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Abstract

Inversion of the magnetic field in a large-scale model of αΩ-dynamo with nonlocal α-
effect is under the investigation. The model allows us to reproduce the main features
of the geomagnetic field reversals. It was established that the polarity intervals in the
model are distributed according to the power law. Model magnetic polarity time scale is5

fractal. Its dimension is consistent with the dimension of the real geomagnetic polarity
time scale.

1 Introduction

The existence of large-scale magnetic fields of planets, stars and galaxies is usually
attributed to the action of the dynamo mechanism (Zeldovich et al., 1983). Magnetohy-10

drodynamic equations are symmetric with respect to the change of sign of the magnetic
field, which leads to a potential reversal in the dynamo system. These reversals are ob-
served in real space dynamo systems. For example, the reversal of the magnetic field
of the Sun occurs approximately every 11 years, Stix (2002). We get the information
on the geomagnetic field reversals from paleomagnetic records, on the basis of which15

the geomagnetic polarity time scale is constructed. The sequence of moments of geo-
magnetic field reversals is a non-periodic random sequence (Merril et al., 1996). Thus,
the statistical reversals of magnetic fields of the Sun and Earth are very different. How-
ever, concerning geomagnetic reversals, we mean the transition between stable states
of a geomagnetic dipole, averaged over a few thousands of years (Merril et al., 1996).20

Therefore, the difference in the reversals of the magnetic fields of the Sun and the Earth
is the difference in the processes at absolutely different time scales.

It is known that different scales of geomagnetic polarity form a self-similar fractal
structures (Ermushev et al., 1992; Ivanov, 1993; Pechersky et al., 1997). Intervals be-
tween the reversals (polarity intervals) differ by several orders of magnitude, there are25

long intervals without reversals, superchrons (Gaffin, 1989; Merril et al., 1996). A large
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scatter of the interval lengths does not allow us to use such characteristics as mean
or variance correctly. It is known that the random variables with the properties such
as self-similarity of the set of realizations, the range, the infinity of points may be well
described by power law distributions (Sornette, 2006).

Of course, one can not rely on the construction of a geodynamo model, which would5

fully reproduce the real paleomagnetic scale. It is only possible to get similar statistical
characteristics. Different models of geodynamo allow us to obtain random sequence
reversals, the properties of which are very different. In some models the solutions are
periodic or quasiperiodic (Hejda and Anufriev, 2003; Rikitake, 1965), in others they
exhibit fractal properties (Anufriev and Sokoloff, 1994; Hollerbach et al., 1992).10

In this paper, we consider the bi-modal model of a large-scale αΩ-dynamo in which
there is the perturbation of α-effect of a Non-Markovian random pulse process. Phys-
ically, this process may be interpreted as the effect of rejected modes of mean-field.
According to the authors, non-Markovian character of the process is of principle, be-
cause it expresses the temporal nonlocality (hereditarity) of the model, the response15

values of α-effect on the change in the magnetic field depends not only on the present,
but also on the previous values of the field.

The mechanism of αΩ-dynamo was proposed by Parker (Parker, 1955). This kind
of dynamo is typical for astrophysical objects (planets, stars, galactic disks) and sug-
gests differential rotation of the object and turbulence in the character of motion of20

a conducting medium in this object.
The essence of such a dynamo is as follows. During the initial moment, the exis-

tence of a poloidal field of dipole type is supposed. During the differential rotation, the
magnetic field lines of a highly conducting medium curl around the axis of rotation, this
leads to the appearance of the toroidal field in the convective zone of a star or a planet25

liquid core.
To close the cycle, it is necessary to get a new poloidal field from this toroidal one. It

is assumed that this is due to the breaking of mirror symmetry flows in the convection
zone. Turbulent mirror-asymmetric flow generates effective EMF in the direction of the
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toroidal field (α-effect), which leads to the excitation of a new poloidal field. The theory
of α-effect was developed by Steenbeck, Krause and Rädler (Steenbek et al., 1966;
Steenbek and Krause, 1969). A detailed description of the mean-field theory is given
in the books Krause and Rädler (1980), Moffat (1978), and Zeldovich et al. (1983).

