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We derive rigorous results on the link between the principle of maximum entropy production7

and the principle of maximum Kolmogorov- Sinai entropy for a Markov model of the passive scalar8

diffusion called the Zero Range Process. We show analytically that both the entropy production and9

the Kolmogorov-Sinai entropy, seen as functions of a parameter f connected to the jump probability,10

admit a unique maximum denoted fmaxEP
and fmaxKS

. The behavior of these two maxima is11

explored as a function of the system disequilibrium and the system resolution N . The main result12

of this article is that fmaxEP
and fmaxKS

have the same Taylor expansion at first order in the13

deviation from equilibrium. We find that fmaxEP
hardly depends on N whereas fmaxKS

depends14

strongly on N . In particular, for a fixed difference of potential between the reservoirs, fmaxEP
(N)15

tends towards a non-zero value, while fmaxKS
(N) tends to 0 when N goes to infinity. For values16

of N typical of those adopted by Paltridge and climatologists working on MEP (N ≈ 10 ∼ 100),17

we show that fmaxEP
and fmaxKS

coincide even far from equilibrium. Finally, we show that one18

can find an optimal resolution N∗ such that fmaxEP
and fmaxKS

coincide, at least up to a second19

order parameter proportional to the non-equilibrium fluxes imposed to the boundaries. We find20

that the optimal resolution N∗ depends on the non equilibrium fluxes, so that deeper convection21

should be represented on finer grids. This result points to the inadequacy of using a single grid for22

representing convection in climate and weather models. Moreover, the application of this principle23

to passive scalar transport parametrization is therefore expected to provide both the value of the24

optimal flux, and of the optimal number of degrees of freedom (resolution) to describe the system.25
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I. INTRODUCTION26

A major difficulty in the modeling of nonlinear geophysical or astrophysical processes is the taking into account of27

all the relevant degrees of freedom. For example, fluid motions obeying Navier-Stokes equations usually require of28

the order of N = Re9/4 modes to faithfully describe all scales between the injection scale and the dissipative scale29

(Frisch 1995). In atmosphere, or ocean, where the Reynolds number exceeds 109, this amount to N = 1020, a number30

too large to be handled by any existing computers (Wallace and Hobbs 2006). The problem is even more vivid in31

complex systems such as planetary climate, where the coupling of lito-bio-cryo-sphere with ocean and atmosphere32

increases the number of degrees of freedom beyond any practical figure. This justifies the long historical tradition33

of parametrization and statistical model reduction, to map the exact equations describing the system onto a set of34

simpler equations involving few degrees of freedom. The price to pay is the introduction of free parameters, describing35

the action of discarded degrees of freedom, that needs to be prescribed.36

When the number of free parameters is small, their prescription can be successfully done empirically through calibrat-37

ing experiments or by a posteriori tuning (Rotstayn 2000). When the number of parameters is large, such as in climate38

models where it reaches several hundreds (Murphy et al. 2004), such empirical procedure is inapplicable, because it39

is impossible to explore the whole parameter space. In that respect, it is of great interest to explore an alternative40

road to parametrization via application of a statistical optimization principle, such as minimizing or maximizing of a41

suitable cost functional. As discussed by (Turkington 2013) and (Pascale et al. 2012), this strategy usually leads to42

closed reduced equations with adjustable parameters in the closure appearing as weights in the cost functional and43

can be computed explicitly. A famous example in climate is given by a principle of maximum entropy production44

(MEP) that allowed (Paltridge 1975) to derive the distribution of heat and clouds at the Earth surface with reasonable45

accuracy, without any parameters and with a model of a dozen of degrees of freedom (boxes). Since then, refinements46

of Paltrige model have been suggested to increase its generality and range of prediction (Herbert et al. 2011). MEP47

states that a stationary nonequilibrium system chooses its final state in order to maximize the entropy production48

as is explain in (Martyushev and Seleznev 2006). Rigorous justifications of its application have been searched using49

e.g. information theory (Dewar and Maritan 2014) without convincing success. More recently, we have used the50

analogy of the climate box model of Paltridge with the asymmetric exclusion Markov process (ASEP) to establish51

numerically a link between the MEP and the principle of maximum Kolmogorov- Sinai entropy (MKS)(Mihelich52

et al. 2014). The MKS principle is a relatively new concept which extends the classical results of equilibrium physics53

(Monthus 2011). This principle applied to Markov Chains provides an approximation of the optimal diffusion coef-54

ficient in transport phenomena (Gómez-Gardeñes and Latora 2008) or simulates random walk on irregular lattices55

(Burda et al. 2009). It is therefore a good candidate for a physically relevant cost functional in passive scalar modeling.56

57

The goal of the present paper is to derive rigorous results on the link between MEP and MKS using a Markov model58

of the passive scalar diffusion called the Zero Range Process (Andjel 1982). We find that there exists an optimal59

resolution N∗ such that both maxima coincide to second order in the distance from equilibrium. The application60

of this principle to passive scalar transport parametrization is therefore expected to provide both the value of the61

optimal flux, and of the optimal number of degrees of freedom (resolution) to describe the system. This suggests that62

the MEP and MKS principle may be unified when the Kolmogorov- Sinai entropy is defined on opportunely coarse63

grained partitions.64

II. FROM PASSIVE SCALAR EQUATION TO ZRP MODEL65

The equation describing the transport of a passive scalar like temperature in a given velocity field u(x, t) reads:66

