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    The development of Benjamin–Feir instability of Stokes waves in the presence of variable current 10 

is presented. We employ a model of a resonance system having three coexisting nonlinear waves and 11 

nonuniform current. The model is free from the narrow-band approximation for surface waves and 12 

relatively weak adverse current. The model considers essential variations of the wave numbers and 13 

frequencies of interacting waves due to significant adverse current rising up to wave blocking value. 14 

The modulation instability of Stokes waves in nonuniform moving media has special properties. 15 

Interaction with countercurrent accelerates the growth of sideband modes on a short spatial scale. An 16 

increase in initial wave steepness intensifies the wave energy exchange accompanied by wave breaking 17 

dissipation, results in asymmetry of sideband modes and a frequency downshift with an energy transfer 18 

jump to the lower sideband mode, and depresses the higher sideband and carrier wave. Nonlinear waves 19 

may even overpass the blocking barrier produced by strong adverse current. The frequency downshift of 20 

the energy peak is permanent and the system does not revert to its initial state. We find reasonable 21 

correspondence between the results of model simulations and available experimental results for wave 22 

interaction with blocking opposing current. Large transient or freak waves with amplitude and steepness 23 

several times those of normal waves may form during temporal nonlinear focusing of the resonant 24 

waves accompanied by energy income from sufficiently strong opposing current. We employ the 25 

resonance model for the estimation of the maximum amplification of wave amplitudes as a function of 26 

gradually increasing opposing current value and compare the result obtained with recently published 27 

experimental results and modeling results obtained with the nonlinear Schrödinger equation. 28 

 29 
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  1. Introduction 34 

  35 

The problem of the interaction of a nonlinear wave with large-scale current remains an enormous 36 

challenge in physical oceanography. In spite of numerous papers devoted to the analysis of the 37 

phenomenon, some of the relatively strong effects still await a clear description. The phenomenon can 38 

be considered the discrete evolution of the spectrum of the surface wave under the influence of 39 

nonuniform adverse current. Experiments conducted by Chavla & Kirby (2002) and Ma et al. (2010) 40 

revealed that sufficiently steep surface waves overpass the barrier of strong opposing current on the 41 

lower resonant Benjamin–Feir sideband. These reports highlight that the frequency step of a discrete 42 

downshift coincides with the frequency step of modulation instability; i.e., after some distance of wave 43 

run, the maximum of the wave spectrum shifts in frequency to the lower sideband. The intensive 44 

exchange of wave energy produces a peak spectrum transfer jump, which is accompanied by essential 45 

wave breaking dissipation. The spectral characteristics of the initially narrow-band nonlinear surface 46 

wave packet dramatically change and the spectral width is increased by dispersion induced by the strong 47 

nonuniform current.  48 

       This paper considers a model of wave resonance in the presence of large-scale variable current 49 

with strong emphasis on the development of Benjamin–Feir (BF) instability without restrictions placed 50 

on the strength of current and the spectral width of the wave modulation.  51 

           Modulational instability (BF instability) (Benjamin and Feir, 1967) is a fundamental 52 

principle of nonlinear water wave dynamics. This phenomenon is of the utmost importance for the 53 

description of dynamics and downshifting of the energy spectrum among sea surface waves, the 54 

formation of freak (or giant) waves in oceans and wave breaking. In modern nonlinear physics, BF 55 

instability is considered a basic process that classifies the qualitative behavior of modulated waves 56 

(“envelope waves”) and may initialize the formation of stable entities such as envelope solitons.  57 

The stationary nonlinear Stokes wave is unstable in response to perturbation of two small neighboring 58 

sidebands. The initial exponential growth of the two dominant sidebands at the expense of the primary 59 

wave gives rise to an intriguing Fermi–Pasta–Ulam recurring phenomenon of the initial state of wave 60 

trains. This phenomenon is characterized by a series of modulation–demodulation cycles in which 61 

initially uniform wave trains become modulated and then demodulated until they are again uniform 62 

(Lake et al., 1978). However, when the initial slope is sufficiently steep, the long-time evolution of the 63 

wave train is different. The evolving wave trains experience strong modulations followed by 64 

demodulation, but the dominant component is the component at the frequency of the lower sideband of 65 

the original carrier. This is the temporary frequency downshift phenomenon. In systematic 66 



3 
 

well-controlled experiments, Tulin and Waseda (1999) analyzed the effect of wave breaking on 67 

downshifting, high-frequency discretized energy, and the generation of continuous spectra. 68 

Experimental data clearly show that the active breaking process increases the permanent frequency 69 

downshift in the latter stages of wave propagation.  70 

     The BF instability of Stokes waves and its physical applications have been studied in depth over 71 

the last few decades; a long but incomplete list of research is Lo and Mei (1985), Duin (1999), Osborne, 72 

Onorato, and Serio (2000), Trulsen et al. (2000), Janssen (2003), Segur et al. (2005), Zakharov et al. 73 

(2006), Bridges & Dias (2007), Hwung, Chiang and Hsiao (2007), Chiang and Hwung (2010), Shemer 74 

(2010), and Hwung, Chiang, Yang  and Shugan (2011). The latter stages of one cycle of the 75 

modulation process have been much less investigated, and many physical phenomena that have been 76 

observed experimentally still require extended theoretical analysis. 77 

     Modulation instability and the nonlinear interactions of waves are strongly affected by variable 78 

horizontal currents. Here, we face another fundamental problem of the mechanics of water 79 

waves—interactions with long-scale current. The effect of opposing current on waves is a problem of 80 

practical importance at tidal inlets and river mouths. 81 

     Even linear refraction of waves on currents can affect the wave field structure in terms of the 82 

direction and magnitude of waves. Waves propagating against an opposing current may have reduced 83 

wavelength and increased wave height and steepness.  84 

      If the opposing current is sufficiently strong, then the absolute group wave velocity in the 85 

stationary frame will become zero, resulting in the waves being blocked. This is the most intriguing 86 

phenomenon in the problem of wave–current interaction (Phillips, 1977). The kinematics condition for 87 

wave blocking can be written as 88 

( ) 0gC U X+ → , 89 

where gC  is the intrinsic group velocity of waves in a moving frame and ( )U X  is slowly varying 90 

horizontal current, with X being the horizontal coordinate in the direction of wave propagation. Waves 91 

propagating against opposing current are stopped if the magnitude of the current, in the direction of 92 

wave propagation, exceeds the group velocity of the oncoming waves. This characteristic feature of 93 

wave blocking has drawn the interest of oceanographers and coastal engineers alike for its ability to be 94 

used as signature patterns of underlying large-scale motion (e.g., fresh water plumes and internal waves) 95 

and for the navigational hazard it poses. Smith (1975), Peregrine (1976), and Lavrenov (1998) analyzed 96 

refraction/reflection around a blocking region and obtained a uniformly valid linearized solution, 97 

including a short reflecting wave.  98 
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       The linear modulation model has a few serious limitations. The most important is that the 99 

model predicts the blocking point according to the linear dispersion relation and cannot account for 100 

nonlinear dispersive effects. Amplitude dispersion effects can considerably alter the location of wave 101 

blocking predicted by linear theory, and nonlinear processes can adversely affect the dynamics of the 102 

wave field beyond the blocking point.  103 

      Donato, Peregrine & Stocker (1999), Stocker & Peregrine (1999), and Moreira & Peregrine 104 