Induction equation for the magnetic field in a conducting medium is the following:5

∂B
∂t

= ∇× (v ×B)+ νm4B,

∇B = 0, (1)

where v is the velocity field of the medium, and νm is the magnetic viscosity.
If the velocity field is defined, then the Eq. (1) is linear and defines the kinematic

dynamo problem. However, the magnetic field affects the flow of a medium by the10

Lorentz force. The effect of this force in the equations of motion of the medium is
quadratic in the magnetic field, so in the case of small magnetic fields, we can be
restricted to kinematic approximation. The formal criterion of the non-applicability of
the kinematic approximation is the satisfaction of the ratio EK.EB, where EK and EB
are the kinetic energy of the moving medium and the energy of the magnetic field,15

respectively.
In this case, it is necessary either to solve Eq. (1) together with the equations of

motion, or to enter a modeling approach, where v is the given functional of B. In any
case the solved equations become nonlinear.

In the mean-field theory the expansion of fields v and B in the large-scale U and20

B and fluctuations u and b are introduced. We do not assume the smallness of fluc-
tuations. Then from the Eq. (1) we obtain the equation for the mean-field generation
(Zeldovich et al., 1983):

∂B
∂t

= ∇×
(

U×B+αB
)
+β4B,

∇B = 0. (2)25
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Here α and β are, in general, second-rank tensors, depending on the velocity and
magnetic field. To determine the form of these curves is the main task of mean-field
theory. Convolution of αB determines the turbulent EMF (α-effect), and β∆B gives the
diffusion of the magnetic field, which consists of molecular and turbulent diffusions.

We will further consider the isotropic case of scalar α and β; β is assumed to be the5

constant.

2 Equations of the large-scale αΩ-dynamo

We suppose that the spatial structure of the mean-field is simple and confine ourselves
to a single-mode approximation for the toroidal and poloidal components. Then these
components may be described by the scalar functions BT(t) and BP(t), respectively.10

We also assume that the average flow U is of differential rotation nature.
Taking into the account the above assumptions, on the basis of Eq. (2) the dynamo

cycle stages may be written in the form of the following equations:

dBT

dt
= GBP −βL−2BT,

dBP

dt
= L−1αBT −βL−2BP, (3)15

where G > 0 is the characteristic value of the differential rotation, α is the value of the
alpha-effect, L is the characteristic linear dimension of the region. The first of Eq. (3)
describes the Ω-stage, and the second is for the α-stage cycle.

Note that G is not the angular velocity of the field in these equations but just a mea-
sure of differential nature of the middle course. For example, if r is the distance to the20

rotation axis and the Ω is the angular velocity, then G ∼ |r∂rΩ|.
It is convenient to make the system dimensionless on the characteristic time of the

magnetic diffusivity L2β−1 and the characteristic value of the field B0. As a result, we
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obtain the following system of dimensionless variables:

dBT

dt
= RΩB

P −BT,

dBP

dt
= RαB

T −BP. (4)

Dimensionless characteristics of the stages of the dynamo cycle RΩ and Rα are GL2/β
and αL/β, respectively.5

In the assumption of the constancy of RΩ and Rα, field generation, i.e. the growth of

small fluctuations of B =
√
|BT|2 + |BP|2 occurs at Rα > R

−1
Ω . The field increases indef-

initely at an exponential rate. If Rα < R
−1
Ω , the field is attenuated. Limited-largest non-

vanishing solution can occur only if RαRΩ = 1. Thus, D = RαRΩ is the dynamo-number.
When D = 1, except for the zero steady-state solution, a lot of stationary regimes of the10

form BT = RΩB
P appear in the system (Eq. 4), forming a straight line in an asymptoti-