∂tT + u∂xT = κ∂2
xT, (1)

with appropriate boundary conditions. Here κ is the diffusivity. To solve this equation, one must know both the67

velocity field and the boundary conditions, and use as many number of modes as necessary to describe all range68

of scales up to the scales at which molecular diffusivity takes place i.e. roughly (RePr)3/2 modes, where Re is the69

Reynolds number of the convective flow, and Pr is its Prandtl number. In geophysical flows, this number is too70

large to be handled even numerically (Troen and Mahrt 1986). Moreover, in typical climate studies, the velocity71

flow is basically unknown as it must obey a complicated equation involving the influence of all the relevant climate72

components. In order to solve the equation, one must necessarily prescribe the heat flux f = −uT + κ∇T . The idea73

of Paltridge was then to discretize the passive scalar equation in boxes and prescribethe heat flux fi(i+1) between74

boxes i and i + 1 by maximizing the associated thermodynamic entropy production Ṡ =
∑

i fi(i+1)(
1

Ti+1
− 1

Ti
).75

Here, we slightly modify the Paltridge discretization approximation to make it amenable to rigorous mathematical76

results on Markov Chains. For simplicity, we stick to a one dimensional case (corresponding to boxes varying only in77
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latitude) and impose the boundary conditions through two reservoirs located at each end of the chain (mimicking the78

solar heat flux at pole and equator). We consider a set of N boxes that can contain an arbitrary number n ∈ N of79

particles. We then allow transfer of particles in between two adjacent boxes via decorrelated jumps (to the right or80

to the left) following a 1D Markov dynamics governed by a coupling with the two reservoirs imposing a difference of81

chemical potential at the ends. The resulting process is called the Zero Range Process (Andjel 1982). The different82

jumps are described as follow. At each time step a particle can jump right with probability pwn or jump left with83

probability qwn where wn is a parameter depending of the number of particles inside the box. Physically it represents84

the interactions between particles. At the edges of the lattice the probability rules are different: At the left edge a85

particule can enter with probability α and exit with probability γwn whereas at the right edge a particle can exit with86

probability βwn and enter with probability δ. Choices of different wn give radically different behaviors. For example87

wn = 1 + b/n where b ≥ 0 described condensation phenomena (Großkinsky et al. 2003) whereas w1 = w et wn = 188

if n ≥ 2 has been used to modeled road traffic. We will consider in this article the particular case where w = 1 by89

convenience of calculation. Moreover without loss of generality we will take p ≥ q which corresponds to a particle90

flow from the left to the right and note f = p− q . After a sufficiently long time the system reaches a non-equilibrium91

steady state. The interest of this toy model is that it is simple enough so that exact computations are analytically92

tractable.93

94

Taking the continuous limit of this process, it may be checked that the fugacity z,which is a quantity related to the95

average particle density (see 8 below), of stationary solutions of a system consisting of boxes of size 1
N follows the96

continuous equation (Levine et al. 2005) :97

f
∂z

∂x
−

1

2N

∂2z

∂x2
= 0, (2)

corresponding to stationary solution of a passive scalar equation with velocity f and diffusivity 1
2N . Therefore, the98

fugacity of the Zero Range Process is a passive scalar obeying a convective-diffusion equation. We thus see that99

f = 0 corresponds to a purely conductive regime whereas the larger f the more convective the regime. In the sequel,100

we calculate the entropy production and the Kolmogorov-Sinai entropy function of f . These two quantities reach101

a maximum noted respectively fmaxEP
and fmaxKS

. The MEP principle (resp. the MKS principle) states that the102

system will choose f = fmaxEP
(resp f = fmaxKS

).103

We will show first of all in this article that numerically fmaxEP
≈ fmaxKS

even far from equilibrium for a number of104

boxes N roughly corresponding to the resolution taken by Paltridge (1975) in his climate model. This result is similar105

to what we found for the ASEP model (Mihelich et al. 2014) and thus gives another example of a system in which106

the two principles are equivalent. Moreover we will see analytically that fmaxEP
and fmaxKS

have the same behavior107

in first order in the difference of the chemical potentials between the two reservoirs for N large enough. These results108

provide a better understanding of the relationship between the MEP and the MKS principles.109

III. NOTATIONS AND USEFUL PRELIMINARY RESULTS110

This Markovian Process is a stochastic process with a infinite number of states in bijection with N
N . In fact, each111

state can be written n = (n1, n2, ...., nN ) where ni is the number of particule lying in site i. We call Pn the stationary112

probability to be in state n. In order to calculate this probability it is easier to use a quantum formalism than the113

Markovian formalism as explained in the following articles (Domb 2000, Levine et al. 2005).114

115

The probability to find m particles in the site k is equal to: pk(nk = m) =
zm
k

Zk
where Zk is the analogue of the grand116

canonical repartition function and zk is the fugacity between 0 and 1. Moreover Zk =
∑∞

i=0 z
i
k = 1

1−zk
. So, finally117

pk(nk = m) = (1− zk)z
m
k , (3)

We can show that the probability P over the states is the tensorial product of the probability pk over the boxes:118

P = p1 ⊗ p2 ⊗ ....⊗ pN ,

Thus events (nk = m) and (n′
k = m′) for k 6= k′ are independent and so:119

P (m1,m2, ...,mN ) = p1(n1 = m1) ∗ ... ∗ pN (nN = mN ), (4)
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So finally120

P (m1,m2, ...,mN ) =

N∏

k=1

(1− zk)z
mk

k . (5)

Moreover, with the Hamiltonian equation found from the quantum formalism we can find the exact values of zk121

function of the system parameters:122

zk =
(pq )

k−1[(α+ δ)(p− q)− αβ + γδ]− γδ + αβ(pq )
N−1

γ(p− q − β) + β(p− q + γ)(pq )
N−1

, (6)

and the flux of particles c:123

c = (p− q)
−γδ + αβ(pq )

N−1

γ(p− q − β) + β(p− q + γ)(pq )
N−1

. (7)

Finally, the stationary density is related to the fugacity by the relation:124

ρk = zk
∂ logZk

∂zk
=

zk
1− zk

. (8)

A. Entropy Production125

For a system subject to internal forces Xi and associated fluxes Ji the macroscopic entropy production is well known126

(Onsager 1931)and takes the form:127

σ =
∑

i

Ji ∗Xi.