(2012) conducted fully nonlinear computations to analyze the behavior of a train of water waves in deep 105 

water when meeting nonuniform currents, especially in the region where linear solutions become 106 

singular. The authors employed spatially periodic domains in numerical study and showed that adverse 107 

currents induce wave steepening and breaking. A strong increase in wave steepness is observed within 108 

the blocking region, leading to wave breaking, while wave amplitudes decrease beyond this region. The 109 

nonlinear wave properties reveal that at least some of the wave energy that builds up within the 110 

blocking region can be released in the form of partial reflection (which applies to very gentle waves) 111 

and wave breaking (even for small-amplitude waves). 112 

        The enhanced nonlinear nature of sideband instabilities in the presence of strong opposing 113 

current has also been confirmed by experimental observations. Chavla & Kirbi (2002) experimentally 114 

showed that the blockage phenomenon strongly depends on the initial wave steepness; i.e., waves are 115 

blocked when the initial slope is gradual (ak < 0.16, where a and k are the wave amplitude and wave 116 

number, respectively). When the slope is sufficiently steep (ak > 0.22), the behavior of waves is 117 

principally different; i.e., waves are blocked only partly and frequency-downshifted waves overpass the 118 

blocking barrier. The lower sideband mode may dramatically increase; i.e., the amplitude may increase 119 

several times within a distance of a few wavelengths.  120 

        Wave propagation against nonuniform opposing currents was recently investigated in 121 

experiments conducted by Ma et al. (2010). Results confirm that opposing current not only increases the 122 

wave steepness but also shortens the wave energy transfer time and accelerates the development of 123 

sideband instability. A frequency downshift, even for very gradual initial steepness, was identified. 124 

Because of the frequency downshift, waves are more stable and have the potential to grow higher and 125 

propagate more quickly. The ultimate frequency downshift increases with an increase in initial 126 

steepness.  127 

The wave modulation instability with coexisting variable current is commonly described 128 

theoretically by employing different forms of the modified nonlinear Schrödinger (NLS) equation. 129 

Gerber (1987) used the variational principle to derive a cubic Schrödinger equation for a nonuniform 130 

medium, limiting to potential theory in one horizontal dimension. Stocker & Peregrine (1999) extended 131 
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the modified nonlinear NLS equation of Dysthe (1979) to include a prescribed potential current. 132 

Hjelmervik and Trulsen (2009) derived an NLS equation that includes waves and currents in two 133 

horizontal dimensions allowing weak horizontal shear. The horizontal current velocities are assumed 134 

just small enough to avoid collinear blocking and reflection of the waves.  135 

    Even though the frequency downshift and other nonlinear phenomena were observed in previous 136 

experimental studies on wave–current interactions, the theoretical description of the modulation 137 

instability of waves on opposing currents is not yet complete. An interaction of an initially relatively 138 

steep wave train with strong current nevertheless may abruptly transfer energy between the resonantly 139 

interacting harmonics. Such wave phenomena are beyond the applicability of NLS-type models and 140 

await a theoretical description.  141 

    Another topic of practical interest in wave–current interaction problems is the appearance of large 142 

transient or freak waves with great amplitude and steepness owing to the focusing mechanism (e.g., 143 

Peregrine (1976); Lavrenov (1998), White & Fornberg (1998), Kharif and Pelinovsky (2006); Janssen 144 

and Herbers (2009), Ruban (2012)). Both nonlinear instability and refractive focusing have been 145 

identified as mechanisms for extreme-wave generation and these processes are generally concomitant in 146 

oceans and potentially act together to create giant waves.  147 

    Toffoli et al. (2013) showed experimentally that an initially stable surface wave can become 148 

modulationally unstable and even produce freak or giant waves when meeting negative horizontal 149 

current. Onorato et al. (2011) suggested an equation for predicting the maximum amplitude maxA  150 

during the wave evolution of currents in deep water. Their numerical results revealed that the maximum 151 

amplitude of the freak wave depends on / gU c , where U is the velocity of the current and gc  is the 152 

group velocity of the wave packet.  153 

     Recently, Ma et al. (2013) experimentally investigated the maximum amplification of the 154 

amplitude of a wave on opposing current having variable strength at an intermediate water depth. They 155 

mentioned that theoretical values of amplification (Onorato et al. (2011), Toffoli et al. (2013)) are 156 

essentially overestimated, probably owing to the effects of finite depth and wave breaking. 157 

          To address the abovementioned problems, we present a third-order resonance model of BF 158 

instability in the presence of horizontal long-scale current of variable strength. We analyze the 159 

interactions of a nonlinear surface wave with sufficiently strong opposing blocking current and the 160 

frequency downshifting phenomenon. The maximum amplification of the amplitude of surface waves is 161 

estimated for gradually increasing in dependence from relative strength of opposing current. We take 162 

into account the dissipation effects due to wave breaking and explore the threshold modification of the 163 

Tulin wave breaking model (Tulin (1996); Huang et al. (2011)). The results of model simulations are 164 
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compared with available experimental results and theoretical estimations. 165 

We employ simplified 3-wave quasi-resonance model in the presence of significant opposite 166 

current. In the meanwhile, the evolution of the wave spectrum in the absence of breaking includes 167 

energy exchange between the carrier wave and two main resonant side-bands and spreading of the 168 

energy to higher frequencies. Inclusion of higher frequency free waves in the Zakharov, modified 169 

Schrodinger or Dysthe equations is crucial, since the asymmetry of the lower and the upper side-band 170 

amplitudes at peak modulation in non-breaking case results from that. The temporal spectral downshift 171 

has been predicted by computations made by the Dysthe equations (Lo and Mei, 1985; Trulsen and 172 

Dysthe, 1990; Hara and Mei, 1991) for a much more number of excited waves, the same prediction was 173 

also made by simulations of fully nonlinear equations (Tanaka,1990; Slunyaev and Shrira, 2013). Such 174 

a conclusion can be made regarding to developing of modulation instability in a calm water.  175 

The developing of modulation instability in the presence of significant adverse current is different. 176 

Experimental results of Chavla and Kirby (2002) and Ma et al. (2010) clearly show that energy 177 

spectrum is mostly concentrated in the main triad of waves and high frequency discretized energy 178 

spreading is depressed due to the short wave blocking by the strong enough adverse current.   179 

