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Abstract. 1 Introduction
Long’s equation describes steady-state two-dimensional

stratified flow over terrain. Its numerical solutions undariv , .

ous approximations were investigated by many authors. Spe'rongs equation (Long 1953,1954,1955,1959) model the

cial attention was paid to the properties of the gravity veate ﬂO.W %Anws?:d stratmed flu:cd r:n ]EIWO dlrr]n enS'?]ns over tert-) d
that are predicted to be generated as a result. In this pap in. When the base state of the flow (that is the unperturbe

we derive a time-dependent generalization of this equatiod °* fi_eld far l_Jpstream) Is without shear the solutiqns of this_
and investigate analytically its solutions under some §imp equation are in the form of steady lee waves. Solutions ef thi

fications. These results might be useful in the experimenta quation in various settings and approximations were stldi

analvsis of aravity waves over tonoaraphy and their impact®y Many authors (Drazin 1961, Drazin and Moore and 1967,
on ailmlosphgeric\:”rri/ov:jleﬁng v pography ir imp Durran 1992, Lily and Klemp 1979, Peltier and Clark 1983,

Smith 1980, 1989, Yih 1967). The most common approxi-
mation in these studies was to set Brunt-Vaisala frequency
to a constant or a step function over the computational do-
;s main. Moreover the values of the parametéand . which
appear in this equation were set to zero. In this (singular)
limit of the equation the nonlinear terms and one of the lead-
ing second order derivatives in the equation drop out and the
equation reduces to that of a linear harmonic oscillator ove
o two dimensional domain. Careful studies (Lily and Klemp
1979) showed that these approximations are justified unless
wave breaking is present in the solution (Peltier and Clark
1983, Miglietta and Rotunno 2014).
Long’s equation provides also the theoretical framework
s for the analysis of experimental data (Fritts and Alexander
2003, Shutts et al 1988, Vernin et al 2007, Jumper et al 2004)
under the assumption of shearless base flow. (An assumption
which, in general, is not supported by the data). An exten-
sive list of references appears in (Fritts and Alexandei3200
o Baines 1995, Nappo 2012, Yhi 1980).

An analytic approach to the study of this equation and its
solutions was initiated recently by the current author (Hum
2004). We showed that for a base flow without shear and un-
der rather mild restrictions the nonlinear terms in the equa

5 tion can be simplified. We also identified the “slow vari-
able” that controls the nonlinear oscillations in this etipa
and using phase averaging approximation derived a formula
PACS 92.60.Gn, 92.60.Dj, 02.30.1k for the attenuation of the stream function perturbatiorhwit
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2 Humi: Time Dependent Long Equation

height. This result is generically related to the preserfce o We can non-dimensionalize these equations by introduc-
the nonlinear terms in Long’s equation. We explored also dif ing
ferent formulations of this equation [Humi 2007,2009] and

the effect of shear on the solutions of this equation.(Humiz = f, zZ= &z, a= i, W= LN
2006,2010) L Uo Uo Us

One of the major obstacles to the application of Long’s - _ £ p= No p (5)
equation in realistic applications is due to the fact that it po’ 9Uopo

is restricted to the description of steady states of the flow
It is therefore our objective in this paper to derive a time-
dependent generalization of this equation and study tl"m,»pg?o
erties of its solutions. The resulting system contains two
equations for the time evolution of the density and the strea
function. While the equation for the stream function is eath
complicated it can be simplified in two instances. The first
corresponds to the classical (steady state) Long’s equatiowherep is the ambient density profile of the atmosphere. In
while the second is time dependent and new (as far as wéhe following we let/V, to be a constant
know). In this paper we explore the properties of the flowsin  In these new variables edd (I}-(4) take the following form
this second case which might find some applications in thefor brevity we drop the bars)
analysis of experimental data about gravity waves (Vernin
2007, Jumper 2004, Nappo 2012) and it application to atmoz + w- =0 (7)
spheric modeling (Jadwiga et al 2010, Geller et al 2013).

The plan of the paper is as follows: In Sec. 2 we derive the
time dependent of Long’s equation. In Sec. 3 we consider the
time evolution and proper boundary conditions on shearlesgt T WPz T WPz = 0 (8)
flow over topography. We end up with summary and conlfo,‘slu-
sion in Sec 4.

‘where L, Uy, and py represent respectively characteristic
length, velocity and densityV, is the characteristic Brunt-
Vaisala frequency

g dp
32—5 T (6)

Bp(ut +uu, +wu,) = —p, 9
2 Derivation of the time dependent Long’s Equation
In the paper we consider the flow in two dimensidnsz) Bp(ws + uwy +ww,) = —pu~(p, + p) (10)
of an inviscid, stratified andveakly compressibl#uid that
is modeled by the following equations: where
e 4w, =0 (1), g Nolo (11)
g
pt +upz +wp, =0 (2) - _UO 12
H= oL (12)