The Physical meaning of this quantity is a measure of irreversibility: the larger σ the more irreversible the system.128

In the case of the zero range process irreversibility is created by the fact that p 6= q. We will parametrize this129

irreversibility by the parameter f = p− q and we will take p+ q = 1. In the remaining of the paper, we take, without130

loss of generality, p ≤ q which corresponds to a flow from left to right. Moreover, the only flux to be considered is131

here the flux of particules c and the associated force is due to the gradient of the density of particules ρ : X = ∇ log ρ132

(Balian 1992).133

Thus, when the stationary state is reached ie when c is constant:134

σ =
N−1∑

i=1

c.(log(ρi)− log(ρi+1)) = c.(log(ρ1)− log(ρN )). (9)

Thus, according to Eqs. (6), (7), (8) and (9) when N tends to +∞ we obtain:135

σ(f) =
αf

f + γ
(log(

α

f + γ − α
)− log(

(α+ δ)f + γδ

f(β − α− δ) + βγ − γδ
)). (10)

Because f ≥ 0 the entropy production is positive if and only if ρ1 ≥ ρN iff z1 ≥ zN . This is physically coherent136

because fluxes are in the opposite direction of the gradient. We remark that if f = 0 then σ(f) = 0. Moreover, when137

f increases ρ1(f) decreases and ρ2(f) increases till they take the same value. Thus it exists f , large enough, for which138

σ(f) = 0. Between these two values of f the entropy production has at least one maximum.139
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B. Kolmogorov-Sinai Entropy140

There are several ways to introduce the Kolmogorov-Sinai entropy which is a mathematical quantity introduced by141

Kolmogorov and developed by famous mathematician as Sinai and Billingsley (Billingsley 1965). Nevertheless, for a142

Markov process we can give it a simple physical interpretation: the Kolmogorov-Sinai entropy is the time derivative143

of the Jaynes entropy (entropy over the path).144

SJaynes(t) = −
∑

Γ[0,t]

pΓ[0,t]
. log(pΓ[0,t]

), (11)

For a Markov Chain we have thus:145

SJaynes(t)− SJaynes(t− 1) = −
∑

(i,j)

µistat
pij log(pij), (12)

where µstat = µistat
i = 1...N is the stationary measure and where the pij are the transition probabilities.146

Thus the Kolmogorov-Sinai entropy takes the following form:147

hKS = −
∑

(i,j)

µistat
pij log(pij), (13)

For the Zero Range Process ,we show in appendix that it can be written as:

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))) + (p log(p) + q log(q))
N∑

i=1

(1− zi)

+ (γ log(γ) + p log(p))(1− z1) + (β log(β) + q log(q))(1− zN ).

(14)

IV. RESULTS148

We will start first by pointing to some interesting properties of fmaxEP
and fmaxKS

, then by presenting numerical149

experiments on the ZRP model and finally concluding with some analytical computations.150

Let us first note that for N ,α,β,γ,δ fixed the entropy production as well as the Kolmogorov-Sinai entropy seen as151

functions of f admit both a unique maximum. When N tends to infinity and f = 0, using Eq.(6) (i.e. the symmetric152

case), we find that z1 = α
γ and zN = δ

β . Thus, the system is coupled with two reservoirs with respective chemical153

potential α
γ (left) and

δ
β (right). For α

γ 6= δ
β the system is out of equilibrium. We assume, without loss of generality,154

z1 ≥ zN which corresponds to a flow from left to right. As a measure of deviation from equilibrium we take s = z1−zN :155

the larger s, the more density fluxes we expect into the system.156

First we remark that fmaxEP
hardly depends on N whereas fmaxKS

depends strongly on N . This is easily understood157

because σ depends only on z1 and zN whereas hKS depends on all the zi. Moreover, the profile of the zi depends158

strongly on N . In particular, for a fixed difference of potential between the reservoirs , fmaxEP
(N) tends towards a159

non-zero value, while fmaxKS
(N) tends to 0 when N goes to infinity.160

Moreover, fmaxEP
and fmaxKS

coincide even far from equilibrium for N corresponding to the choice of Paltridge161

(1975) N ≈ 10 ∼ 100. For N fixed, as large as one wants, and for all ǫ, as small as one wants, it exists ν such that162

for all s ∈ [0; ν] |fmaxEP
− fmaxKS

| ≤ ǫ.163

These observations are confirmed by the results presented in Figures 1 and 3 where EP and KS are calculated using164