   The relatively high initial wave steepness leads to wave breaking dissipation with discriminatory 180 

energy loss from the carrier and higher side-band modes (Tulin and Waseda, 1999). Even those waves 181 

which do not blocked lose a considerable amount of energy due to wave breaking on the strong opposite 182 

current. The permanent frequency downshift with final dominating of the lower subharmonic takes a 183 

place and wave system does not revert to its initial state. 3-wave dynamical model analysis in the 184 

presence of significant opposite current therefore can be relevant at the initial stages and also at the 185 

further stages of wave evolution.  186 

      The paper consists of five sections. General modulation equations that describe the 187 

one-dimensional interaction of a triad of resonant surface waves and nonuniform current are derived in 188 

section 2. Section 3 analyzes stationary nondissipative solutions for adverse and following nonuniform 189 

currents and various initial steepness of the surface wave train. We calculate the maximum amplitude 190 

amplification along gradually increasing in dependence from relative strength of opposing current and 191 

compared it with available experimental and theoretical results (Toffoli et al., 2013; Ma et al., 2013). 192 

The interaction of steep surface waves with strong adverse current under wave-blocking conditions 193 

including wave breaking effects is presented in section 4. Modeling results are compared with the 194 

results of a series of experiments conducted by Chavla and Kirby (2002) and Ma et al. (2010). Section 5 195 

summarizes our final conclusions and discussion.  196 

 197 
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2. Modulation equations for one-dimensional interaction 198 

   The first set of complete equations that describe short waves propagating over nonuniform currents 199 

of much larger scale were given by Longuet-Higgins and Stewart (1964). Wave energy is not conserved, 200 

and the concept of “radiation stress” was introduced to describe the average momentum flux in terms 201 

that govern the interchange of momentum with the current. In this model, it is also justifiable to neglect 202 

the effect of momentum transfer on the form of the surface current because it is an effect of the highest 203 

order (Stocker and Peregrine, 1999).  204 

       We construct a model of the current effect on the modulation instability of a nonlinear Stokes 205 

wave by making the following assumptions. 206 

i). Surface waves and current propagate along a common x-direction.  207 

     ii). By ca , ck and cω  we denote the characteristic amplitude, wave number and angular frequency 208 

of the surface waves. We use a small conventional average wave steepness parameter; 1c ca kε = << .  209 

    iii) The characteristic spatial scale used in developing the BF instability of the Stokes wave is 2/cl ε , 210 

where 2 /c cl kπ= is the typical wavelength of surface waves (Benjamin and Feir, 1967). We consider 211 

long-scale slowly varying current ( )U x with horizontal length scale L of the same order: 2( / )cL O l ε= .  212 

    iv) It is assumed that the ( )U x  dependence is due to the inhomogeneity of the bottom profile h(x), 213 

which is sufficiently deep so that the deep-water regime for surface waves is ensured; i.e., 214 

( 2 ) 1cexp k h−  . The characteristic current length L at which the function U(x) varies noticeably is 215 

assumed to be much larger than the depth of the fluid, ( )h x L . Under these conditions, shallow 216 

water model for the current description may be adopted: U(x)h(x) assumed to be approximately constant, 217 

and the vertical component of the steady velocity field on the surface ( )z xη=  can be neglected. 218 

Correspondingly, it follows from the Bernoulli time-independent equation that the surface displacement 219 

induced by the current is small (Ruban, 2012). Such a situation can occur, for example, near river 220 

mouths or in tidal/ebb currents.  221 

 222 
In all following equations, variables and sizes are scaled according to the above assumptions, and made 223 

dimensionless using the characteristic length and time scales of the wave field. 224 

 225 
      The zero-dimensional set of equations for potential motion of an ideal incompressible 226 

deep-depth fluid with a free surface in the presence of current ( )U x is given by the Laplace equation: 227 

0,xx zzφ φ+ = ( ) ( , )h x z x tεη− < < .                                  (1) 228 
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The boundary conditions at the free surface are                                                              229 

2 21 ( ), ( , ),
2t x x zU z x tη φ φ ε φ φ εη− = + + + =                               (2) 230 

, ( , ),t x x x zU z x tη η εφ η φ εη+ + = =                                   (3) 231 

and those at the bottom are      232 

0, ( ).z h xφ → = −                                         (4) 233 

Here, ( , , )x z tφ  is the velocity potential, ( , )x tη is the free-surface displacement, z is the vertical 234 

coordinate directed upward and t is time.  235 

The variables are normalized as 236 

                       

3

2

' ', ' ',

1 ' '', , ,

( ) '( /  ') '( ') ,

c c
c c c

c cc

c p p

g ga a
k k k

z xt t z x
k kgk

U Kx U K k x c U x c

εφ φ ε φ η η η

ε

= = = =

= = =

= =

                     (5) 237 

where g is acceleration due to gravity, 2 /K Lπ= , and pc is the phase speed of the carrier wave, but 238 

the primes are omitted in equations (1)–(4). Note that normalization (5) explicitly specifies the principal 239 

scales of sought functions φ and η .                                                                                                                  240 

The weakly nonlinear surface wave train is described by a solution to equations (1)–(4), expanded into a 241 

Stokes series in terms of ε . 242 

      We will analyze the surface wave train as the almost-resonance wave triad of a particular form, 243 

which describes the development of modulation instability in the presence of current. 244 

       For calm water, the initially constant nonlinear Stokes wave with amplitude, wave number and 245 

frequency ( 1 1 1, ,a k σ ) is unstable in response to a perturbation in the form of a pair small waves with 246 

similar frequencies and wavenumbers: a superharmonic wave ( 2 2 1 2 1, ,a k k k σ σ σ= + ∆ = + ∆ ) and 247 

subharmonic wave ( 0 0 1 0 1, ,a k k k σ σ σ= −∆ = −∆ ). For most unstable modes, 1/σ σ ε∆ = and 248 

1/ 2k k ε∆ = , where 1 1a kε = is the initial steepness of the Stokes wave (Benjamin and Feir, 1967). This 249 

is the BF or modulation instability of the Stokes wave.  250 

Kinematics resonance conditions for waves in the presence of slowly variable current are the same 251 

with one important particularity that intrinsic wave numbers and frequencies of resonance waves in the 252 

moving frame are variable and modulated by the current.       253 
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     We analyze the problem assuming the wave motion phase ( , )i i x tθ θ=  exists for each 254 

resonance wave in the presence of a slowly varying current ( )U x , and we define the local wave 255 

number ik  and absolute observed frequency iω  as                                               256 

                      
( ) ( ), ,

0,1, 2.
i i i i i ix t

k k U

i

θ ω σ θ= = + = −

=
                          (6) 257 

     For stationary modulation, the intrinsic frequency iσ and wave number ik  for each wave 258 

slowly change  in the presence of variable current, but the resonance condition 259 

