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Abstract.
Long’s equation describes steady-state two-dimensional

stratified flow over terrain. Its numerical solutions under vari-
ous approximations were investigated by many authors. Spe-
cial attention was paid to the properties of the gravity waves5

that are predicted to be generated as a result. In this paper
we derive a time-dependent generalization of this equation
and investigate analytically its solutions under some simpli-
fications. These results might be useful in the experimental
analysis of gravity waves over topography and their impact10

on atmospheric modeling.

PACS 92.60.Gn, 92.60.Dj, 02.30.Ik

1 Introduction

Long’s equation (Long 1953,1954,1955,1959) model the
flow of inviscid stratified fluid in two dimensions over ter-15

rain. When the base state of the flow (that is the unperturbed
flow field far upstream) is without shear the solutions of this
equation are in the form of steady lee waves. Solutions of this
equation in various settings and approximations were studied
by many authors (Drazin 1961, Drazin and Moore and 1967,20

Durran 1992, Lily and Klemp 1979, Peltier and Clark 1983,
Smith 1980, 1989, Yih 1967). The most common approxi-
mation in these studies was to set Brunt-Väisälä frequency
to a constant or a step function over the computational do-
main. Moreover the values of the parametersβ andµ which25

appear in this equation were set to zero. In this (singular)
limit of the equation the nonlinear terms and one of the lead-
ing second order derivatives in the equation drop out and the
equation reduces to that of a linear harmonic oscillator over
two dimensional domain. Careful studies (Lily and Klemp30

1979) showed that these approximations are justified unless
wave breaking is present in the solution (Peltier and Clark
1983,Miglietta and Rotunno 2014).

Long’s equation provides also the theoretical framework
for the analysis of experimental data (Fritts and Alexander35

2003, Shutts et al 1988, Vernin et al 2007, Jumper et al 2004)
under the assumption of shearless base flow. (An assumption
which, in general, is not supported by the data). An exten-
sive list of references appears in (Fritts and Alexander 2003,
Baines 1995, Nappo 2012, Yhi 1980).40

An analytic approach to the study of this equation and its
solutions was initiated recently by the current author (Humi
2004). We showed that for a base flow without shear and un-
der rather mild restrictions the nonlinear terms in the equa-
tion can be simplified. We also identified the “slow vari-45

able” that controls the nonlinear oscillations in this equation
and using phase averaging approximation derived a formula
for the attenuation of the stream function perturbation with
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height. This result is generically related to the presence of
the nonlinear terms in Long’s equation. We explored also dif-50

ferent formulations of this equation [Humi 2007,2009] and
the effect of shear on the solutions of this equation.(Humi
2006,2010)

One of the major obstacles to the application of Long’s
equation in realistic applications is due to the fact that it55

is restricted to the description of steady states of the flow.
It is therefore our objective in this paper to derive a time-
dependent generalization of this equation and study the prop-
erties of its solutions. The resulting system contains two
equations for the time evolution of the density and the stream60

function. While the equation for the stream function is rather
complicated it can be simplified in two instances. The first
corresponds to the classical (steady state) Long’s equation
while the second is time dependent and new (as far as we
know). In this paper we explore the properties of the flow in65

this second case which might find some applications in the
analysis of experimental data about gravity waves (Vernin
2007, Jumper 2004, Nappo 2012) and it application to atmo-
spheric modeling (Jadwiga et al 2010, Geller et al 2013).

The plan of the paper is as follows: In Sec. 2 we derive the70

time dependent of Long’s equation. In Sec. 3 we consider the
time evolution and proper boundary conditions on shearless
flow over topography. We end up with summary and conclu-
sion in Sec 4.

2 Derivation of the time dependent Long’s Equation75

In the paper we consider the flow in two dimensions(x,z)
of an inviscid, stratified andweakly compressiblefluid that
is modeled by the following equations:

ux +wz = 0 (1)

80

ρt + uρx +wρz = 0 (2)

ρ(ut + uux +wuz) = −px (3)

ρ(wt + uwx +wwz) = −pz − ρg (4)85

where subscripts indicate differentiation with respect tothe
indicated variable,u = (u,w) is the fluid velocity,ρ is its
density,p is the pressure andg is the acceleration of gravity.

One possible interpretation of (1), is that the fluid is in-
compressible while (2) is an advection equation for a scalar90

(viz. ρ) by the flow. However since we consider in the fol-
lowing derivatives of the density we refer to this formulation
as representing a "weakly compressible fluid".

We can non-dimensionalize these equations by introduc-
ing

x̄ =
x

L
, z̄ =

N0

U0

z, ū=
u

U0

, w̄ =
LN0

U2

0

w

ρ̄ =
ρ

ρ0

, p̄=
N0

gU0ρ0

p (5)

whereL, U0, and ρ0 represent respectively characteristic
length, velocity and density.N0 is the characteristic Brunt-95

Väisälä frequency

N2

0
= −

g

ρ̄

dρ̄

dz
. (6)

whereρ̄ is the ambient density profile of the atmosphere. In
the following we letN0 to be a constant.