Eq. (6) and (14) for s = 0.13 and three different partitions: N = 20 N = 100 et N = 1000. The figure shows165

that fmaxEP
and fmaxKS

coincide with good approximation for N = 20 and N = 100. But then when N increases166

fmaxKS
(N) tends to 0 whereas fmaxEP

(N) tends to a non-zero value.167

In Figure 2 we represent the Entropy Production (top) and KS Entropy (bottom) function of f for N = 1000 and for168

three value of s: s = 0.13; s = 0.2; s = 0.04. This supports the claim that for N fixed, we could tried different values169

of s such that s ∈ [0; ν] |fmaxEP
− fmaxKS

| ≤ ǫ. We recover this result in Figure 3.170

Such numerical investigations suggest to understand why fmaxKS
(N) and fmaxEP

(N) have different behaviors function171

of N , and why for N large enough fmaxKS
and fmaxEP

have the same behavior of first order in the deviation from172

equilibrium measured by the parameter s. We will see that we can get a precise answer to such questions by doing173

calculations and introducing a sort of Hydrodynamics approximation.174
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A. Taylor expansion175

From Eq. (14) it is apparent that fmaxKS
depends on N whereas from Eq. (9) we get that fmaxEP

hardly depends176

on N . Indeed there is a difference between fmaxEP
and fmaxKS

, i.e. a difference between the two principles for the177

Zero Range Process. Nevertheless, we have seen numerically that there is a range of N , namely N ≈ 10 ∼ 100 for178

which the maxima fairly coincide.179

Using Eqs. (14) (6) (10) we compute analytically the Taylor expansion of fmaxEP
and fmaxKS

in s. We will show180

the main result: fmaxEP
and fmaxKS

have the same Taylor expansion in first order in s for N large enough. Their181

Taylor expansions are different up to the second order in s but it exists an N , i.e. a resolution, such that fmaxEP
and182

fmaxKS
coincident up to the second order.183

Let us start by computing fmaxKS
. It does not depend of the constant terms of hKS in Eq.(14) and therefore we need184

only concern ourselves with :185

−(p log(p)+ q log(q))(
N∑

i=1

(zi)− 1)+ (γ log(γ)+ p log(p))(1− z1)+ (β log(β)+ q log(q))(1− zN ) = N.H(f,N, α, γ, β, δ).

(15)
Using Eq.(6), the expression of H(f,N, α, γ, β, δ) takes an easy form. To simplify the calculations, we restrict the186

space of parameter by assuming α+ γ = 1 and β + δ = 1 and we parametrize the deviation from equilibrium by the187

parameter s̄ = α− δ. Moreover let’s note a = 1
N . Thus, we have H(f,N, α, γ, β, δ) = H(f, a, α, s̄). In order to know188

the Taylor expansion to the first order in s̄ of fmaxKS
we develop H(f, a, α, s̄) up to the second order in f ; i.e. we189

have H(f, a, α, s̄) = C + Bf + Af2 + o(f2) then we find fmaxKS
= −B/2A that we will develop in power of s̄. This190

is consistent if we assume f ≪ a.191

After some tedious but straightforward calculations, we get at the first order in s̄192

fmaxKS
(s̄) =

1

4

(1− α)− a(α+ 2)

α(1− α) + 2aα(α− 1)
s̄+ o(s̄). (16)

FIG. 1. Entropy Production calculate using 10 (left) and KS Entropy calculate using 6 and 14 (right) function of f for s = 0.13
and respectively N = 20 N = 100 et N = 1000
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and so,193

fmaxKS
(s̄) =

1

4α
s̄+

3a

4(α− 1)
s̄+ o(s̄) + o(as̄). (17)

We repeat the same procedure starting from Eq.(10) and we obtain:194

fmaxEP
(s̄) =

s̄

4α
+ o(s̄) + o(a). (18)

Thus, since a = 1
N ≪ 1 the behaviour of fmaxKS

(s̄) and fmaxEP
(s̄) is the same for s̄ small enough.195

We remark that we can strictly find the same result by solving the hydrodynamics continuous approximation given196

by Eq. (2). This equation is a classical convection-diffusion equation. We remark that, by varying f , we change the197

FIG. 2. Entropy Production (left) and KS Entropy (right) function of f for N = 1000 and respectively s = 0.13; s = 0.2;
s = 0.04

FIG. 3. New figure: 2D plot representing ∆fmax = fmaxEP
− fmaxKS

in the (N, s) space.
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convective behavior: f = 0 corresponds to a purely diffusive regime whereas by increasing f we enhance the role of198

convection. If the system is near equilibrium then fmaxEP
≈ fmaxKS

≈ 0 and the system is purely diffusive. When199

the system is out of equilibrium fmaxEP
and fmaxKS

are different from 0 and corresponds to an (optimal) trade-off200

between purely diffusive and convective behavior.201

One can verify this numerically: We first calculate the exact values of the Entropy Production function of f using202

Eq. (6) and the Kolmogorov-Sinai Entropy function of f using Eqs. (6) (14). Then we approximate these two curves203

with a cubic spline approximation in order to find fmaxEP
and fmaxKS

.204

FIG. 4. fmaxEP
(left) and fmaxKS

(right) function of s̄ for α = 0.5 and N = 100. We remark than fmaxKS
and fmaxEP

have
both a linear behaviour with slope respectively 0.48 and 0.49 which is really close to 1

4α
= 0.5

FIG. 5. We plot the slope of f
maxKS(s̄) (left) and f

maxEP (s̄) (right) function of α and in black the curve f(s̄) = 1
4α

s̄. We

remark than the approximation fmaxKS
(s̄) ≈ fmaxEP

(s̄) ≈= 1
4α

s̄ is good

In order to find the optimal resolution N∗ we can go one step further by expanding fmaxEP
and fmaxKS

up to the205

second order in s̄:206

fmaxEP
(s̄) =

s̄

4α
+

s̄2(α+ 1)

