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We derive rigorous results on the link between the principle of maximum entropy production7

and the principle of maximum Kolmogorov- Sinai entropy for a Markov model of the passive scalar8

diffusion called the Zero Range Process. We show analytically that both the entropy production and9

the Kolmogorov-Sinai entropy, seen as functions of a parameter f connected to the jump probability,10

admit a unique maximum denoted fmaxEP and fmaxKS . The behavior of these two maxima is11

explored as a function of the system disequilibrium and the system resolution N . The main result12

of this article is that fmaxEP and fmaxKS have the same Taylor expansion at first order in the13

deviation from equilibrium. We find that fmaxEP hardly depends on N whereas fmaxKS depends14

strongly on N . In particular, for a fixed difference of potential between the reservoirs, fmaxEP (N)15

tends towards a non-zero value, while fmaxKS (N) tends to 0 when N goes to infinity. For values16

of N typical of those adopted by Paltridge and climatologists working on MEP (N ≈ 10 ∼ 100),17

we show that fmaxEP and fmaxKS coincide even far from equilibrium. Finally, we show that one18

can find an optimal resolution N∗ such that fmaxEP and fmaxKS coincide, at least up to a second19

order parameter proportional to the non-equilibrium fluxes imposed to the boundaries. We find20

that the optimal resolution N∗ depends on the non equilibrium fluxes, so that deeper convection21

should be represented on finer grids. This result points to the inadequacy of using a single grid for22

representing convection in climate and weather models. Moreover, the application of this principle23

to passive scalar transport parametrization is therefore expected to provide both the value of the24

optimal flux, and of the optimal number of degrees of freedom (resolution) to describe the system.25
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I. INTRODUCTION26

A major difficulty in the modeling of nonlinear geophysical or astrophysical processes is the taking into account of27

all the relevant degrees of freedom. For example, fluid motions obeying Navier-Stokes equations usually require of28

the order of N = Re9/4 modes to faithfully describe all scales between the injection scale and the dissipative scale29

(Frisch 1995). In atmosphere, or ocean, where the Reynolds number exceeds 109, this amount to N = 1020, a number30

too large to be handled by any existing computers (Wallace and Hobbs 2006). The problem is even more vivid in31

complex systems such as planetary climate, where the coupling of lito-bio-cryo-sphere with ocean and atmosphere32

increases the number of degrees of freedom beyond any practical figure. This justifies the long historical tradition33

of parametrization and statistical model reduction, to map the exact equations describing the system onto a set of34

simpler equations involving few degrees of freedom. The price to pay is the introduction of free parameters, describing35

the action of discarded degrees of freedom, that needs to be prescribed.36

When the number of free parameters is small, their prescription can be successfully done empirically through calibrat-37

ing experiments or by a posteriori tuning (Rotstayn 2000). When the number of parameters is large, such as in climate38

models where it reaches several hundreds (Murphy et al. 2004), such empirical procedure is inapplicable, because it39

is impossible to explore the whole parameter space. In that respect, it is of great interest to explore an alternative40

road to parametrization via application of a statistical optimization principle, such as minimizing or maximizing of a41

suitable cost functional. As discussed by (Turkington 2013) and (Pascale et al. 2012), this strategy usually leads to42

closed reduced equations with adjustable parameters in the closure appearing as weights in the cost functional and43

can be computed explicitly. A famous example in climate is given by a principle of maximum entropy production44

(MEP) that allowed (Paltridge 1975) to derive the distribution of heat and clouds at the Earth surface with reasonable45

accuracy, without any parameters and with a model of a dozen of degrees of freedom (boxes). Since then, refinements46

of Paltrige model have been suggested to increase its generality and range of prediction (Herbert et al. 2011). MEP47

states that a stationary nonequilibrium system chooses its final state in order to maximize the entropy production48

as is explain in (Martyushev and Seleznev 2006). Rigorous justifications of its application have been searched using49

e.g. information theory (Dewar and Maritan 2014) without convincing success. More recently, we have used the50

analogy of the climate box model of Paltridge with the asymmetric exclusion Markov process (ASEP) to establish51

numerically a link between the MEP and the principle of maximum Kolmogorov- Sinai entropy (MKS)(Mihelich52

et al. 2014). The MKS principle is a relatively new concept which extends the classical results of equilibrium physics53