cally stable phase plane.
Limited nonvanishing solutions of Eq. (2) are obtained by taking into account the

feedback that is the change of the turbulent flow characteristics by the magnetic field
in the result of the Lorentz force. In the models of Eq. (4) type this mechanism is im-15

plemented in the form of the prescribed dependence Rα on B. In the simplest case,
functional dependencies of the form Rα = f (B(t)) are introduced. Such type models
are known as algebraic quenching models and the α-effect value depends on the field
current value, i.e. a response to the changes in the field of turbulence instant. The
simplest version of this dependence is given in Zeldovich et al. (1983). More complex20

variants, based on the representation of α as the differences between the kinetic he-
licity and corrent helicity, were studied, for example, in Field and Blackman (2002) and
Brandenburg and Sandin (2004).

It is more realistic, however, that the restructuring of turbulence takes some time.
Thus, it is interesting to note the results of Frick et al. (2006), the authors of which25
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investigated the multiscale model dynamo. In this model, the equations of large-scale
dynamo and the equations of shell-model of MHD turbulence were integrated. In the
large-scale part of the model, the authors used the α2-dynamo when a toroidal field is
generated from a poloidal one by α-effect. The α-effect values were calculated by the
variables of shell-model.5

Having calculated the cross-correlation between the model variations of B and Rα,
the authors of Frick et al. (2006) found that simultaneous values of B and Rα are uncor-
related. Moreover, if the response of B to the change of Rα is fast, the inverse response
occurs with a noticeable delay, and the corresponding to the response cross-correlation
decline is slow. As a result, the authors came to the conclusion that the response of Rα10

to B is essentially dynamic in nature and may not be described in terms of algebraic
quenching.

This behavior indicates the presence of “memory” (hereditarity) or nonlocality in time.
We can consider two ways to introduce nonlocality in the model (Eq. 4). In the first case,
Rα is not a function, but a functional of B, i.e. α-effect value depends not only on the15

current state of the field, but also on all its previous states. In the second case, Rα
is a function of B and a non-Markovian randomly process ξ(t). Physically, this pro-
cess may be comprehended as a contribution to the α-effect of discarded modes of
mean-fields U and B. The dependence of Rα on previous values B will be implemented
through the “memory” of the process ξ(t). These two variants of nonlocality will be20

further called the dynamic and randomly nonlocalities, respectively. Of course, combi-
nation of these two types of nonlocalities is also possible.

Further, the simplest variant of the algebraic quenching will be used as the original
form of the feedback

Rα(t) = R−1
Ω

[
1+ε

(
1−B2(t)

)]
, (5)25

where ε > 0 is the model parameter, which determines the efficiency of the feedback.
A similar form of the dependence was considered in Zeldovich et al. (1983).
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For the model (Eqs. 4 and 5), there are three stationary points. First and foremost
is the zero point, which is unstable, which provides generation of the field. In addition,

there are rest points of the form BT = ±RΩ(1+R2
Ω)−1/2, BP = ±(1+R2

Ω)−1/2. It is easy to
show that these points are asymptotically stable. Thus, the model (Eqs. 4 and 5) gives
field generation with the output to the characteristic value of B = 1. In this case, RΩ5

determines the ratio of characteristic values of the toroidal and poloidal components.
Therefore, during model calculations we’ll always assume that RΩ = 1.

Introduction of nonlocality of dynamic type requires the following modification of the
formula (Eq. 5):

Rα = R
−1
Ω

1+ε

1−
t∫

0

h(t− τ)B2(τ)dτ

 , (6)10

where h(t) ≥ 0 defines the hereditarily of the system.
The nonlocal model (Eqs. 4 and 6) has the same equilibrium points as Eqs. (4) and

(5), and the computational experiments have shown that the nature of their stability
remains the same.