8α2(α− 1)
+ o(s̄2) + o(a). (19)

fmaxKS
(s̄) =

1

4

(1− α)− a(α+ 2)

α(1− α) + 2aα(α− 1)
s̄+

(1− α)2 + a(α2 − 2α+ 1)

8α2(α− 1)2(1− 2a)
s̄2 + o(s̄2). (20)

Thus, fmaxEP
and fmaxKS

coincide in second order in s̄ iff a satisfies the quadratic equation:207

(4α− 6α2 + 6α3 − 4s̄+ 3α2s̄)a2 −
1

2
(8α− 8s̄+ 3α2s̄− 6α2 + 6α3)a− (1− α) = 0. (21)
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This equation has a unique positive solution because theleading coefficient is positive for s small enough (4α− 6α2 +208

6α3−4s̄+3α2s̄) ≥ 0 and the constant term is negative −(1−α) ≤ 0. We remark that the optimal resolution N∗ = 1
a∗209

depends on the parameters of the system namely on the degree of non-equilibrium. This fact can be the explanation210

for two well known issues in climate/weather modeling. First, it explains that, when downgrading or upgrading the211

resolution of convection models, the relevant parameters must be changed as they depend on the grid size. Second, it212

suggests that if the resolution is well tuned to represent a particular range of convective phenomena, it might fail in213

capturing the dynamics out of this range: since finer grids are needed to better represent deep convection phenomena,214

the deviations between model and observations observed in the distribution of extreme convective precipitation may215

be due to an inadequacy of the grid used.216

V. CONCLUSION217

We have shown how a simple 1D Markov Process, the Zero Range Process, can be used to obtain rigorous results218

on the problem of parametrization of the passive scalar transport problem, relevant to many geophysical applications219

including temperature distribution in climate modeling. Using this model, we have derived rigorous results on the link220

between a principle of maximum entropy production and the principle of maximum Kolmogorov- Sinai entropy using221

a Markov model of the passive scalar diffusion called the Zero Range Process. The Kolmogorov-Sinai entropy seen as222

function of the convective velocity admit a unique maximum. We show analytically that both have the same Taylor223

expansion at the first order in the deviation from equilibrium. The behavior of these two maxima is explored as a224

function of the resolution N (equivalent to the number of boxes, in the box approximation). We found that for a fixed225

difference of potential between the reservoirs , the maximal convective velocity predicted by the maximum entropy226

production principle tends towards a non-zero value, while the maximum predicted using Kolmogorov-Sinai entropy227

tends to 0 when N goes to infinity. For values of N typical of those adopted by climatologists (N ≈ 10 ∼ 100), we228

show that the two maxima nevertheless coincide even far from equilibrium. Finally, we show that there is an optimal229

resolution N∗ such that the two maxima coincide to second order in s̄, a parameter proportional to the non-equilibrium230

fluxes imposed to the boundaries. The fact that the optimal resolution depends on the intensity of the convective231

phenomena to be represented, points to new interesting research avenues, e.g. the introduction of convective models232

with adaptive grids optimized with maximum entropy principles on the basis of the convective phenomena to be233

represented.234

On another hand, the application of this principle to passive scalar transport parametrization is therefore expected to235

provide both the value of the optimal flux, and of the optimal number of degrees of freedom (resolution) to describe236

the system. It would be interesting to apply it to more realistic passive scalar transport problem, to see if it yield to237

model that can be numerically handled (i.e. corresponding to a number of bow that is small enough to be handled238

by present computers). Moreover, on a theoretical side, it will be interesting to study whether for general dynamical239

systems, there exists a smart way to coarse grain the Kolmogorov- Sinai entropy such that its properties coincide with240

the thermodynamic entropy production. This will eventually justify the use of the MEP principle and explain the241

deviations as well as the different representations of it due to the dependence of the dynamic (Kolmogorov Smirnov,242

Tsallis, Jaynes) entropies on the kind of partition adopted.243
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VI. APPENDIX: COMPUTATION OF THE K-S ENTROPY281

In this appendix, we compute the Kolmogorov-Sinai entropy for the Zero Range Process, starting from its definition282

Eq. (13). In the frame of our Zero Range Process , we use Eqs. (13) and (5) to write it as:283

hKS = −
∑

i

µistat

∑

j

pij log(pij) = −
+∞∑

m1=0

...
+∞∑

mN=0

P (m1,m2, ...,mN )
∑

j

p(m1,...,mN )→j log(p(m1,...,mN )→j)

= −
+∞∑

m1=0

P (m1)...
+∞∑

mN=0

P (mN )
∑

j

p(m1,...,mN )→j log(p(m1,...,mN )→j) (22)

We thus have to calculate
∑

j p(m1,...,mN )→j log(p(m1,...,mN )→j) that we will refer to as (∗) . We will take p + q =284

α+δ = β+γ = 1 and dt = 1
N in order to neglect the probabilities to stay in the same state compare to the probabilities285

of changing state. There are five different cases to consider:286

1. if ∀i mi ≥ 1 so the possible transitions are:287

(m1,m2, ...,mN ) → (m1 ± 1,m2, ...,mN ) with respective probabilities α and δ288

(m1,m2, ...,mN ) → (m1,m2, ...,mN ± 1) with respective probabilities γ and β289

and (m1, ...,mk, ...,mN ) → (m1, ...,mk ± 1, ...,mN ) with respective probabilities p and q290

291

Thus,292

(∗) = α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q)) (23)

2. if m1 ≥ 1 and mN ≥ 1 and let i be the number of mi between 2 and N − 1 equal to 0. With the same argument293

as previously we have:294

(∗) = α logα+ δ log δ + γ log γ + β log β + (N − 1− i)(p log(p) + q log(q)) (24)