(Monthus 2011). This principle applied to Markov Chains provides an approximation of the optimal diffusion coef-54

ficient in transport phenomena (Gómez-Gardeñes and Latora 2008) or simulates random walk on irregular lattices55

(Burda et al. 2009). It is therefore a good candidate for a physically relevant cost functional in passive scalar modeling.56

57

The goal of the present paper is to derive rigorous results on the link between MEP and MKS using a Markov model58

of the passive scalar diffusion called the Zero Range Process (Andjel 1982). We find that there exists an optimal59

resolution N∗ such that both maxima coincide to second order in the distance from equilibrium. The application60

of this principle to passive scalar transport parametrization is therefore expected to provide both the value of the61

optimal flux, and of the optimal number of degrees of freedom (resolution) to describe the system. This suggests that62

the MEP and MKS principle may be unified when the Kolmogorov- Sinai entropy is defined on opportunely coarse63

grained partitions.64

II. FROM PASSIVE SCALAR EQUATION TO ZRP MODEL65

The equation describing the transport of a passive scalar like temperature in a given velocity field u(x, t) reads:66

∂tT + u∂xT = κ∂2
xT, (1)

with appropriate boundary conditions, or equivalently, in non-dimensionnal form:67

∂tT + u∂xT =
1

RePr
∂2
xT, (2)

where κ, Re and Pr are respectively the molecular diffusivity, the Reynolds and the Prandtl number. To solve68

this equation, one must know both the velocity field and the boundary conditions, and use as many number of69

modes as necessary to describe all range of scales up to the scales at which molecular diffusivity takes place i.e.70

roughly (RePr)3/2 modes, where Re is the Reynolds number of the convective flow, and Pr is its Prandtl number.71

In geophysical flows, this number is too large to be handled even numerically (Troen and Mahrt 1986). Moreover,72

in typical climate studies, the velocity flow is basically unknown as it must obey a complicated equation involving73

the influence of all the relevant climate components. In order to solve the equation, one must necessarily prescribe74
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the heat flux f = −uT + κ∇T . The idea of Paltridge was then to discretize the passive scalar equation in boxes75

and prescribe the heat flux fi(i+1) between boxes i and i + 1 by maximizing the associated thermodynamic entropy76

production Ṡ =
∑

i fi(i+1)(
1

Ti+1
− 1

Ti
). Here, we slightly modify the Paltridge discretization approximation to make77

it amenable to rigorous mathematical results on Markov Chains. For simplicity, we stick to a one dimensional case78

(corresponding to boxes varying only in latitude) and impose the boundary conditions through two reservoirs located79

at each end of the chain (mimicking the solar heat flux at pole and equator). We consider a set of N boxes that can80

contain an arbitrary number n ∈ N of particles. We then allow transfer of particles in between two adjacent boxes81

via decorrelated jumps (to the right or to the left) following a 1D Markov dynamics governed by a coupling with the82

two reservoirs imposing a difference of chemical potential at the ends. The resulting process is called the Zero Range83