The asymptotic stability of the points BT = ±RΩ(1+R2
Ω)−1/2, BP = ±(1+R2

Ω)−1/2 for15

this nonlocal model gives no possibility to reversals.
We return to the Eq. (4) with the constants Rα and RΩ and consider their solutions

more carefully. When RαRΩ > 1, the solution increases indefinitely without oscillations,
and the characteristic time of the increase is (−1+

√
RαRΩ)−1. When 0 ≤ RαRΩ < 1, the

solution decays without oscillations for the characteristic time of ∼ 1. If RαRΩ < 0, the20

solution oscillates with the frequency
√
|RαRΩ| and decays for the characteristic time

of ∼ 1.
Supposing now that Rα is a variable, we can say that negative peaks of this value

are required for the occurrence of reversals, since during negative Rα in the linear
case, oscillations appear. They must be strong enough, so that the oscillation period25

1722

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1715/2014/npgd-1-1715-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1715/2014/npgd-1-1715-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 1715–1734, 2014

Reversal in nonlocal
large-scale
αΩ-dynamo

L. K. Feschenko and
G. M. Vodinchar

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

would be less than the characteristic decay time, and rare enough, so that a feedback
mechanism would recover the field, decreasing during the reversal.

3 Model with random nonlocality

Peaks in the value of Rα, necessary for the formation of reversals may be obtained by
the introduction of a random nonlocality into the model in the following form:5

Rα(t) = R−1
Ω

[
1+ε

(
1−B2(t)

)
+ ξ(t)

]
, (7)

where ξ(t) is some non-Markov random pulse process with zero mean value.
In order to analyze the effect of pulses in ξ(t) on the field, we first made some cal-

culations in the model (Eqs. 4 and 7) for a case of non-random and regular process
ξ(t), which is a sequence of pulses with alternating signs of the type ±A e−t,A ≥ 0. The10

interval between the pulses was 50 time units, the value ε = 0.5. The initial conditions
were given as BT(0) = 0, BP(0) = 10−2. The results of these calculations are shown in
Fig. 1.

It is clear that positive pulses cause a sharp rise in the field, but are not accompa-
nied by reversals. Field response on the negative peaks depends on the magnitude of15

these peaks. We see that for the small pulses the poloidal component does not change
the sign (A = 2), then BP(t) changes the sign for a short time and returns to its original
value (A = 4.2). Such behavior of the field is well known in the paleomagnetic data and
is called excursion (Merril et al., 1996). Then there is the reversal (A = 10). During the
subsequent growth, the reversal is replaced by field excursion (A = 15) again. Then20

excursion combination appears with the subsequent reversal (A = 30), followed by two
consecutive excursion (A = 50). The trend shown in Fig. 1 continues further, for exam-
ple, when A = 100 the combination of two excursions and a reversal appears. However,
such sharp peaks in Rα are difficult to admit in a real system. It is also clear that there
are critical values of the amplitude A, separating the different types of field reversal. In25
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particular, the critical value of A, separating the cases A = 4.2 and A = 10 from Fig. 1
is 4.455±0.005.

We also see that for the chosen value of ε = 0.5 the time of tB field transfer to
a steady state is about 30 units. In general, as the numerical experiments showed,
this dependence has a power law tB ∼ ε

−0.9.5

We now define the random process ξ(t) by the following formula

ξ(t) =
∑
θk≤t

ηkexp{−λ (t−θk)} . (8)

Here θk is the increasing sequence of random instants of exponential pulses, ηk is
random pulse amplitude, the constant λ−1 > 0 determines the pulse width.

We assume that the time intervals between pulses τk = θk −θk−1 are independent10

and identically distributed with the probability density function (pdf) pτ(t). Amplitudes
ηk are assumed to be Gaussian random variables that are independent between each
other and with the times of the pulses having zero mean and variance σ2.

The important element of this model is the law of distribution of pτ(t). If it is expo-
nential, the pulse sequence forms a Poisson processes of events, and the process ξ(t)15

turns to be a Markov one. Any other kind of law pτ(t) leads to the fact, that the waiting
time of the next pulse will depend on the time from the previous pulse. Thus, ξ(t) will
turn to be a non-Markov process.

