by Chavla and Kirby (2002) and Ma et al. (2010). 429 

     Data for the wave blocking regime in experiments conducted by Chavla and Kirby (2002) are taken from their Test 6 430 

(Figure 11). The experimental results of Test 6 and our numerical simulation results are compared in Fig. 4. A surface wave 431 

with initially high steepness ( 1 1 0.296A k = ) and period T = 1.2 s meets adverse current with increasing amplitude.  432 

The wave modeling has distinctive features that agree reasonably well with the results of experiments: 433 

 - initial symmetrical growth of the main sidebands with frequencies 0 20.688 , 0.978f Hz f Hz= =  at distances up to 1 2k x < − ; 434 

- asymmetrical growth of sidebands beginning at 1( 2)k x ≈ −  and downshifting of energy to the lower sideband;  435 

- energy transfer at very short spatial distances and several increases in the lower sideband amplitude just on a half meter 436 

length 1 ( 2,0)k x∈ − . 437 

- a depressed higher frequency band and primary wave; 438 

- an almost permanent increase in the lowest subharmonic along the tank;  439 

- sharp accumulation of energy by the lowest subharmonic wave during interaction with increasing opposing current; and  440 

- final permanent downshifting of the wave energy.  441 
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The presented third-order wave amplitude model agrees reasonable well with experimental results.                            442 

 443 

 444 

FIG. 4. Dashed curves show the zero-dimensional amplitudes of the resonance waves for primary (Pr), lower (Lo) and upper 445 

(Up) sidebands obtained experimentally by Chavla and Kirby (2002). The solid lines ( 1 0 2, ,A A A respectively) are wave 446 

amplitudes calculated in modeling. 0( ) /U U C− is the zero-dimensional variable current, where C is the initial phase speed of 447 

the carrier wave, 0 10.32 / s; 4.7 1 / , 1.44 / s, 1.2sU m k m C m T= − = = = . 448 

  449 

     Modulation evolution of breaking waves in experiments of Ma et al. (2010) for the most intriguing case 3 are presented in 450 

Fig.5 together with the results of our numerical computations. A primary wave with period 1sT =  and steepness 1 1 0.18A k =  451 

meets linearly increasing opposing current that finally exceeds the threshold to be a linear blocking barrier for the primary 452 

wave ( ) 1/ 4U x C< − . In experiments, sideband frequencies arose ubiquitously from the background noise of the flume. In 453 

numerical simulations, the sidebands were slightly seeded at frequencies corresponding to the most unstable modes. The 454 

wave-breaking region in this experimental case ranged from 1 52k x =  to 1 72k x = . The lower sideband amplitude grew with 455 

increasing distance at the expense of the primary wave, while there was little change in the higher sideband energy. There was 456 

an effective frequency downshift following initial breaking ( 1 56k x = ). The modeling results agree reasonably well with the 457 

experimental data.  458 
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 459 

FIG. 5. Dashed curves show zero-dimensional amplitudes of the resonance waves for primary (Pr), lower (Lo) and upper (Up) 460 

sidebands obtained from experiments conducted by Ma et al. (2010). The solid lines ( 1 0 2, ,A A A respectively) are wave 461 

amplitudes calculated in modeling. 0( ) /(4 )U U C−  shows the zero-dimensional variable current, where C is the initial phase 462 

speed of the primary wave, 0 10.25 / s; 4. 1 / , 1.56 / s, 1s.U m k m C m T= − = = =  463 

 464 

5. Conclusions  465 

 466 

      A resonance system comprising three waves in nonuniform media gives rise to modulation instability with special 467 

properties. Interaction with countercurrent accelerates the growth of sideband modes on much shorter spatial scales. In contrast, 468 

wave instability on following current is sharply depressed. Amplitudes and wave numbers of all quasi-resonant waves vary 469 

enormously in the presence of strong adverse current. The steepness of a nonlinear wave on adverse current is much less than 470 

that of a linear refraction model. The increasing strength of the opposing flow results in deeper modulation of waves and more 471 

frequent mutual oscillations of the waves amplitudes. 472 

    Large transient or freak waves with amplitude and steepness several times larger than those of normal waves may form 473 

during temporal nonlinear focusing of the quasi-resonant waves accompanied by energy income from sufficiently strong 474 

opposing current. The amplitude of a rough wave strongly depends on the ratio of the current velocity to group velocity. 475 

    Interaction of initially steep waves with the strong blocking adverse current results in intensive energy exchange between 476 

quasi-resonance components and energy downshifting to the lower sideband mode accompanied by active breaking. A more 477 

stable long wave with lower frequency can overpass the blocking barrier and accumulate almost all the wave energy of the 478 

packet. The frequency downshift of the energy peak is permanent and the system does not revert to its initial state. 479 
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    A third-order dissipative wave resonant model satisfactorily agrees with available experimental data on the explosive 480 

instability of waves on blocking adverse current and the generation of rough waves.  481 
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