3. if m1 = 0 and mN ≥ 1 and let i the number of mi between 2 and N − 1 equal to 0 we have:295

(∗) = α logα+ δ log δ + β log β + (N − 2− i)p log(p) + (N − 1− i)q log(q) (25)
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4. The same applies if m1 ≥ 1 and mN = 0 and let i the number of mi between 2 and N − 1 equal to 0 we have:296

(∗) = α logα+ δ log δ + γ log γ + (N − 1− i)p log(p) + (N − 2− i)q log(q) (26)

5. finally, if m1 = 0 and mN = 0 and let i the number of mi between 2 and N − 1 equal to 0 we have:297

(∗) = α logα+ δ log δ + (N − 2− i)(p log(p) + q log(q) (27)

Using equation 3 we find that P (mk = 0) = 1− zk and
∑+∞

i=1 P (mk = i) = zk298

299

We thus obtain than hKS writes:300

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))

+ (p log(p) + q log(q))(
N∑

r=0

r
∑

i1...iN

∏

i=i1,...ir

(1− zi)
∏

i 6=i1...ir

zi)

+ (γ log(γ) + p log(p))zN (1− z1)(
∑

i2...iN−1

∏

i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi)

+ (β log(β) + q log q)z1(1− zN )(
∑

i2...iN−1

∏

i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi)

+ (β log(β) + γ log γ + p log p+ q log q)(
∑

i2...iN−1

∏

i=i2,...ir

(1− zi)
∏

i 6=i2...ir

zi) (28)

This expression, though complicated at first sight, can be simplified. Indeed interested in the function F (a) =301 ∏N
1 (zk + a(1− zk)) and by deriving subject to a we show that:302

N∑

r=0

r
∑

i1...iN

∏

i=i1,...ir

(1− zi)
∏

i 6=i1...ir

zi =
N∑

i=1

(1− zi) (29)

Thus we can simplify the last equation and we obtain:303

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))) + (p log(p) + q log(q))
N∑

i=1

(1− zi)

+ (γ log(γ) + p log(p))(1− z1) + (β log(β) + q log(q))(1− zN )

(30)
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Anonymous Referee #1 
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The Maximum Entropy Production (MEP) conjecture is a much debated scientific issue 

and has attracted lots of interest and criticism over the last thirty years. The main 

problem with it is that, in spite of some empirical evidence built up mostly in climate 

science, a rigorous, general demonstration does not exist yet. This piece of work by 

Mihelich et al. adds a useful contribution to this debate as it shows that, for a simple 

statistical model of diffusion (a Markov model of the passive scalar diffusion) between 

two reservoirs, the entropy production is linked to the Kolmogorov-Sinai entropy, a well 

know quantity in information theory. Results by Mihelich et al. are not general as they 

hold only for this specific model – and for another similar case (Mihelich et al. (2013))– 

but may open new avenues of research. 

The paper is, overall, interesting and gives a useful contribution to the scientific discussion 

on the Maximum Entropy Production conjecture. However some more work is 

required to have the manuscript in its final, publishable form. Therefore no recommendation 

for publication can be made until the comments and suggestions, listed below, 

are addressed. 

Major points and general remarks 

 

 

1) Results could be displayed in a more convincing and complete way. The authors 

should make a more systematic exploration of resolutions and far-fromequilibrium 

setups. I suggest the author to plot the difference (or percentual difference) 

between fMPE and fMKS as a function of N and s, that is a 2D contour 

plot, with s going from 0 to a value typical of far-from-equilibrium conditions and 

N from O(1) to , e.g., O(1000). This would summarize very effectively the main 

findings of this study and show clear patterns in the (N; s) space in a wide range 

of N and s; 

 

This remark is entirely justified. Thus I add a new 2D contour plot 

representing the difference between  f_{max_{ep}} and f_{max_{ks}} in the 

(N,s) space. 
 

 

2) page 1695. Here the definition of _S 
is not correct and the notation used for the 

fluxes between contiguous boxes confusing. Paltridge used the divergence of the 

meridional heat flux in a certain latitudinal box divided by the box temperature, 

not the flux itself divided by the temperature, i.e. 

R 



(r _ F)=T , not 

R 
R F=T. Then 

(r _ F)=T = 
R 

F _ r(1=T ) because F = 0 at the boundaries (poles). Moreover, 

the notation fij is confusing because it looks like there can be a heat exchange 

between any i and j, so also noncontiguous boxes, which is not the case. 

 

Indeed, I have corrected the error by writing: $\dot S=\sum_i 

f_{i(i+1)}(\frac{1}{T_{i+1}}-\frac{1}{T_{i}})$ 
 

3) English. There are several typos and minor English mistakes. I’ll list a few ones 

in the following, but this is not an exhaustive list. Therefore the manuscript should 

be carefully edited to correct minor grammatical errors; 

 

4) References. The scientific literature cited in this study is very, very limited indeed. 

In some cases, references cited by the authors are old and more updated studies 

could be instead cited. For example, when introducing the “macroscopic” entropy 

production _ the authors cite Balian (1992) at the beginning of Section 3.1. Now, 

even having all the respect for Balian, it is odd that they do not mention previous 

authors such as Onsager (1931), or De Groot and Mazur (1962), or Glansdorff 

and Prigogine (1971). 

At page 1693 they cite Yang et al. (2012) which deals with a convective scheme, 

but there is nothing about parameter tuning in a General Circulation Model (e.g. 