We assume that the law pτ(t) has a power asymptotic dependence ∼ 1/tγ,γ > 1.
We will give a number of arguments in favor of this assumption.20

Random intervals τk may be considered as the result of the joint effect of a large
number of independent factors. If we suppose the additive character of the joint effect,
than, according to the generalized central limit theorem, pτ(t) should refer to the class
of stable laws (Samorodnitsky and Taqqu, 1994). All such laws, except for the Gaussian
one, have the power asymptotic dependence. Note, that for stable power laws 1 < γ <25

3.
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In addition, just the power distributions have the property of self-similarity, manifest-
ing themselves in the reversals of geomagnetic field. Finally, the power of statistics are
generally characteristic for turbulent phenomena, which include α-effect.

The explicit form of the pdf for the unilateral power stable laws is unknown, except
for the distribution of Levi–Smirnov (γ = 3/2). It causes difficulties in obtaining their5

computer implementations.
Therefore, in the calculations we used the following expression for the pdf:

pτ(t) =
γ −1

(1+ t)γ
, t ≥ 0, 1 < γ < 3. (9)

This form of the distribution law allow us to obtain the random variables τk easily.
The accepted distribution coincides with the stable one only asymptotically, and10

therefore for the distribution of polarity intervals, we will further be interested only in
its asymptotics.

4 Simulation results

We consider the results of computational experiments in the model (Eqs. 4 and 7–9).
In the calculations, the values of the parameters RΩ = 1, λ = 1 were applied. SD of15

random amplitudes ηk of pulses in Eq. (7) is σ = 6.6. For this value of σ the reversal in
the result of negative pulse in ξ(t) occurs with the probability of 0.5. The initial values
for the field components were chosen as BT(0) = 0, BP(0) = 10−2.

We suppose the characteristic size of the Earth L = 2.1×106 m (the thickness of the
liquid core) and the turbulent magnetic diffusion β = 10m2 s−1. Then our dimensionless20

time ∼ 53 700 corresponds to the length of the longest scale of geomagnetic polarity
(Pechersky, 1997) in 1700 Myear. Therefore, calculations in the model were carried out
up to t = 5×104.

Figure 2 shows an example of a segment of one of the magnetic field realizations
and the toroidal and poloidal components for ε = 5.25
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We calculated the different values of the parameters ε and γ. For ε parameter, the
values 0.1, 0.5, 1.0, 5.0 were used, and for γ, the values from 1.1 to 2.9 with 0.2
step were used. For each parameter combination, histogram of the interval lengths of
polarity and the fractal dimension of polarity model scale were estimated.

First, the obtained distribution of interval lengths of polarity ζ is considered. They are5

illustrated in Fig. 3.
It is clear that we may speak about the power asymptotic dependence of distribution

of these intervals ∼ 1/ζδ . More specifically, the power type for ε = 0.1 and ε = 0.5
appears from ζ = 10, and for ε = 1 and ε = 5, from ζ = 30. Deviation from the power
law at low frequencies also occurs. Single events correspond to these frequencies.10

Therefore, these deviations may be explained by insufficient data.
We have calculated the value of the index δ on the straight section of the chart

shown in Fig. 3 The obtained values and the correlation coefficients corresponding to
the straight sections are shown in Table 1.

According to these values, it is easy to show that, for different ε, the correlation15

coefficient between γ and δ is more than 0.92. It means that γ and δ are linear, the
coefficients of which depend on the parameter ε.

Integrability conditions of pdf for ζ implies that δ > 1. These values are obtained from
the above-mentioned linear relations for γ > 2.1.

Also note that Fig. 3 does not show the distributions for γ < 1. This is due to the fact20

that for such values of γ the rectilinear sections, corresponding to the power laws, do
not occur on the graphs.

It may be concluded that the degree distribution of polarity interval occurs in the
model at γ > 2.1.