                          1 0 2 2ω ω ω≈ +                                      (7) 260 

remains valid throughout the region of wave propagation owing to the stationary value of the absolute 261 

frequency for each of the harmonics.      262 

     The main kinematics wave parameters ( , )i ikσ  together with the first-order velocity potential 263 

amplitudes, iφ , are considered further as slowly varying functions with typical scale, 1( )O ε − , longer 264 

than the primary wavelength and period (Whitham, 1974):                                  265 

                ( , ), ( , ), ( , )i i i i i ix t k k x t x tφ φ ε ε ε ε σ σ ε ε= = = .                    (8)  266 

On this basis, we attempt to recover the effects of long-scale current and nonlinear wave dispersion 267 

(having the same order) additional to the Stokes term with the order of wave steepness squared.   268 

    The solution to the problem, uniformly valid for 3( )O ε , is found by a two-scale expansion with 269 

the differentiation:  270 

                        
( ) ,

, , .

i i
i

i
i

k U
t T

k T t X x
x X

σ ε
θ

ε ε ε
θ

∂ ∂ ∂
= − + +

∂ ∂ ∂
∂ ∂ ∂
= + = =

∂ ∂ ∂

∑

∑
                       (9) 271 

Substitution of the wave velocity potential in its linear form, 272 

                               
2

0
sini

i
k z

i i
i

eφ φ θ
=

=

=∑ ,                            (10) 273 
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satisfies the Laplace equation (1) to the first order of ε  owing to (8) and gives the additional terms of 274 

the second order 2( )O ε :                                      275 

                     (2 2 ) cos ... 0ik z
i iX iX i i iX i ik k k k z eε φ φ φ θ+ + + =  .            276 

      To satisfy the Laplace equation to second order, Yuen and Lake (1982), Shugan and Voliak 277 

(1998), and Hwung, Yang and Shugan (2009) suggested an additional phase-shifted term with a linear 278 

and quadratic z correction in the representation of the potential function φ : 279 

                    
2

2

0
sin cos ...

2
i i

i
k z k ziX i

i i iX i
i

ke z z eφφ φ θ ε φ θ
=

=

  = − + +  
  

∑ .          (11) 280 

     Exponential decaying of the wave’s amplitude with increasing –z is accompanied by a 281 

second-order subsurface jet owing to slow horizontal variations in the wave number and amplitude of 282 

the wave packet.   283 

The free-surface displacement ( , )x tη η=  is also sought as an asymptotic series: 284 

                           2
0 1 2 ...η η εη ε η= + + + ,                           (12) 285 

where 0 1,η η , and 2η are (1)O functions to be determined. Using expressions (10) and (11) subject to the 286 

dynamic boundary condition (2), we find the components of the free-surface displacement: 287 

        
2

0
0

cos ,
i

i i i
i

η σ φ θ
=

=

=∑                                                       (13)                                                                                                                                                                            288 

2 2
2 2

1
0 0

2 22 2
2 2

0 0

 = - ( sin sin ) cos[2 ]/2

( - )  cos[ - ] /2 ( )  cos[ ] /2

i i

iT i iX i i i i
i i

j ji i

i j i j i j i j i j i j i j i j
i j i i j i

U kη φ θ φ θ φ θ

σ σ σ σ φφ θ θ σ σ σ σ φφ θ θ

= =

= =

= == =

= ≠ = ≠

+ + +

+ + +

∑ ∑

∑∑ ∑∑
,           (14)                                                                                289 

2 2 5 2 2 2 2 2 2 2 2
0 0 0 0 1 1 1 0 1 0 2 2 2 0 2 0 0

2 2 5 2 2 2 2 2 2 2 2
1 1 1 1 0 0 0 1 0 1 2 2 2 1 2 1 1

2 2 5 2 2
2 2 2 2 2 1 1

(3 +2 (2 + ) (2 - )+2 (2 + ) (2 - )) cos[ ]+

 (3 +2  (2 + ) (2 - )+2 (2 + ) (2 - )) cos[ ]+

8 (3 +2 (2

φ σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ θ

φ σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ θ

η φ σ φ σ φ σ− = 2 2 2 2 2 2
1 2 1 2 0 0 0 2 0 2 2

2 2 2 2 2 2 2 2 2 2 2 2
0 1 0 1 0 1 0 0 1 1 2 1 2 1 2 2 1 2 2 1 1 0

2 2 2
0 1 2 0 1 2 0 1 2

 + ) (2 - )+2 (2 + ) (2 - )) cos[ ]-

  ( + 2 )( - 4  +2 ) cos[ + ]-   ( + 2 ) ( - 4  +2 ) cos[ + ]

-2      ( + +

σ σ σ σ φ σ σ σ σ σ θ

φ φ σ σ σ σ σ σ σ σ θ ϕ φ φ σ σ σ σ σ σ σ σ θ ϕ

φ φ φ σ σ σ σ σ σ 2 2 2
0 0 1 1 1 2 2 1)( -2 + -2 + ) cos[ ]

 

σ σ σ σ σ σ σ θ ϕ

 
 
 
 
 
 
 
  − 

, (15) 290 
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where ϕ  is a slowly varying phase-shift difference: 1 0 22ϕ θ θ θ= − − . 291 

Only the resonance terms for all three wave modes are included in the third-order displacement (15). 292 

       Substitution of the velocity potential (11) and displacement (13)–(15) into the kinematics 293 

boundary condition (3) gives, after much routine algebra, relationships between the modulation 294 

characteristics of the resonant wave: 295 

    

2 2 3 2 5 2 3 2 2 2 3 2 2
0 0 0 0 0 1 1 1 0 1 0 2 2 2 0 2 0

2 2 3 2
1 2 1 2 3 2 2 3

1 1 2 1 2 2
0

2 2 3 2 5 2 3 2 2 2 3 2 2
2 2 2 2 2 0 0 0 0 2 2 1 1 1 1 2 2
2 2 3 2

1 0 1 0

2

= + ( + (2 - )+ (2 - )) +

 (2 -2 +2 - ) cos[ ];

= + ( + (2 - + )+ (2 - + ))+

(2

k

k

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ

σ σ σ σ σ σ ϕ
φ

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ

σ
φ

+ +

3 2 2 3
1 0 1 0 1 0

2 2 3 2 5 2 3 2 2 2 3 2 2
1 1 1 1 1 0 0 0 0 1 1 2 2 1 1 2 2
2 2 4 3 2

0 2 0 1 2 0 0 1 0 1 1 2
2 2 2 3 2 2 3

0 1 1 2 2 2 1 1 2 1 2 2

-2 +2 - ) cos[ ];