Process (Andjel 1982). The different jumps are described as follow. At each time step a particle can jump right with84

probability pwn or jump left with probability qwn where wn is a parameter depending of the number of particles85

inside the box. Physically it represents the interactions between particles. At the edges of the lattice the probability86

rules are different: At the left edge a particule can enter with probability α and exit with probability γwn whereas87

at the right edge a particle can exit with probability βwn and enter with probability δ. Choices of different wn give88

radically different behaviors. For example wn = 1+ b/n where b ≥ 0 described condensation phenomena (Großkinsky89

et al. 2003) whereas w1 = w et wn = 1 if n ≥ 2 has been used to modeled road traffic. We will consider in this article90

the particular case where w = 1 by convenience of calculation. Moreover without loss of generality we will take p ≥ q91

which corresponds to a particle flow from the left to the right and note f = p− q . After a sufficiently long time the92

system reaches a non-equilibrium steady state. The interest of this toy model is that it is simple enough so that exact93

computations are analytically tractable.94

95

Taking the continuous limit of this process, it may be checked that the fugacity z, which is a quantity related to the96

average particle density (see 9 below), of stationary solutions of a system consisting of boxes of size 1
N follows the97

continuous equation (Levine et al. 2005) :98

f
∂z

∂x
− 1

2N

∂2z

∂x2
= 0, (3)

corresponding to a stationary solution of a non-dimensional passive scalar equation with non-dimensionnal velocity99

f and a non-dimensionnal diffusivity 1
RePr = 1

2N . Therefore, the fugacity of the Zero Range Process is a passive100

scalar obeying a convective-diffusion equation, with advection velocity controlled by the probability to jump to the101

right or to the left, and diffusivity controlled by the number of boxes: the larger the number of boxes (the finer the102

resolution) the smaller the diffusivity. This observation illuminates the well-known observation that the numerical103

diffusion of a discrete model of diffusion is inversely proportionnal to the resolution. The parameter f controls the104

regime: f = 0 corresponds to a purely conductive regime whereas the larger f the more convective the regime. In the105

sequel, we calculate the entropy production and the Kolmogorov-Sinai entropy function of f . These two quantities106

reach a maximum noted respectively fmaxEP and fmaxKS . The MEP principle (resp. the MKS principle) states that107

the system will choose f = fmaxEP
(resp f = fmaxKS

).108

We will show first of all in this article that numerically fmaxEP
≈ fmaxKS

even far from equilibrium for a number of109

boxes N roughly corresponding to the resolution taken by Paltridge (1975) in his climate model. This result is similar110

to what we found for the ASEP model (Mihelich et al. 2014) and thus gives another example of a system in which111

the two principles are equivalent. Moreover we will see analytically that fmaxEP
and fmaxKS

have the same behavior112

in first order in the difference of the chemical potentials between the two reservoirs for N large enough. These results113

provide a better understanding of the relationship between the MEP and the MKS principles.114

III. NOTATIONS AND USEFUL PRELIMINARY RESULTS115

This Markovian Process is a stochastic process with a infinite number of states in bijection with NN . In fact, each116

state can be written n = (n1, n2, ...., nN ) where ni is the number of particule lying in site i. We call Pn the stationary117

probability to be in state n. In order to calculate this probability it is easier to use a quantum formalism than the118

Markovian formalism as explained in the following articles (Domb 2000, Levine et al. 2005).119

120

The probability to find m particles in the site k is equal to: pk(nk = m) =
zm
k

Zk
where Zk is the analogue of the grand121

canonical repartition function and zk is the fugacity between 0 and 1. Moreover Zk =
∑∞

i=0 z
i
k = 1

1−zk
. So, finally122

pk(nk = m) = (1− zk)z
m
k , (4)

We can show that the probability P over the states is the tensorial product of the probability pk over the boxes:123
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P = p1 ⊗ p2 ⊗ ....⊗ pN ,

Thus events (nk = m) and (n′
k = m′) for k ̸= k′ are independent and so:124

P (m1,m2, ...,mN ) = p1(n1 = m1) ∗ ... ∗ pN (nN = mN ), (5)

So finally125

P (m1,m2, ...,mN ) =

N∏
k=1

(1− zk)z
mk

k . (6)

Moreover, with the Hamiltonian equation found from the quantum formalism we can find the exact values of zk126

function of the system parameters:127

zk =
(pq )

k−1[(α+ δ)(p− q)− αβ + γδ]− γδ + αβ(pq )
N−1

γ(p− q − β) + β(p− q + γ)(pq )
N−1

, (7)

and the flux of particles c:128

c = (p− q)
−γδ + αβ(pq )