Murphy et al. (2004)). At the same page and line 27 the cite Dewar (2003) – 

which is an outdated study about demonstrating MEP – but they omit more recent 

studies such as Dewar and Maritan (2014) and references therein. 

Also, the authors mention an alternative method for parameter tuning (page 1693, 

line 17) in the case of complex models based on maximizing (minimizing) a 

suitable functional (e.g. entropy production), but totally ignore previous studies 

(Kunz et al. (2008); Pascale et al. (2012)) in which such an idea has been 

tested for GCMs of various complexity. Concerning efforts made to extend MEP 

generality, the authors might want also consider the work by Gjermundsen et al. 

(2014). 

In the revised version the authors should therefore pay more attention to this 

aspect, which is important to put their work in the right wider scientific context. 

 

I naturally added the reference of Onsager (1931) when I introduce 
the entropy production. I also add the recent work of Dewar and 
Maritan and the work of Pascale. 
 
 

 

 

 
 

 

 

5) Diffusion. At page 1703, line 6, the authors say that “If the system is at equilibrium 



then fmaxEP = fmaxKS = 0 and the system is purely diffusive". This is not 

true, (molecular) diffusion is also an irreversible process which leads to entropy 

production 

R 
(_jrTj2)=T 2dV _ 0. This also points out to me that such an entropy 

production in not taken into account when the simple ZRP is considered. Perhaps 

the authors concentrate on f because this, in a real atmosphere, is associated 

with the nonlinear quasi-turbulent atmospheric flow (midlatitude baroclinic 

eddies), but this has to be clarified in the revised manuscript. 

 

In this article I did not say that if the system is diffusive there is no 
entropy production. I show that for the ZRP, if the system is close to 
equilibrium, the state chosen by MEP corresponds to a diffusive state. 
Nevertheless, in order to make this clearer I change “ if the system 
is at equilibrium” by “if the system is close to equilibrium” 
 

 

 

Minor points and suggestions 

 

 

1) Some typos and minor mistakes: (p. 1692, l 9) deviation of/from equilibrium; 

(p. 1693, l 3) to/too large; (p. 1693, l 17) the/an alternate/alternative road..; (p. 

1694, l 3) the citation should be within brackets; (p. 1694, l 11) distance to/from 
equilibrium; (p. 1695, l 17) do not start a new statement with a mathematical 

symbol (furthermore in lower case); (p. 1696, l 25) particule ???; (p. 1696, l 

25) stationnary/stationary; (p. 1697, l 2) explain/explained; (p. 1698, l 9) The 

P/physical interpretation; (p. 1698, l 17) reach ie/ reached; (p. 1699, l 11) picked 
up???; (p. 1700, l 23) for/For N fixed; (p. 1701, l 8) fixe/fixed; (p. 1702, l 1) 

by compute/computing; (p. 1702, l 1) It is not depends of ?????; (p. 1702, l 8) 

let’s/let us; (p. 1703, l 1) We remark than/that; (p. 1703, l 7) different than/from 0; 

(p. 1703, l 17) equation of second degrees???/second order equation; (p 1704, l 

4) it might fails/fail; (p 1704, l 15) seen as functions/function; (p 1704, l 23) typical 

of that/those adopted; (p 1705, l 1) research patterns/research avenues. 

 

I thank a lot the referee for all these corrections that I have 
all changed. 
 

2) Often in the text, new variable or mathematical symbols are suddenly introduced 

without a previous definition. This is quite annoying and very confusing. For 

example, immediately in the abstract the symbol f is thrown (line 6). But how 

can the reader know what f stands for and thus understand that sentence? At 

page 1696 line 1 the fugacity z is mentioned without being previously defined; 

at the same page, line 19 the “chemical potential”; at page 1697 an Hamiltonian 

is mentioned (line 15), and this is completely out of the blue; at page 1698 the 

flux of mass c unexpectedly appears in an involved relationship (eq. 7). I really 

suggest the authors to introduce/define these quantities when they first discuss 

the model. 

 



In fact, the symbol f line 6 was badly introduced.  Thus, I add that “ f is 
parameter connected to the jump probability”. 
Concerning the fugacity, I add that this is a quantity related to the 
average particle density. 
I also precise that the Hamiltonian equation is found from the 
quantum formalism. 
 

 

3) page 1695, line 4: shouldn’t it be f = �uT + _rT? 

 

I have corrected the error 
 

 

4) page 1698, line 16: Why is the thermodynamic force X equal to rlog _ and not  

 

 

 

r_? 

 

 

For the thermodynamics force I took the definition of Balian where X 
is proportional to the gradient of $\log\rho$. 
 

 

 

5) page 1692, line 1-3: The way it’s written, this sentence seems to mean that, 

through a Markov model, the authors demonstrate the link between MEP and 

MKS in general, which is not the case. I would therefore say: “We derive rigorous 

results on the link between the principle of maximum entropy production and 

the principle of maximum Kolmogorov-Sinai entropy for a Markov model of the 

passive scalar diffusion called the Zero Range Process” 

 

I change the sentence as suggested by the referee. 
 

 

6) page 1692, line 13: Climatologist also use GCMs, actually nowadays climatologists 

hardly use box-models as those in Paltridge (1975), except people studying 

MEP. Same applies for page 1704, line 23. Please make this sentence more 

precise. 

 

In order to make this sentence more precise I add “climatologist 
working on MEP”. 
 

7) page 1703, eq. 21: Actually I can’t see any “=” in the equation; 

 

I corrected the error. 
 