= + ( + (2 - + ) + ( - +2 ))+
 ( - - ( - ) + 

( - +2 )+ (- + - + )) cos[ ];

k

σ σ σ σ σ ϕ

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ
ε φ φ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ ϕ




















              (16)                                               296 

2 2 2 2 2 3 2 3 2 2 3 2
0 0 0 0 1 2 0 1 2 1 1 2 1 2 2 0 0

0

2 2 2 2 2 2 3 3 2 2 3 2
2 2 2 2 1 2 0 0 1 1 0 1 0 1 0 2 2

2

2 2
1 1

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ]- '( ) / 2;
2

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ]- '( ) / 2;
2
1[ ] [( ( )

2

T X

T X

T

U X U X

U X U X

U X

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ φ σ
σ

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ φ σ
σ

φ σ

+ + =

+ + =

+ + 2 2 2 2 4 3 2
1 1 1 2 0 0 1 2 0 0 1 0 1 1 2

1
2 2 2 3 2 2 3 2

0 1 1 2 2 2 1 1 2 1 2 2 1 1

) ] ( ( - )

( - +2 )- ( - + - ))Sin[ ]- '( ) / 2.

X

U X

φ σ εφ φ φ σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ σ σ σ σ ϕ φ σ









= − − − +

+

  (17)                                                                                                         297 

 

3 2 3 2 2 32 2 2
0 0 0 0 1 2 0 1 2 1 1 2 1 2 2

0

2 3 3 2 2 32 2 2
2 2 2 2 1 2 0 0 1 1 0 1 0 1 0

2

2 42 2 2
1 1 1 1 1 2 0 0 1 2 0

1

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ];
2

1[ ] [( ( ) ) ] (2 -2 +2 - ) Sin[ ];
2
1[ ] [( ( ) ) ] (

2

T X

T X

T X

U X

U X

U X

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ φ σ εφ φ φ σ σ σ σ
σ

+ + =

+ + =

+ + = − 3 2
0 1 0 1 1 2

2 2 2 3 2 2 3
0 1 1 2 2 2 1 1 2 1 2 2

( - )

( - +2 )- ( - + - ))Sin[ ];

σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ ϕ









− − +

+

(17) 298 

  The formulas (16) represent the “intrinsic” dispersion relations of the nonlinear wave for each of the 299 

resonant harmonics in the presence of current, U(X). Equation (17) yields the known wave energy 300 
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action law with the energy exchange terms and sink/source term of the wave obtained from the current 301 

variability on the right side of the equations.  302 

The obtained system of equations (16), (17) in the absence of current is similar to classical Zakharov 303 

equations for discrete wave interactions (Mei et al., 2009); it has a strong symmetry with respect to 304 

indexes 0 and 2. The main property of the derived modulation equations is the variability of interaction 305 

coefficients in the presence of variable current.  306 

Modulation equations (16) and (17) are closed by the equations of wave phase conservation that follow 307 

from (6) as the compatibility condition (Phillips, 1977):                                           308 

                             
( ) 0,

0,1, 2.
iT i i Xk k U

i
σ+ + =

=
                              (18) 309 

The derived set of nine modulation equations (16)–(18) form the complete system for nine unknown 310 

functions ( , , , 0,1, 2i i ik iσ φ = ). 311 

3. Nondissipative stationary-wave modulations  312 

Let us analyze the stationary-wave solutions of the problem (16)–(18) supposing that all unknown 313 

functions depend on the single coordinate X. Then, after integrating (18), we have the conservation law 314 

for the absolute frequency of each wave: 315 

                              ,
0,1,2.

i i ik U const
i
σ ω+ = =
=

                             (19) 316 

The wave energy action laws for resonant components take the form  317 

2 2 2 3 2 3 2 2 3 2
0 0 1 2 0 1 2 1 1 2 1 2 2 0 0

0

2 2 2 3 2 3 2 2 3 2
2 2 1 2 0 1 0 1 0 1 0 1 0 2 2

2

2 2 2 2 4 3
1 1 1 2 0 0 1 2 0 0 1 0

1

1[( ) ] (2 -2 +2 - ) sin[ ]- '( ) / 2
2

1[( ) ] (2 -2 +2 - ) sin[ ]- '( ) / 2
2
1[( ) ] (

2

X

X

X

U U X

U U X

U

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ φ σ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ φ σ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ
σ

+ =

+ =

+ = − − − 2
1 1 2

2 2 2 3 2 2 3 2
0 1 1 2 2 2 1 1 2 1 2 2 1 1

( - )

( - +2 )- ( - + - ))sin[ ]- '( ) / 2U X

σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ ϕ φ σ









+




.           (20) 318 
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2 2 3 2 3 2 2 3
0 0 1 2 0 1 2 1 1 2 1 2 2

0

2 2 3 2 3 2 2 3
2 2 1 2 0 1 0 1 0 1 0 1 0

2

2 2 2 4 3 2
1 1 1 2 0 0 1 2 0 0 1 0 1 1 2

1
2 2 2

0 1 1 2 2

1[( ) ] (2 -2 +2 - ) Sin[ ]
2

1[( ) ] (2 -2 +2 - ) Sin[ ]
2
1[( ) ] ( ( - )

2

( - +2 )

X

X

X

U

U

U

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ σ ϕ
σ

φ σ εφ φ φ σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ

+ =

+ =

+ = − − − +

3 2 2 3
2 1 1 2 1 2 2- ( - + - ))Sin[ ]σ σ σ σ σ σ σ ϕ













            (20) 319 

 320 
To perform the qualitative analysis of the stationary problem, we suggest the law of wave action 321 

conservation flux in a slowly moving media as analogue of the three Manley-Rowe dependent integrals: 322 

2 2 2
2 2 0 0 1 1

2 0 1

2 2
1 1 0 0

1 0

2 2
1 1 2 2

1 2

2 2
0 0 2 2

0 2

1 1 1 ;
2 2 2

1 1 1 ;
2 2 2

1 1 1 ;
2 2 2

1 1 .
2 2

U U U const

U U const

U U const

U U const

φ σ φ σ φ σ
σ σ σ

φ σ φ σ
σ σ

φ σ φ σ
σ σ

φ σ φ σ
σ σ

     
+ + + + + =     

    
    + + + =      


    + + + =       
   

+ − + =   
  





 323 

These integrals follow from the system (20) with acceptable accuracy 4( )O ε for the stationary regime 324 

of modulation. The second and third relations here clearly show that the wave action flux of the side 325 

bands can grow up at the expense of the main carrier wave flux. The last relationship manifests the 326 

almost identical behavior of the main sidebands for the problem of their generation due to 327 

Benjamin-Feir instability.    328 

      Typical behavior of wave instability in the absence of current is presented in Fig. 1a for a Stokes 329 

wave having initial steepness 0.1ε = . Two initially negligible side bands (II) and (III) exponentially 330 

grow at the expense of the main Stokes wave (I), and after saturation, the wave system reverts to its 331 

initial state, which is the Fermi–Pasta–Ulam recurrence phenomenon. One can see here also the 332 

characteristic spatial scale for the developing of modulation instability 2(1/( ))cO k ε . 333 