N−1

γ(p− q − β) + β(p− q + γ)(pq )
N−1

. (8)

Finally, the stationary density is related to the fugacity by the relation:129

ρk = zk
∂ logZk

∂zk
=

zk
1− zk

. (9)

A. Entropy Production130

For a system subject to internal forces Xi and associated fluxes Ji the macroscopic entropy production is well known131

(Onsager 1931) and takes the form:132

σ =
∑
i

Ji ∗Xi.

The Physical meaning of this quantity is a measure of irreversibility: the larger σ the more irreversible the system.133

In the case of the zero range process irreversibility is created by the fact that p ̸= q. We will parametrize this134

irreversibility by the parameter f = p− q and we will take p+ q = 1. In the remaining of the paper, we take, without135

loss of generality, p ≤ q which corresponds to a flow from left to right. Moreover, the only flux to be considered is136

here the flux of particules c and the associated force is due to the gradient of the density of particules ρ : X = ∇ log ρ137

(Balian 1992).138

Thus, when the stationary state is reached ie when c is constant:139

σ =

N−1∑
i=1

c.(log(ρi)− log(ρi+1)) = c.(log(ρ1)− log(ρN )). (10)

Thus, according to Eqs. (7), (8), (9) and (10) when N tends to +∞ we obtain:140

σ(f) =
αf

f + γ
(log(

α

f + γ − α
)− log(

(α+ δ)f + γδ

f(β − α− δ) + βγ − γδ
)). (11)

Because f ≥ 0 the entropy production is positive if and only if ρ1 ≥ ρN iff z1 ≥ zN . This is physically coherent141

because fluxes are in the opposite direction of the gradient. We remark that if f = 0 then σ(f) = 0. Moreover, when142

f increases ρ1(f) decreases and ρ2(f) increases till they take the same value. Thus it exists f , large enough, for which143

σ(f) = 0. Between these two values of f the entropy production has at least one maximum.144
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B. Kolmogorov-Sinai Entropy145

There are several ways to introduce the Kolmogorov-Sinai entropy which is a mathematical quantity introduced by146

Kolmogorov and developed by famous mathematician as Sinai and Billingsley (Billingsley 1965). Nevertheless, for a147

Markov process we can give it a simple physical interpretation: the Kolmogorov-Sinai entropy is the time derivative148

of the Jaynes entropy (entropy over the path).149

SJaynes(t) = −
∑
Γ[0,t]

pΓ[0,t]
. log(pΓ[0,t]

), (12)

For a Markov Chain we have thus:150

SJaynes(t)− SJaynes(t− 1) = −
∑
(i,j)

µistatpij log(pij), (13)

where µstat = µistati = 1...N is the stationary measure and where the pij are the transition probabilities.151

Thus the Kolmogorov-Sinai entropy takes the following form:152

hKS = −
∑
(i,j)

µistatpij log(pij), (14)

For the Zero Range Process ,we show in appendix that it can be written as:

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))) + (p log(p) + q log(q))
N∑
i=1

(1− zi)

+ (γ log(γ) + p log(p))(1− z1) + (β log(β) + q log(q))(1− zN ).

(15)

IV. RESULTS153

We will start first by pointing to some interesting properties of fmaxEP
and fmaxKS

, then by presenting numerical154

experiments on the ZRP model and finally concluding with some analytical computations.155