In these new variables eqs (1)-(4) take the following form100

(for brevity we drop the bars)

ux +wz = 0 (7)

ρt + uρx +wρz = 0 (8)

105

βρ(ut + uux +wuz) = −pz (9)

βρ(wt + uwx +wwz) = −µ−2(pz + ρ) (10)

where

β =
N0U0

g
(11)110

µ=
U0

N0L
. (12)

β is the Boussinesq parameter (Shutts et al 1988, Baines
1995) which controls stratification effects (assumingU0 6= 0)
andµ is the long wave parameter which controls dispersive115

effects (or the deviation from the hydrostatic approximation).
In the limitµ= 0 the hydrostatic approximation is fully satis-
fied, (Baines 1995, Nappo 2012).It should be observed that
these two parametersβ andµ encapsulate the atmospheric
conditions which impact the creation of gravity waves over120

terrain although one of them (µ) can be suppressed by addi-
tional scaling.

In view of eq. (7) we can introduce a stream functionψ so
that

u= ψz , w = −ψx . (13)125
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Using this stream function we can rewrite eq. (8) as

ρt + J{ρ,ψ} = 0 (14)

where for any two (smooth) functionsf,g

J{f,g} =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
(15)

Usingψ the momentum equations (9),(10) become130

βρ(ψzt +ψzψzx −ψxψzz) = −px (16)

βµ2ρ(−ψxt −ψzψxx +ψxψxz) = −pz − ρ (17)

We can suppressµ from the system (14), (16) and (17) if
we introduce the following normalized independent variables135

t̄=
t

µ
, x̄=

x

µ
, z̄ = z, µ 6= 0. (18)

Eqs. (14), (16) remain unchanged and (17) becomes

βρ(−ψxt −ψzψxx +ψxψxz) = −pz − ρ (19)

where we dropped the bars ont,x,z. However we observe140

that in these coordinatesψz = u andψx = −µw.
Thus after all these transformations the system of equa-

tions governing the flow is (14), (16) and (19).
To eliminatep from (16) and (18) we differentiate these

equations with respect toz,x respectively and subtract. This145

leads to

βρz(ψzt +ψzψzx −ψxψzz)+

βρ(ψzzt +ψzψzzx −ψxψzzz)−

βρx(−ψxt −ψzψxx +ψxψxz)−

βρ(−ψxxt −ψzψxxx +ψxψxxz) = ρx (20)150

The sum of the second and fourth terms in this equation can
be rewritten as

βρ[∇2ψ)t + J{∇2ψ,ψ}]. (21)
155

(However observe that whenµ 6= 1, ∇2ψ does not represent
the flow vorticity due to the transformation (18) and therefore
the sum of the two terms in (21) is not zero in general.)

To reduce the first and third terms in (20) we use (14). We
obtain

β[ρz(ψzt +ψzψzx −ψxψzz)]− (22)

β[ρx(−ψxt −ψzψxx)+ψxψxz)] =

β[ρz(ψzt + ρzψzψzx − (ρt + ρxψz)ψzz +

ρxψxt + (ψxρz − ρt)ψxx − ρxψxψxz] =

β

{

ρzψzt + ρxψxt − ρt∇
2ψ+

1

2
J{(ψx)2 + (ψz)

2,ρ}

}

.

Combining the results of (21) and (22) eq. (20) becomes

ρ[(∇2ψ)t + J{∇2ψ,ψ}] + ρzψzt + ρxψxt+ (23)160

[

−ρt∇
2ψ+

1

2
J{(ψx)2 + (ψz)

2,ρ}

]

=
J{ρ,z}

β

Thus we have reduced the original four equations (1)-(4) to
two equations (14) and (23). This system of equations can be
considered as the generalization of Long’s equation to time165

dependent flows.
While eq. (23) is rather complicated in general it can be

simplified further in some special cases. The first is when
one considers the steady state of the flow. (This simplifies
also eq. (14)). This restriction leads to Long’s equation[Long170

1953,1954,1955,1959,Baines 1995,Yhi 1980].Furthermore
if the density derivatives associated with the momentum
terms are neglected (23) reduces to the 2D Bousinesq equa-
tion.(Tabaei,Akylas and Lamb,2005). Another case happens
when∇2ψ = 0 i.e ψ is harmonic. (Note however, that this175

does not imply that the physical vorticity∇×u is zero due
to the transformation (18) unlessµ= 1). Eq. (23) becomes

ρzψzt + ρxψxt +
1

2
J{(ψx)2 + (ψz)

2,ρ} =
J{ρ,z}

β
. (24)

Observe that the derivatives ofρ with respect to time are not180

present in this equation and this is consistent with (1).
However if ∇2ψ = 0 we can definev1 = ψz and v2 =

−ψx. (These definitions use the stretched coordinates of
(18)) and then

(v1)z − (v2)x = 0.