           The development of modulation instability on negative variable current 334 

2
0 0( 200) , 0.1,U U Sech x Uε= − = −    is presented in Fig. 1(b). The modulation instability develops far 335 

more quickly on opposing current and reaches deeper stages of modulation. The energetic process is 336 

described as follows. The basic Stokes wave (I) absorbs energy from the counter current U and its 337 

steepness increases. This in turn accelerates the wave instability; there is a corresponding increase in 338 
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energy flow to the most unstable sideband modes (II) and (III). The linear modulation model (Gargett & 339 

Hughes (1972), Lewis et al. (1974)) has much larger maximum amplitude of the carrier wave (IV). 340 

 341 

 342 

FIG. 1. (a) BF instability without current. (b), (c) Modulation of surface waves by adverse current 343 

2
0 0( )U U Sech x xε= −   , ( 0 0.1U = − ); (b) 0 200x = , (c) 0 400x = . (d) Modulation instability for following 344 

current ( 0 0.1U = , 0 400x = ).   (e), (f) Functions of wave amplitude and wave number respectively for 0 0.2U = − . (I), 345 

(II), (III) Amplitude envelopes of the carrier, superharmonic and subharmonic waves, respectively. (IV) Linear solution for 346 

the carrier envelope. The initial steepness of the carrier wave is 0.1ε = .  347 



15 
 

 348 

 349 
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 350 

FIG. 1. (a) BF instability without current. (b), (c) Modulation of surface waves by adverse current 351 

2
0 0( )U U Sech x xε= −   , ( 0 0.15U = − ); (b) 0 200x = , (c) 0 400x = . (d) phase difference function 352 

1 0 2[ ] 2 [ ] [ ] [ ]X X X Xϕ θ θ θ= − − , 1 0 2[0] 0; [0] [0] / 4θ θ θ π= = = − , (e) Modulation of surface waves by adverse 353 

current 2
0 02 ( )U U Sech x xε= −   , ( 0 0.2U = − ), (f) Modulation instability for following current 354 

( 0 0.16U = , 0 400x = ).   (g), (h) Functions of wave amplitude and wave number respectively for 355 

0 0.2U = − . (I), (II), (III) Amplitude envelopes of the carrier, superharmonic and subharmonic waves, 356 

respectively. (IV) Linear solution for the carrier envelope. The initial steepness of the carrier wave is 357 

0.1ε = , side band initial amplitudes are equal to 0.1ε  . (i) Relative distortion of the linear dispersion 358 

relation for the case (g), (I) – carrier, (II) – higher side band. 359 

 360 

  The region of the most developed instability corresponds to the spatial location of the maximum 361 

of the negative current (Fig. 1c). The counter energy flows from the current and the other resonant 362 

waves give rise to mutual oscillations for all wave amplitudes (I)–(III). As one can see from Fig. 1b, 1c 363 

the initial stage of wave-current interaction is characterized by the dominant process - absorbing of 364 

energy by waves where all three waves grow simultaneously. Initial growth of side band modes (Fig.1c) 365 

leads to more deep modulated regime. Increasing of wave steepness in turn accelerates instability and 366 

finally these two dominate processes alternate. Correspondingly, the triggering of this complicate 367 

process essentially depends from the displacement of the current maximum.  368 

Quasi-resonance interaction of waves in the presence of variable current causes some crucial 369 

questions about its detuning properties. Absolute frequencies for the stationary modulation satisfy to 370 

resonance conditions (7) for the entire region of interaction. But possibly it is not the case for the local 371 

wave numbers and intrinsic frequencies - they are substantially variable due to current effects and 372 

nonlinearity. May be due to interaction with current and nonlinearity effects the almost resonance 373 

conditions are totally destroyed due to large detuning? (Shrira and Slunyaev, 2014) 374 
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  To clarify this property we present the Fig.1d describing the typical behavior of phase-shift difference 375 

function 1 0 2[ ] 2Xϕ θ θ θ= − −  corresponding to wave modulation at Fig.1c. Intensity of nonlinear energy 376 

transfer is mostly defined by this function together with wave amplitudes. (see equations (17), (20)).  377 

Result looks rather surprising - several strong phases’ jumps take a place with corresponding changing 378 

of the wave energy fluxes direction. But in any case we see an intensive quasi-resonant energy 379 

exchange in the entire interaction zone. Quasi-resonant conditions are satisfied locally in space with a 380 

relatively small detuning factor. Qualitatively similar behavior of phase-shift function we found also for 381 

other regimes of wave modulation. 382 

The opposite typical scenario of wave interaction with copropagating current is presented in Fig. 383 

1f. The modulation instability is depressed by the following current ( ) 0U X >  and the resonant 384 

sideband modes develop at a distance from the origin that is almost twice that in the case of no current.  385 

      Regimes of modulation presented at Fig. 1a-1c demonstrate the strictly symmetrical 386 

behavior with respect to the current peak and wave train returns to its initial structure after interaction 387 

with current. The modulation equations permit symmetrical solutions for the symmetrical current 388 

function, but, in general, outside of interaction zone the structure of nonlinear periodic waves are 389 

defined by the boundary conditions and constant Stokes wave is only one of such possibilities. The 390 

symmetrical behavior is typical for a sufficiently long scale current. We present Fig.1e with the 391 

asymmetrical modulation properties for the same wave initial characteristics as for Fig.1c and two 392 

time’s shorter space scale of the current. After wave-current interaction zone we see three waves system 393 

with comparable amplitudes and periodic energy transfers.  394 

      The increasing strength of the opposing flow ( 0 0.2U = − ) results in deeper modulation of waves 395 

and more frequent mutual oscillations of the amplitudes (Fig. 1g). There are essential oscillations of 396 

wave-number functions of the sideband modes (II) and (III) (Fig. 1h) owing to the nonlinear dispersion 397 

properties of waves. We mention also that the wave number of the carrier wave in the linear model (IV) 398 

is much higher than that in the nonlinear model (I). The width of the wave-number spectrum of the 399 

wave train in the nonlinear model locally increases to almost twice the initial width. To give an idea 400 

about the strength of nonlinearity we present at Fig.1i the distortion of the linear dispersion relation for 401 

different modes. As one can see the effect of nonlinearity for the carrier (at maximum is about 10%) is 402 

much less compare to side bands (at peak is more than 30 %). The main impact of nonlinearity comes 403 

from amplitude Stokes dispersion.  404 

     To estimate the possibility of generating large transient waves, we employ the resonance model 405 

and calculate the maximum amplification of the amplitudes of surface waves on linearly increasing 406 

opposing current generated in a still water and then undergo a current quickly raised to a constant value 407 
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-U. The boundary conditions for the unperturbed waves were taken from experiments conducted by 408 