Let us first note that for N ,α,β,γ,δ fixed the entropy production as well as the Kolmogorov-Sinai entropy seen as156

functions of f admit both a unique maximum. When N tends to infinity and f = 0, using Eq.(7) (i.e. the symmetric157

case), we find that z1 = α
γ and zN = δ

β . Thus, the system is coupled with two reservoirs with respective chemical158

potential α
γ (left) and

δ
β (right). For α

γ ̸= δ
β the system is out of equilibrium. We assume, without loss of generality,159

z1 ≥ zN which corresponds to a flow from left to right. As a measure of deviation from equilibrium we take s = z1−zN :160

the larger s, the more density fluxes we expect into the system.161

First we remark that fmaxEP hardly depends on N whereas fmaxKS depends strongly on N . This is easily understood162

because σ depends only on z1 and zN whereas hKS depends on all the zi. Moreover, the profile of the zi depends163

strongly on N . In particular, for a fixed difference of potential between the reservoirs , fmaxEP
(N) tends towards a164

non-zero value, while fmaxKS (N) tends to 0 when N goes to infinity.165

Moreover, fmaxEP
and fmaxKS

coincide even far from equilibrium for N corresponding to the choice of Paltridge166

(1975) N ≈ 10 ∼ 100. For N fixed, as large as one wants, and for all ϵ, as small as one wants, it exists ν such that167

for all s ∈ [0; ν] |fmaxEP − fmaxKS | ≤ ϵ.168

These observations are confirmed by the results presented in Figures 1 and 3 where EP and KS are calculated using169

Eq. (7) and (15) for s = 0.13 and three different partitions: N = 20 N = 100 et N = 1000. The figure shows170

that fmaxEP and fmaxKS coincide with good approximation for N = 20 and N = 100. But then when N increases171

fmaxKS (N) tends to 0 whereas fmaxEP (N) tends to a non-zero value.172

In Figure 2 we represent the Entropy Production (top) and KS Entropy (bottom) function of f for N = 1000 and173

for three value of s: s = 0.13; s = 0.2; s = 0.04. This supports the claim that for N fixed, we could tried different174

values of s such that s ∈ [0; ν] |fmaxEP − fmaxKS | ≤ ϵ. Figure 3 shows that ∆fmax is minimum when the system is175

close to equilibrium whereas the further the system is from equilibrium (when s increases) the more ∆fmax increases.176

Moreover the optimal resolution where fmaxEP
and fmaxKS

coincide is approximately 10 ∼ 100. Then ∆fmax is177

maximum at N = 500 and s = 0.05. ∆fmax is obvously linear in s, for small values of s, but the behaviour with N178

is more complicated.179
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Such numerical investigations suggest to understand why fmaxKS (N) and fmaxEP (N) have different behaviors function180

of N , and why for N large enough fmaxKS
and fmaxEP

have the same behavior of first order in the deviation from181

equilibrium measured by the parameter s. We will see that we can get a precise answer to such questions by doing182

calculations and introducing a sort of Hydrodynamics approximation.183

A. Taylor expansion184

From Eq. (15) it is apparent that fmaxKS depends on N whereas from Eq. (10) we get that fmaxEP hardly depends185

on N . Indeed there is a difference between fmaxEP
and fmaxKS

, i.e. a difference between the two principles for the186

Zero Range Process. Nevertheless, we have seen numerically that there is a range of N , namely N ≈ 10 ∼ 100 for187

which the maxima fairly coincide.188

Using Eqs. (15) (7) (11) we compute analytically the Taylor expansion of fmaxEP
and fmaxKS

in s. We will show189

the main result: fmaxEP
and fmaxKS

have the same Taylor expansion in first order in s for N large enough. Their190

Taylor expansions are different up to the second order in s but it exists an N , i.e. a resolution, such that fmaxEP
and191

fmaxKS coincident up to the second order.192

Let us start by computing fmaxKS
. It does not depend of the constant terms of hKS in Eq.(15) and therefore we need193

only concern ourselves with :194

−(p log(p)+ q log(q))(

N∑
i=1

(zi)− 1)+ (γ log(γ)+ p log(p))(1− z1)+ (β log(β)+ q log(q))(1− zN ) = N.H(f,N, α, γ, β, δ).