Now consider the fractal dimension of the derived polarity scales. In the calculation,25

we followed the procedure proposed in Pechersky et al. (1997) for real geomagnetic
polarity time scale.

The technique is as follows. On the scale of T length, some interval of ∆ length
is distinguished. N(∆) is the number of intervals of ∆ length on this scale, on which

1726
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at least one reversal occurs. If ∆� T and the reversal are distributed uniformly, then
N(∆) ∼∆−1. If ∆� T and reversal are distributed unevenly, then we may expect the
dependence of the form N(∆) ∼∆−d . In this case, d is the Hausdorff dimension of the
scale reversals and for 0 < d < 1 the reversal series is fractal.

We made calculations in the model for the above mentioned values of γ and ε. The5

value of ∆ decreased in the geometric progression from 5000 (∆� 5×104) to ∼ 10.
Graphs of the obtained dependencies are illustrated in Fig. 4 The dependence of

N(∆) accurately follows the power law. The figure legend shows the values of the Haus-
dorff dimension d . It is clear that in all the cases, 0 < d < 1, and the reversal series is
fractal, although there is a tendency to achieve the boundary of the fractal region when10

γ increases.
Note that, according to the data of Pechersky et al. (1997), Hausdorff dimensions for

real geomagnetic polarity time scales for 170 Myear, 560 MYear, 1700 MYear are 0.88,
0.83 and 0.87, respectively.

5 Conclusions15

The large-scale model of αΩ-dynamo with nonlocal α-effect for the modeling of ge-
omagnetic field reversals was proposed. Nonlocality in time is provided by the pulse
Markov process, which is supposed to be interpreted as the influence of rejected
modes of mean-fields.

The power law was applied as the distribution law of the pulse waiting time. The20

reason for this was the power-law character of stable one-sided distributions, limiting
distributions in the scheme of summation of independent random variables with slowly
decaying pdf.

It was found out, that the power law of polarity interval distribution is asymptotically
realized in this model, if the exponent γ in the distribution of the pulse waiting time25

is not less than 2.1. The exponent δ in the distribution of polarity interval is linearly

1727
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related to the γ. The coefficients of this linear relation depend on the effectiveness of
the feedback in α-effect.

It is shown that the model scale of geomagnetic polarity is a fractal set with Hausdorff
dimension of & 0.7. It is consistent with the actual Hausdorff dimension of geomagnetic
scale according to the paper Pechersky et al. (1997).5

Thus, it was established that the proposed large-scale dynamo model allows us to
reproduce the main features of the process of geomagnetic field reversals.
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Table 1. Power in the distribution of polarity intervals.

γ ε
0.1 0.5 1.0 5.0

2.1 1.05 0.97 1.04 1.12
2.3 1.11 1.28 1.36 1.49
2.5 1.53 1.63 1.5 1.93
2.7 1.93 1.67 1.91 2.04
2.9 2.22 2.12 1.94 3.53
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Fig. 1. The response of the poloidal component BP (t) on the regular sequence of alternating pulses with different amplitudes A.

It is clear that positive pulses cause a sharp rise in the field,
but are not accompanied by reversals. Field response on the260

negative peaks depends on the magnitude of these peaks. We
see that for the small pulses the poloidal component does not
change the sign (A= 2), then BP (t) changes the sign for a
short time and returns to its original value (A= 4.2). Such
behavior of the field is well known in the paleomagnetic data265

and is called excursion (Merril et al., 1996). Then there is
the reversal (A= 10). During the subsequent growth, the re-
versal is replaced by field excursion (A= 15) again. Then
excursion combination appears with the subsequent reversal
(A= 30), followed by two consecutive excursion (A= 50).270

The trend shown in Fig. 1 continues further, for example,
when A= 100 the combination of two excursions and a re-

Figure 1. The response of the poloidal component BP(t) on the regular sequence of alternating
pulses with different amplitudes A.
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Fig. 2. The segment of the magnetic field realization for ε= 5, γ = 2.5: the toroidal component of BT , the poloidal component of BP , field
value of B =

√
|BT |2 + |BP |2.