Toffoli et al. (2013) and Ma et al. (2013). Results of calculations are presented in Fig. 2(a) and 2(b). 409 

 410 

 411 

FIG. 2. Nondimensional maximum wave amplitude as a function of / gU C− , where gC is the group 412 

velocity of the carrier wave and 1/ 2E is the local standard deviation of the wave envelope.   413 

(a) Experiments conducted by Toffoli et al. (2013) for carrier wave of period 0.8T s= (wavelength 414 

1mλ ≅ ), initial steepness 1 1 0.063k a = , and frequency difference 1/ 1 /11ω ω∆ = , initial amplitudes of 415 

side bands equal to 0.25 times the amplitude of the carrier wave. Solid dots show measurements made 416 

using a flume at Tokyo University and squares show results obtained at Plymouth University. Line (I) 417 

shows the resonance model prediction while line (II) shows the prediction made using Eq. (2) (Toffoli 418 

et al., 2013). 419 

(b) Case T11 in Ma et al. (2013) for carrier-wave frequency 1 1Hzω = , initial steepness 1 1 0.115k a = , 420 

initial amplitudes of side bands equal to 0.05 times the amplitude of the carrier wave and frequency 421 

difference 1 1 1/ 0.44a kω ω∆ = . Solid dots show measurements. Line (I) shows the resonance model 422 

prediction, while line (II) shows the prediction made using Eq. (2) (Toffoli et al., 2013). 423 
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 424 
Qualitatively, the results of both tests conducted by Toffoli et al. (2013) (Fig. 2 (a)) are in good 425 

agreement with the theory presented by Onorato et al. (2011). The resonant model slightly 426 

overestimates the experimental values. However, observations made by Ma et al. (2014) (Fig. 2(b)) are 427 

notably overestimated by the theory of Onorato et al. (2011) and resonance-model simulations are in far 428 

greater agreement with the experimental values. 429 

    Our simulations confirm that initially stable waves in experiments of Toffoli et al. (2013) undergo 430 

a modulationally unstable process and wave amplification in the presence of adverse current. Maximum 431 

amplification reasonably corresponds to results of experiments in Tokyo University Tank for moderate 432 

strength of current. Maximum of nonlinear focusing in dependence on the value of current is weaker 433 

compare to the model of Toffoli et al.(2013).  434 

   Experiments of Ma et al. (2013) (Fig. 2b) show that the development of the modulational instability 435 

for a gentle waves and relatively weak adverse current ( / ~ 0.1gU C − , see the first experimental point) is 436 

limited due to the presence of dissipation. Our resonance-model simulations are in a good agreement 437 

with the experimental values for the moderate values of adverse current / ~ 0.2 0.4gU C − − . Results of 438 

Toffoli et al. (2013) notably overestimate the maximum of wave amplification. 439 

 440 

4. Wave propagation under the blocking conditions of strong adverse current 441 

 442 

Stokes waves with sufficiently high initial steepness ε  under the impact of strong blocking adverse 443 

current ( ( ) gU X C< − ) will inevitably reach the breaking threshold for the steepness of water waves. We 444 

include breaking dissipation effects in this case. We employ the adjusted dissipative model of Tulin 445 

(1996) and Huang et al. (2011) to describe the effect of breaking on the dynamics of the water wave. An 446 

analysis of fetch laws parameterized by Tulin reveals that the rate of energy loss due to breaking is of 447 

fourth order of the wave amplitude: 448 

2 2/aD e D kω η= , 449 

where e is the wave energy density and 1(10 )D O −= is a small empirical constant. 450 

  The sinks of energy and momentum terms for each of the waves are calculated in accordance with the 451 

dissipative Schrodinger model for the complex amplitude ii
tA e θφ∑ :: 452 

2
22

2 24 1
4 2

g X
T g X XX

S

C Ai DA DdXA C A i A k A A i A H
k Ag A g A

ωω γ
   
 + + + = − − −     

∫  453 
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where 4
bD gD A , 1 1(10 ), (10 )bD O Oγ− −= = - constants of proportionality taken from the field 454 

observations, g – gravity acceleration, H is the Heaviside unit step function, and SA  is the threshold 455 

value of the characteristic steepness X i i iA kε σ φ= ∑ . Right side part leads to additional terms in the 456 

governing modulation equations (16), (17), (20). 457 

  The sink of energy and momentum due to wave breaking leads to additional terms on the right sides 458 

of the wave energy equations (20) and dispersive equations (16) for each wave. Tulin (1996) suggested 459 

using sink terms along the entire path of wave interaction with the wind. The wave dissipation function 460 

for the adjusted model (Huang et al., 2011) includes also the wave steepness threshold function  461 

1X

S

A
H

A
 

− 
 

, 462 

applied to calculate energy and momentum losses in a high steepness zones. 463 

  The dispersion relations (16) and wave energy laws (20) including break dissipation take the form 464 

 465 

2 2 3 2 5 2 3 2 2 2 3 2 2
0 0 0 0 0 1 1 1 0 1 0 2 2 2 0 2 0

2 4 2 2 2 22 2 3 2
1 2 0 0 0 1 21 2 1 2 3 2 2 3 2

1 1 2 1 2 2 2
0 1 2 0 2 1

2

= + ( + (2 - )+ (2 - )) + 

[ ] / k +8 X( + + )-
(2 -2 +2 - ) cos[ ]+ H[ ] ;

4 D / sin[ ] /(k -k )

k

DSin D

σ ε σ φ σ φ σ σ σ σ σ φ σ σ σ σ σ

ϕ φ φ φ γ ε φ φ φε φ φ σ σ σ σ σ σ σ σ ϕ ε χ
φ γ φ φ φ ϕ ε

σ

+ +

  
 
  

2 2 3 2 5 2 3 2 2 2 3 2 2
2 2 2 2 0 0 0 0 2 2 1 1 1 1 2 2

2 4 2 2 2 22 2 3 2
1 0 2 2 0 1 21 0 1 0 3 2 2 3 2

1 0 1 0 1 0 2
2 1 0 2 1 0

2
1 1

= + ( + (2 - + )+ (2 - + ))+

[ ] / k +8 X( + + )+
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4 D / sin[ ] /(k -k )
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k
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φ γ φ φ φ ϕ ε
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  − − 