(16)
Using Eq.(7), the expression of H(f,N, α, γ, β, δ) takes an easy form. To simplify the calculations, we restrict the195

space of parameter by assuming α+ γ = 1 and β + δ = 1 and we parametrize the deviation from equilibrium by the196

parameter s̄ = α− δ. Moreover let’s note a = 1
N . Thus, we have H(f,N, α, γ, β, δ) = H(f, a, α, s̄). In order to know197

the Taylor expansion to the first order in s̄ of fmaxKS
we develop H(f, a, α, s̄) up to the second order in f ; i.e. we198

FIG. 1. Entropy Production calculate using 11 (left) and KS Entropy calculate using 7 and 15 (right) function of f for s = 0.13
and respectively N = 20 N = 100 et N = 1000
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have H(f, a, α, s̄) = C + Bf + Af2 + o(f2) then we find fmaxKS = −B/2A that we will develop in power of s̄. This199

is consistent if we assume f ≪ a.200

After some tedious but straightforward calculations, we get at the first order in s̄201

fmaxKS
(s̄) =

1

4

(1− α)− a(α+ 2)

α(1− α) + 2aα(α− 1)
s̄+ o(s̄). (17)

and so,202

fmaxKS (s̄) =
1

4α
s̄+

3a

4(α− 1)
s̄+ o(s̄) + o(as̄). (18)

We repeat the same procedure starting from Eq.(11) and we obtain:203

FIG. 2. Entropy Production (left) and KS Entropy (right) function of f for N = 1000 and respectively s = 0.13; s = 0.2;
s = 0.04

FIG. 3. 2D plot representing ∆fmax = fmaxEP − fmaxKS in the (N, s) space.
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fmaxEP (s̄) =
s̄

4α
+ o(s̄) + o(a). (19)

Thus, since a = 1
N ≪ 1 the behaviour of fmaxKS (s̄) and fmaxEP (s̄) is the same for s̄ small enough.204

We remark that we can strictly find the same result by solving the hydrodynamics continuous approximation given205

by Eq. (3). This equation is a classical convection-diffusion equation. We remark that, by varying f , we change the206

convective behavior: f = 0 corresponds to a purely diffusive regime whereas by increasing f we enhance the role of207

convection. If the system is near equilibrium then fmaxEP ≈ fmaxKS ≈ 0 and the system is purely diffusive. When208

the system is out of equilibrium fmaxEP
and fmaxKS

are different from 0 and corresponds to an (optimal) trade-off209

between purely diffusive and convective behavior.210

One can verify this numerically: We first calculate the exact values of the Entropy Production function of f using211

Eq. (7) and the Kolmogorov-Sinai Entropy function of f using Eqs. (7) (15). Then we approximate these two curves212

with a cubic spline approximation in order to find fmaxEP
and fmaxKS

.213

FIG. 4. fmaxEP (left) and fmaxKS (right) function of s̄ for α = 0.5 and N = 100. We remark than fmaxKS and fmaxEP have
both a linear behaviour with slope respectively 0.48 and 0.49 which is really close to 1

4α
= 0.5

FIG. 5. We plot the slope of fmaxKS(s̄) (left) and fmaxEP (s̄) (right) function of α and in black the curve f(s̄) = 1
4α

s̄. We

remark than the approximation fmaxKS (s̄) ≈ fmaxEP (s̄) ≈= 1
4α

s̄ is good

In order to find the optimal resolution N∗ we can go one step further by expanding fmaxEP and fmaxKS up to the214

second order in s̄:215

fmaxEP
(s̄) =

s̄

4α
+

s̄2(α+ 1)

8α2(α− 1)
+ o(s̄2) + o(a). (20)

fmaxKS (s̄) =
1

4

(1− α)− a(α+ 2)

α(1− α) + 2aα(α− 1)
s̄+

(1− α)2 + a(α2 − 2α+ 1)

8α2(α− 1)2(1− 2a)
s̄2 + o(s̄2). (21)