This implies that there exists a functionη so that

ηx = v1, ηz = v2.

That is
ηx = ψz, ηz = −ψx

Physically these relations imply thatηx = u andηz = µw.
Replacingψ by η in (24) yields

J{ηt +
1

2
[(ηx)2 + (ηz)

2] +
z

β
,ρ} = 0 (25)

185

Hence

ηt +
1

2
[(ηx)2 + (ηz)

2] +
z

β
=R(ρ) (26)

whereR(ρ) is a parameter function that can be determined
from the asymptotic conditions on the flow.This equation
is formally similar to Bernoulli equation withη playing the190

role of the velocity potential. Whenµ= 1, and the termz
β

is
interpreted as potential energyη represents potential flow.

To summarize: The equations of the flow in this case are

ρt + ηxρx + ηzρz = 0 (27)

(which replaces (14)), and (26).195
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2.1 Other Reductions of (23)

The reduction of eq. (23) was carried out above under the
assumption∇2ψ = 0. However it can be generalized to case
∇2ψ = a wherea is a constant. To this end we define

v1 = ψz, v2 = −ψx + ax

Therefore
(v1)z − (v2)x = 0,

which implies that there exists a functionη so that

ηx = v1, ηz = v2.

Hence

ηx = ψz, ηz = −ψx + ax (28)

Using these relations to substituteη for ψ in (23) leads to200

ρzηxt − ρx(ηz − ax)t +

[

−aρt +
1

2
J{(ηz − ax)2 + (ηx)2,ρ}

]

(29)

=
J{ρ,z}

β
.

Therefore

J{ηt,ρ}− aρt +
1

2
J{(ηz − ax)2 + (ηx)2,ρ} =

J{ρ,z}

β
.

(30)

205

Hence

−aρt + J{ηt +
1

2
[(ηz − ax)2 + (ηx)2] +

z

β
,ρ} = 0. (31)

Using (14) we have

−aJ{ψ,ρ}+J{ηt+
1

2
[(ηz−ax)

2+(ηx)2]+
z

β
,ρ} = 0. (32)210

It follows then that

−aψ+ ηt +
1

2
[(ηz − ax)2 + (ηx)2] +

z

β
=R(ρ). (33)

We can eliminateψ from this equation by differentiating with
respect toz and use (28)

−aηx+

[

ηt +
1

2
[(ηz − ax)2 + (ηx)2]

]

z

= −
1

β
+R(ρ)z (34)215

3 Time Evolution of Stratified Flow

In this section we shall consider the time evolution of a
stratified shearless base flow viz. a flow which satisfies as
t→−∞

lim
x→−∞

ρ0(t,x,z) =
H − z

H
, lim

x→−∞

u= 1, lim
x→−∞

v = 0

(35)220

i.e. the far upstream flow is independent of time and satisfies
asymptoticallyu= 1, v = 0 andρ0 is stratified with height
(H is a height at whichρ0 ≈ 0). The conditions onu,v imply
that asymptoticallyη0 = x. We note that this is the standard
setup that has been used to analyze experimental observa-225

tions of gravity waves (Jumper et al 2004,Vernin et al 2007,
Shutts et al, 1988). The solutions of (26) and (27) which we
discuss below represent therefore gravity waves which are
generated by low lying topography.

In these limits Eq. (27) is satisfied. Substituting these lim-230

iting values in (26) we obtain that

R(ρ) =
z

β
+

1

2
=
H(1− ρ)

β
+

1

2
(36)

However it is obvious that different profiles of the base flow
will yield differentR(ρ).

We now consider perturbations from the (shearless) base235

flow described by (35) due to shape of the topography viz.

η = η0 + ǫφ, ρ= ρ0 + ǫζ. (37)

From eqs. (26), (27) we obtain to first order inǫ the following
equations forφ andζ

∂φ

∂t
+
∂φ

∂x
+
Hζ

β
= 0 (38)240

∂ζ

∂t
+
∂ζ

∂x
−

1

H

∂φ

∂z
= 0 (39)

To find the general form of the solution of these equations
we use (38) to expressζ in terms ofφ and substitute in (39).
This yields the following equation forφ245

∂2φ

∂t2
+ 2

∂2φ

∂t∂x
+
∂2φ

∂x2
+

1

β

∂φ

∂z
= 0 (40)

It is possible to find "elementary solutions" to this equation
by separation of variables if we let

φ= p(t,x)F (z),

wherec is arbitrary positive constant so thatφ to represents
a perturbation moving forward in time. This leads to

∂2p
∂t2

+ 2 ∂2p
∂t∂x

+ ∂2p
∂x2

p
= −

1

β

F (z)′

F (z)
= −ω2 (41)

whereω2 is the separation of variables constant. Primes de-250

note differentiation with respect to the appropriate variable.
Solving (41) we obtain the following elementary solution

for φ

φω = Cω exp[βω2z] [G(x− t)cosωt+K(x− t)sinωt]
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(42)

whereG(x− t),K(x− t) are arbitrary smooth functions and255

Cω is a constant.
The corresponding solution forζ can be obtained by sub-

stituting this result in (38)

ζ = Cω

βω

H
exp[βω2z] [G(x− t)cosωt−K(x− t)sinωt] .