(21) 466 

where / 1X SA Aχ = − , and 467 
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4 2 4 2 2 2 2
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 (22)      468 

where empirical constant 1(10 )Oγ −= . 469 

The terms / ( )i jk kε − appear in the right side of equations due to integration procedure and have an 470 

order of unit. The singularity was not detected in numerical simulations. 471 

  Wave breaking leads to permanent (not temporal) frequency downshifting at a rate controlled by 472 

breaking process. A crucial aspect here is the cooperation of dissipation and near-neighbor energy 473 

transfer in the discretized spectrum acting together.  474 

  The numerical simulations for initially high steepness waves ( 0.25ε = ) propagation with wave 475 

breaking dissipation is presented in Fig. 3a-3c. We calculate the amplitudes of surface waves on linearly 476 

increasing opposing current 0( )U x U x= − with different strength 0U . Most unstable regime was tested for 477 

frequency space 1/ω ω ε±∆  , initial side bands amplitudes equal to 0.05 times the amplitude of the 478 

carrier wave and most effective initial phases 1 0 2(0) 0, (0) (0) / 4θ θ θ π= = = −  479 

 480 

 481 

 FIG. 3. Modulation of surface waves by the adverse current 0U U x= . (a) -4
0 2.5 10U = − ; (b) 482 

-4
0 5 10U = − , (c) -3

0 10U = − . (I), (II), (III) - amplitude envelopes of the carrier, subharmonic and 483 

superharmonic waves, respectively. Initial wave steepness 0.25ε = , side bands amplitudes equal to 0.05 484 

times the amplitude of the carrier, dissipation parameters 0.1, 0.5bD γ= =   485 

   A very weak opposite current 4
0 2.5 10U −= (Fig.3a) has a pure impact on wave behavior: it is finally 486 

results in almost bichromatic wave train with two dominant waves: carrier and lower side band. 487 
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Frequency downshift here is not clearly seen. Two times stronger current case with 4
0 5 10U −= is 488 

presented in Fig. 3b. We note some tendency to final energy downshift to the lower side band. Really 489 

strong permanent downshift with total domination of the lower side band is seen for two times more 490 

strong current 3
0 10U −= (Fig.3c).  491 

   We also performed numerical simulations using the model for the boundary conditions and the form 492 

of the variable current obtained in two series of experiments conducted by Chavla and Kirby (2002) and 493 

Ma et al. (2010). 494 

     Data for the wave blocking regime in experiments conducted by Chavla and Kirby (2002) are 495 

taken from their Test 6 (Figure 11). The experimental results of Test 6 and our numerical simulation 496 

results are compared in Fig. 4. A surface wave with initially high steepness ( 1 1 0.296A k = ) and period T = 497 

1.2 s meets adverse current with increasing amplitude.  498 

The wave modeling has distinctive features that agree reasonably well with the results of 499 

experiments: 500 

 - initial symmetrical growth of the main sidebands with frequencies 0 20.688 , 0.978f Hz f Hz= =  at 501 

distances up to 1 2k x < − ; 502 

- asymmetrical growth of sidebands beginning at 1( 2)k x ≈ −  and downshifting of energy to the lower 503 

sideband;  504 

- energy transfer at very short spatial distances and several increases in the lower sideband amplitude 505 

just on a half meter length 1 ( 2,0)k x∈ − . 506 

- a depressed higher frequency band and primary wave; 507 

- an almost permanent increase in the lowest subharmonic along the tank;  508 

- sharp accumulation of energy by the lowest subharmonic wave during interaction with increasing 509 

opposing current; and  510 

- final permanent downshifting of the wave energy.  511 

The presented third-order wave amplitude model agrees reasonable well with experimental results.                            512 
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 513 

 514 

FIG. 4. Dashed curves show the zero-dimensional amplitudes of the resonance waves for primary (Pr), 515 

lower (Lo) and upper (Up) sidebands obtained experimentally by Chavla and Kirby (2002). The solid 516 

lines ( 1 0 2, ,A A A respectively) are wave amplitudes calculated in modeling. 0( ) /U U C− is the 517 

zero-dimensional variable current, where C is the initial phase speed of the carrier wave, 518 

0 10.32 / s; 4.7 1 / , 1.44 / s, 1.2sU m k m C m T= − = = = . 519 

  520 

     Modulation evolution of breaking waves in experiments of Ma et al. (2010) for the most 521 

intriguing case 3 are presented in Fig.5 together with the results of our numerical computations. A 522 

primary wave with period 1sT =  and steepness 1 1 0.18A k =  meets linearly increasing opposing current 523 

that finally exceeds the threshold to be a linear blocking barrier for the primary wave ( ) 1/ 4U x C< − . In 524 

experiments, sideband frequencies arose ubiquitously from the background noise of the flume. In 525 

numerical simulations, the sidebands were slightly seeded at frequencies corresponding to the most 526 

unstable modes. The wave-breaking region in this experimental case ranged from 1 52k x =  to 1 72k x = . 527 

The lower sideband amplitude grew with increasing distance at the expense of the primary wave, while 528 

there was little change in the higher sideband energy. There was an effective frequency downshift 529 

following initial breaking ( 1 56k x = ). The modeling results agree reasonably well with the experimental 530 

data.  531 
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 532 

FIG. 5. Dashed curves show zero-dimensional amplitudes of the resonance waves for primary (Pr), 533 

lower (Lo) and upper (Up) sidebands obtained from experiments conducted by Ma et al. (2010). The 534 

solid lines ( 1 0 2, ,A A A respectively) are wave amplitudes calculated in modeling. 0( ) /(4 )U U C−  shows 535 

the zero-dimensional variable current, where C is the initial phase speed of the primary wave, 536 

0 10.25 / s; 4. 1 / , 1.56 / s, 1s.U m k m C m T= − = = =  537 

 538 

5. Conclusions  539 

 540 

      A resonance system comprising three waves in nonuniform media gives rise to modulation 541 

instability with special properties. Interaction with countercurrent accelerates the growth of sideband 542 

modes on much shorter spatial scales. In contrast, wave instability on following current is sharply 543 

depressed. Amplitudes and wave numbers of all quasi-resonant waves vary enormously in the presence 544 

of strong adverse current. The steepness of a nonlinear wave on adverse current is much less than that of 545 

a linear refraction model. 546 

    Large transient or freak waves with amplitude and steepness several times larger than those of 547 

normal waves may form during temporal nonlinear focusing of the quasi-resonant waves accompanied 548 

by energy income from sufficiently strong opposing current. The amplitude of a rough wave strongly 549 

depends on the ratio of the current velocity to group velocity. 550 

    Interaction of initially steep waves with the strong blocking adverse current results in intensive 551 

energy exchange between quasi-resonance components and energy downshifting to the lower sideband 552 

mode accompanied by active breaking. A more stable long wave with lower frequency can overpass the 553 
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blocking barrier and accumulate almost all the wave energy of the packet. The frequency downshift of 554 

the energy peak is permanent and the system does not revert to its initial state. 555 

    A third-order dissipative wave resonant model satisfactorily agrees with available experimental 556 

data on the explosive instability of waves on blocking adverse current and the generation of rough 557 

waves.  558 
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