9

Thus, fmaxEP and fmaxKS coincide in second order in s̄ iff a satisfies the quadratic equation:216

(4α− 6α2 + 6α3 − 4s̄+ 3α2s̄)a2 − 1

2
(8α− 8s̄+ 3α2s̄− 6α2 + 6α3)a− (1− α) = 0. (22)

This equation has a unique positive solution because the leading coefficient is positive for s small enough (4α− 6α2+217

6α3−4s̄+3α2s̄) ≥ 0 and the constant term is negative −(1−α) ≤ 0. We remark that the optimal resolution N∗ = 1
a∗218

depends on the parameters of the system namely on the degree of non-equilibrium. This fact can be the explanation219

for two well known issues in climate/weather modeling. First, it explains that, when downgrading or upgrading the220

resolution of convection models, the relevant parameters must be changed as they depend on the grid size. Second, it221

suggests that if the resolution is well tuned to represent a particular range of convective phenomena, it might fail in222

capturing the dynamics out of this range: since finer grids are needed to better represent deep convection phenomena,223

the deviations between model and observations observed in the distribution of extreme convective precipitation may224

be due to an inadequacy of the grid used.225

V. CONCLUSION226

We have shown how a simple 1D Markov Process, the Zero Range Process, can be used to obtain rigorous results227

on the problem of parametrization of the passive scalar transport problem, relevant to many geophysical applications228

including temperature distribution in climate modeling. Using this model, we have derived rigorous results on the link229

between a principle of maximum entropy production and the principle of maximum Kolmogorov- Sinai entropy using230

a Markov model of the passive scalar diffusion called the Zero Range Process. The Kolmogorov-Sinai entropy seen as231

function of the convective velocity admit a unique maximum. We show analytically that both have the same Taylor232

expansion at the first order in the deviation from equilibrium. The behavior of these two maxima is explored as a233

function of the resolution N (equivalent to the number of boxes, in the box approximation). We found that for a fixed234

difference of potential between the reservoirs , the maximal convective velocity predicted by the maximum entropy235

production principle tends towards a non-zero value, while the maximum predicted using Kolmogorov-Sinai entropy236

tends to 0 when N goes to infinity. For values of N typical of those adopted by climatologists (N ≈ 10 ∼ 100), we237

show that the two maxima nevertheless coincide even far from equilibrium. Finally, we show that there is an optimal238

resolution N∗ such that the two maxima coincide to second order in s̄, a parameter proportional to the non-equilibrium239

fluxes imposed to the boundaries. The fact that the optimal resolution depends on the intensity of the convective240

phenomena to be represented, points to new interesting research avenues, e.g. the introduction of convective models241

with adaptive grids optimized with maximum entropy principles on the basis of the convective phenomena to be242

represented.243

On another hand, the application of this principle to passive scalar transport parametrization is therefore expected to244

provide both the value of the optimal flux, and of the optimal number of degrees of freedom (resolution) to describe245

the system. It would be interesting to apply it to more realistic passive scalar transport problem, to see if it yield to246

model that can be numerically handled (i.e. corresponding to a number of bow that is small enough to be handled by247

present computers). In view of applications to atmospheric convection, it would be interesting to apply this procedure248

to the case of an active scalar, coupled with a Navier-Stokes equation for the velocity. In such a case, the role of f249

will be played by the turbulent subgrid Reynolds stresses. The heat fluxes and N∗ will be fixed by the coarse-graining250

length, and the optimization procedure will in principle provide the optimum subgrid Reynolds stresses at a given251

resolution N . Moreover, by imposing coincidence of MKS and MEP, one could get both the Reynolds stresses, heat252

fluxes and the optimum resolution. Moreover, on a theoretical side, it will be interesting to study whether for general253

dynamical systems, there exists a smart way to coarse grain the Kolmogorov- Sinai entropy such that its properties254
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VI. APPENDIX: COMPUTATION OF THE K-S ENTROPY295