(43)

Hence the general solution forφ can be written as260

φ=

∞
∫

0

exp[βω2z][Gω(x− t)cosωt+Kω(x− t)sinωt]dω

(44)

with similar expression forζ.

3.1 Boundary Conditions

We consider a flow in an unbounded domain over topography265

with shapef(x) and maximum heighth and impose the fol-
lowing boundary conditions onρ andψ in the limitsx= −∞
andt= −∞

ψ(−∞,−∞,z) = z, ρ(−∞,−∞,z) = ρ0(z). (45)

(This implies that in this limitsη = x).270

At the topography we impose the following boundary con-
dition onρ at t= 0

ρ(0,x,ǫf(x)) = ρ0(ǫf(x)) =
H − ǫf(x)

H
(46)

but
ρ(0,x,ǫf(x)) ≈ ρ0(0,x,0)+ ǫζ(0,x,z).

Hence at the topography

ζ(0,x,ǫf(x)) = −
f(x)

H
. (47)275

To derive the corresponding boundary condition forη
we first consider the appropriate boundary condition on the
stream functionψ along the topography. To this end we as-
sume that the topography is a line on which the stream func-
tion is constant and this constant can be chosen to be zero.280

For the base flow described in (45)ψ0 = z andψ = ψ0 +ǫψ1

whereψ1 is the perturbation due to to the topography. Hence
along the topography

0 = ψ0 + ǫψ1 = z+ ǫψ1(0,x,ǫf(x)) = (48)

ǫf(x)+ ǫψ1(0,x,ǫf(x))285

Therefore along the topography we letψ1(0,x,ǫf(x)) =
−f(x). We now observe that by definitionψx = ηz . But
ψx = ǫψ1

x = −ǫf ′(x), (where primes denote differentiation

with respect to x) andη = −x+ ǫφ. Therefore we infer that290

the boundary condition onη along the topography is

φz(0,x,ǫf(x)) = −f ′(x) (49)

(which is consistent with (39)).
As to the boundary condition onη(t,∞,z) we observe that

the system (26),(27) contains no dissipation terms and there-295

fore only radiation boundary conditions can be imposed in
this limit. (Physically this means that the horizontal group
velocity is positive and energy is radiated outward). Simi-
larly atz = ∞ it is customary to impose (following [7]) radi-
ation boundary conditions. However in view of (42)-(43) it is300

obvious that the perturbation described by these equation is
propagating forward in time and this condition is satisfied.A
formal verification of this constraint is possible by expressing
F, G, K in these equations using Fourier transform represen-
tation.305

For low lying topography (vizǫ≪ 1) it is customary to
replace the boundary conditions (46), (47) by

ζ(0,x,0) = −
f(x)

H
, φz(0,x,0) = −f ′(x), (50)

Example If f(x) is given by a "witch of Agnesi" curve
then310

f(x) =
a2

(a2 + x2)
, f ′(x) = −

2a2x

(x2 + a2)2
(51)

Let the initial perturbation inρ be

ζ(0,x,z) = eβλ2z ,

whereλ is a constant. From (50) we infer that the general
expression forζ is given by (43) withω = λ. Hence att= 0
we must have

G(x) = −
f(x)

βλ

Similarly the boundary condition onφ yields

K(x) = −
f ′(x)

βλ2

Figs.1 and2 exhibit cross sections of the perturbation atz =
2 andx= 20 at different times withCω = 0.1, a= 2, and
λ= 1.

4 Summary and Conclusions315

Steady state solutions of Long’s equation model the verti-
cal structure of plane parallel gravity waves. These solutions
are useful, for example, in the parameterizations of unre-
solved gravity wave drag where the WKBJ approximation is
invoked to describe the time dependent amplitude spectrum320

of a packet of gravity waves propagating in a slowly varying
background.
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The present paper presents an alternative analytical ap-
proach to solve (under several restrictions) this and simi-
lar time dependent problems without having to invoke the325

WKBJ approximation. The analytical insights derived from
this approach might be used to complement and verify the
numerical results obtained from the WKJB method.
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Figure 1. A cross section of the perturbation inρ at z = 2
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Figure 2. A cross section of the perturbation inρ at x=20