8) page 1703, line 20: what’s a “dominant” coefficient? 

 

I have changed dominant by “leading “coefficient. 



 

9) Eq. (1): given that, spatially, u is a function only of x, wouldn’t it be more precise 

to write @x and @2 

x in place of r and r2? 

 

This remark is well justified and I corrected the equation. 
 

10) page 1695, line 1-3: Said like that, it seems that such an untold equation is 

something mysterious and esoteric; but this is just the conservation of momentum 

(NS equation) and, for baroclinic fluids, also energy and mass conservation; 

 

 

 

11) page 1695, line 25; page 1698, line 14: right to left, or left to right?  

I corrected the mistake page 1698 

 

I really want to thank the referee for all these constructive 

comments. 
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Interactive comment on “Statistical optimization 
for passive scalar transport: maximum entropy 
production vs. maximum Kolmogorov–Sinay 
entropy” by M. Mihelich et al. 
Anonymous Referee #2 
Received and published: 28 December 2014 

This paper is not easy to understand. There is a mixture of turbulence (passive scalar 

transport), of maximum entropy production, of Kolmogorov Sinai entropy and of zero range 

process. I suggest to reject this paper since the content is too narrow and far 

from geosciences, thus not adapted to NPG. 

 

 
Major points: 

1) The title is not adapted to the content: the title mentions passive scalar transport in 

turbulence, but in fact the manuscript is dealing only with a 1D toy model of passive 

scalar, called ASEP (asymmetric exclusion Markov process). 

 



The title does not mention turbulence. Moreover this article is not about the ASEP model, 
which is cited only twice (p1693 l29 and p1696 l17) in reference to previous works.  This 
article addresses problem of  passive scalar transport for which the Zero Range Process 
(ZRP) is a simple but very insightful model. The expression “Statistical Optimization” 

naturally implies the discussion of MEP and other optimization principles like the 
Maximum Kolmogorov Sinai Entropy Principle (MKSEP). Therefore we believe that the 
title is appropriate to the content of the paper since i)  MEP and MKSEP are the physical 
principles discussed. ii)  Passive scalar transport via the ZRP model is the object of the 
study.  
Since both the passive scalar and the MEP are widely discussed and published in the 
geoscience literature, we believe our paper is appropriate to NPG. Moreover, as 
recognized below by the referee, we establish a clear link between our results and 
geosciences in the discussion section.  
 

 

 With such restriction, the topic of the present paper seems rather far from geosciences. The link 

with ASEP and numerical models used in the geosciences is not obvious, and only justified in the 

perspectives and conclusion of this manuscript.  

 

As previously said, the paper is not at all about ASEP model.  It is about the ZRP,  a toy 
model which both exactly mimics the general approach to MEP in geophysics and enables 
exact analytical calculation that allow to explore the validity of such principle in a simple 
case. The link between the ZRP and, e.g., Paltridge’s work is explained not only in the 

introduction and in the perspectives  but also in the main body of the paper, where  the 
meaning of the terms introduced in the ZRP are linked with general thermodynamic 
quantities used in geophysics. See specifically Page 1695, lines 4-8. 
 

While the mathematical content of the paper seems correct [compute analytically the heat flux f 

for maximum entropy production and for Kolmogorov Sinai entropy, equations (19) and (20), 

consider for which cases the maximum coincides in both analytical expressions], its scope seems 

very narrow [to show that a toy model has two ways to estimate the heat flux corresponding to a 

maximum entropy situation] to be useful for geosciences applications. 

 

 The passive scalar transport  Eq. 1 modelled via the ZRP is one of the fundamental 
equation of any geophysical models as transport in ocean, soils, atmospheres is 
understood in terms of Eq. 1. Therefore, saying that the results obtained both analytically 
and numerically here do not have implications on geosciences application is neglecting 
the role of Eq. 1 in the dynamics of geophysical systems.  The result of the paper is to 
provide a theoretical explication for MEP (which has been successfully used in several 
applications in geophysics), via a simple exact model where all the calculations can be 
performed analytically. This provides firmer ground to the use of this maximization tools 
to more complicated systems, and open new perspectives as to how to perform it in the 
more efficient way. We do not understand why this should not be relevant to geosciences. 
 
 

2) The paper is not self-contained and it is very difficult to understand the point without 

reading other papers. The model ASEP cannot be understood by reading this 

manuscript. 

 

As we have already pointed out, this paper is not about the ASEP model but the Zero 
Range Process. This model itself is very simple, and is described in the first section and 
via the Figure 1. The paper is self-contained, in the sense that the calculations presented 
do not require any further knowledge or material. So there is no need to read other 
papers to understand the calculations, nor the model. 



 

Equation (2) uses z, the fugacity, which is not precisely defined. One is lost at this point. The 

maximum entropy production concept is used in the title and in many places in the manuscript, 

but its meaning is not recalled. 

Other points: The review paper Martyushev and Selesnev (Maximum entropy production 

principle in physics, chemistry and biology, Physics Report 426 (2006) 1-45) should 

be cited since it nicely and clearly introduces the MEP. 

 

We agree with the referee and we provide further explications on the fugacity: ”which is a 
quantity related to the average particle density (see \ref{eq:3} below)” 

 
 the concept of MEP and further references including Martyushev and Selesnev’s work: 
“MEP states that a stationary nonequilibrium system chooses its final state in order to 
maximize the entropy production as is explain in \citep{martyushev2006maximum}” 
 

Typos: line 4 page 1695 -> passive scalar; line 11 same page: decor related jumps -> 

We fixed  the typos 

 

 

 

 