In this appendix, we compute the Kolmogorov-Sinai entropy for the Zero Range Process, starting from its definition296

Eq. (14). In the frame of our Zero Range Process , we use Eqs. (14) and (6) to write it as:297

hKS = −
∑
i

µistat

∑
j

pij log(pij) = −
+∞∑

m1=0

...
+∞∑

mN=0

P (m1,m2, ...,mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j)

= −
+∞∑

m1=0

P (m1)...
+∞∑

mN=0

P (mN )
∑
j

p(m1,...,mN )→j log(p(m1,...,mN )→j) (23)

We thus have to calculate
∑

j p(m1,...,mN )→j log(p(m1,...,mN )→j) that we will refer to as (∗) . We will take p + q =298

α+δ = β+γ = 1 and dt = 1
N in order to neglect the probabilities to stay in the same state compare to the probabilities299

of changing state. There are five different cases to consider:300

1. if ∀i mi ≥ 1 so the possible transitions are:301

(m1,m2, ...,mN ) → (m1 ± 1,m2, ...,mN ) with respective probabilities α and δ302

(m1,m2, ...,mN ) → (m1,m2, ...,mN ± 1) with respective probabilities γ and β303

and (m1, ...,mk, ...,mN ) → (m1, ...,mk ± 1, ...,mN ) with respective probabilities p and q304

305

Thus,306

(∗) = α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q)) (24)

2. if m1 ≥ 1 and mN ≥ 1 and let i be the number of mi between 2 and N − 1 equal to 0. With the same argument307

as previously we have:308

(∗) = α logα+ δ log δ + γ log γ + β log β + (N − 1− i)(p log(p) + q log(q)) (25)
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3. if m1 = 0 and mN ≥ 1 and let i the number of mi between 2 and N − 1 equal to 0 we have:309

(∗) = α logα+ δ log δ + β log β + (N − 2− i)p log(p) + (N − 1− i)q log(q) (26)

4. The same applies if m1 ≥ 1 and mN = 0 and let i the number of mi between 2 and N − 1 equal to 0 we have:310

(∗) = α logα+ δ log δ + γ log γ + (N − 1− i)p log(p) + (N − 2− i)q log(q) (27)

5. finally, if m1 = 0 and mN = 0 and let i the number of mi between 2 and N − 1 equal to 0 we have:311

(∗) = α logα+ δ log δ + (N − 2− i)(p log(p) + q log(q) (28)

Using equation 4 we find that P (mk = 0) = 1− zk and
∑+∞

i=1 P (mk = i) = zk312

313

We thus obtain than hKS writes:314

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))

+ (p log(p) + q log(q))(
N∑
r=0

r
∑

i1...iN

∏
i=i1,...ir

(1− zi)
∏

i ̸=i1...ir

zi)

+ (γ log(γ) + p log(p))zN (1− z1)(
∑

i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i ̸=i2...ir

zi)

+ (β log(β) + q log q)z1(1− zN )(
∑

i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i ̸=i2...ir

zi)

+ (β log(β) + γ log γ + p log p+ q log q)(
∑

i2...iN−1

∏
i=i2,...ir

(1− zi)
∏

i ̸=i2...ir

zi) (29)

This expression, though complicated at first sight, can be simplified. Indeed interested in the function F (a) =315 ∏N
1 (zk + a(1− zk)) and by deriving subject to a we show that:316

N∑
r=0

r
∑

i1...iN

∏
i=i1,...ir

(1− zi)
∏

i ̸=i1...ir

zi =

N∑
i=1

(1− zi) (30)

Thus we can simplify the last equation and we obtain:317

hKS = −(α logα+ δ log δ + γ log γ + β log β + (N − 1)(p log(p) + q log(q))) + (p log(p) + q log(q))
N∑
i=1

(1− zi)

+ (γ log(γ) + p log(p))(1− z1) + (β log(β) + q log(q))(1− zN )

(31)