Table 1. Power in the distribution of polarity intervals

γ
ε

0.1 0.5 1.0 5.0
2.1 1.05 0.97 1.04 1.12
2.3 1.11 1.28 1.36 1.49
2.5 1.53 1.63 1.5 1.93
2.7 1.93 1.67 1.91 2.04
2.9 2.22 2.12 1.94 3.53

Also note that Fig. 3 does not show the distributions for375

γ < 1. This is due to the fact that for such values of γ the
rectilinear sections, corresponding to the power laws, do not
occur on the graphs.

It may be concluded that the degree distribution of polarity
interval occurs in the model at γ > 2.1.380

Now consider the fractal dimension of the derived polar-
ity scales. In the calculation, we followed the procedure pro-
posed in (Pechersky et al., 1997) for real geomagnetic polar-
ity time scale.

The technique is as follows. On the scale of T length, some385

interval of ∆ length is distinguished. N(∆) is the number of
intervals of ∆ length on this scale, on which at least one re-
versal occurs. If ∆� T and the reversal are distributed uni-
formly, then N(∆)∼∆−1. If ∆� T and reversal are dis-
tributed unevenly, then we may expect the dependence of the390

form N(∆)∼∆−d. In this case, d is the Hausdorff dimen-
sion of the scale reversals and for 0< d < 1 the reversal se-
ries is fractal.

We made calculations in the model for the above men-
tioned values of γ and ε. The value of ∆ decreased in the395

geometric progression from 5000 (∆� 5× 104) to ∼ 10.
Graphs of the obtained dependencies are illustrated in Fig.

4 The dependence of N(∆) accurately follows the power
law. The figure legend shows the values of the Hausdorff di-

Figure 2. The segment of the magnetic field realization for ε = 5, γ = 2.5: the toroidal compo-
nent of BT, the poloidal component of BP, field value of B =

√
|BT|2 + |BP|2.
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Fig. 3. Distribution of relative frequencies ν of polarity intervals with the lengh ζ.

mension d. It is clear that in all the cases, 0< d < 1, and400

the reversal series is fractal, although there is a tendency to
achieve the boundary of the fractal region when γ increases.

Note that, according to the data of (Pechersky et al., 1997),
Hausdorff dimensions for real geomagnetic polarity time
scales for 170 Myear, 560 MYear, 1700 MYear are 0.88, 0.83405

and 0.87, respectively.

5 Conclusions

The large-scale model of αΩ-dynamo with nonlocal α-effect
for the modeling of geomagnetic field reversals was pro-
posed. Nonlocality in time is provided by the pulse Markov410

process, which is supposed to be interpreted as the influence
of rejected modes of mean-fields.

The power law was applied as the distribution law of the
pulse waiting time. The reason for this was the power-law
character of stable one-sided distributions, limiting distribu-415

tions in the scheme of summation of independent random
variables with slowly decaying pdf.

It was found out, that the power law of polarity interval
distribution is asymptotically realized in this model, if the
exponent γ in the distribution of the pulse waiting time is not420

less than 2.1. The exponent δ in the distribution of polarity
interval is linearly related to the γ. The coefficients of this
linear relation depend on the effectiveness of the feedback in
α-effect.

It is shown that the model scale of geomagnetic polarity425

is a fractal set with Hausdorff dimension of & 0.7. It is con-
sistent with the actual Hausdorff dimension of geomagnetic
scale according to the paper (Pechersky et al., 1997).

Thus, it was established that the proposed large-scale dy-
namo model allows us to reproduce the main features of the430

process of geomagnetic field reversals.

Figure 3. Distribution of relative frequencies ν of polarity intervals with the lengh ζ .
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Fig. 4. Number of N(∆) intervals of ∆ length, which contain at least one inversion.
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