0 is the Boussinesq parameter (Shutts et al 1988, Baines
pluy + iy +wu,) = —p, (3) 1995) which controls stratification effects (assuming# 0)
us andy is the long wave parameter which controls dispersive
effects (or the deviation from the hydrostatic approxiroaji
In the limit « = 0 the hydrostatic approximation is fully satis-
plw + uw, +ww, ) = —p, — pg 4) fied, (Baines 1995, Nappo 2012)should be observed that
these two parameter$ and i encapsulate the atmospheric
where subscripts indicate differentiation with respecttte,,, conditions which impact the creation of gravity waves over
indicated variablen = (u,w) is the fluid velocity,p is its  terrain although one of thenu) can be suppressed by addi-
density,p is the pressure anglis the acceleration of gravity.  tional scaling
One possible interpretation dfl(1), is that the fluid is in-  In view of eq. [) we can introduce a stream functi®so
compressible whild]2) is an advection equation for a scalathat
(viz. p) by the flow. However since we consider in the fol-
lowing derivatives of the density we refer to this formutatti v =1,, w=—1¢, . (13)
as representing a "weakly compressible fluid"
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Humi: Time Dependent Long Equation

Using this stream function we can rewrite €g. (8) as

Pt + J{p,’l/)} =0 (14) 150
where for any two (smooth) functionsg

_0fog _90f9g
Jif.9} 0x 0z 0z 0x (15)

Usingt the momentum equatiord (EL]10) become s

ﬂp(wzt +Vn — wz'l/)zz) = (16)

—Dzx
6H2p(_wrt - lZJzi/Jm + 'l/)mdjzz) = —Pz—pP (17)170

We can suppresg from the system{14)[{16) and{17) if
we introduce the following normalized independent vagsbl

175

(18)

Egs. [(I}),[06) remain unchanged ahd (17) becomes
ﬂp(_'l/)mt - 'l/)z'l/)mc + 'l/)m'l/)mz) -

where we dropped the bars on, z. However we observe
that in these coordinates, = v and, = —pw.

—p.—p (19)

Thus after all these transformations the system of equa-_

tions governing the flow i€14){1L6) arld{19).

To eliminatep from (@) and [IB) we differentiate these
equations with respect tg = respectively and subtract. This

leads to

ﬂpz (wzt + 7/)27/)zm - 7/)m7/)zz)+
ﬁp(wzzt + wzwzzm - wxwzzz)_
ﬁpI(_wwt - 1/121%90 + www;vz)_

Bo(—=Yazt — VoVozz + Vatbanz) = pa (20)

3

Combining the results oE[21) and{22) €lg.J(20) becomes

p[(v21/))t + J{V%,lﬂ}] + pzwzt + p$w1t+ (23)
T+ ) + (| - T2

Thus we have reduced the original four equatidus [L)-(4) to
two equationd{14) an@{R3). This system of equations can be
considered as the generalization of Long’s equation to time
dependent flows.

While eq. [ZB) is rather complicated in general it can be
simplified further in some special cases. The first is when
one considers the steady state of the flolhi¢ simplifies
also eq.[(IK) This restriction leads to Long’s equation[Long
1953,1954,1955,1959,Baines 1995,Yhi 1988]rthermore
if the density derivatives associated with the momentum
terms are neglectefP3) reduces to the 2D Bousinesq equa-
tion.(Tabaei,Akylas and Lamb,2008nother case happens
when V2y = 0 i.e ¢ is harmonic. Note however, that this
does not imply that the physical vorticiy x u is zero due
to the transformatiolT18) unlegs= 1). Eq. [Z3) becomes

Hp.z}
B
Observe that the derivatives pfwith respect to time are not

present in this equation and this is consistent viith (1)
However if V24 =0 we can definev; =+, and v, =

.. (These definitions use the stretched coordinates of
(@3)) and then

petbait patbun + 3 T + ()%} = (24)

(’U1>Z — (UQ);E =0.
This implies that there exists a functigrso that

Nz = V1, 1z = V2.
That is
Ne = wzv Nz = —%

Physically these relations imply that = u andn, = pw.
Replacingy by n in @4) yields

The sum of the second and fourth terms in this equation can

be rewritten as
185

Bp[V2) + J{VZ,9}]. (21)

(However observe that when# 1, V21 does not represent
the flow vorticity due to the transformatidn{18) and therefo
the sum of the two terms ifL{R1) is not zero in general.)

T+ 51010+ (12 + 5.0} =0 (25)
Hence

1 z
ne + 5[(771)2 + ()% + 5= R(p) (26)

To reduce the first and third terms [@J20) we USd (14). Wewhere R(p) is a parameter function that can be determined

obtain

Blpz(at +2on — Votpzz)] —
Blpe(=tet = Votae) + Vetez)] =
Bloz(Vat + p2tbotpze — (pr + pathz)zz +
Prlut + (Vupz — )V — P2Patuz] =

ﬁ {pzwzt + pmth - ptVQw + %J{(wI)Q + (wz)va}}ms

190

(22)

from the asymptotic conditions on the flowhis equation
is formally similar to Bernoulli equation witly playing the
role of the velocity potential. When = 1, and the termg is
interpreted as potential energyepresents potential flaw

To summarize: The equations of the flow in this case are

Pt + NapPz+N2p2 = 0 (27)

(which replaced(14)), anf{R6).
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(35)

The reduction of eq[{23) was carried out above under the.e. the far upstream flow is independent of time and satisfies
assumptiorvV21) = 0. However it can be generalized to case asymptoticallyu = 1, v =0 and p° is stratified with height

V24 = a whereq is a constant. To this end we define

v =1, v2 ==, +ax

225

Therefore
(Ul)z - (UQ);E = 07
which implies that there exists a functigrso that

- - 230
N = V1, 1z = V2.

Hence
—, +ax

Ne = wzv Nz = (28)

Using these relations to substitutdor ¢ in (23) leads to

1
PNzt — pm(nz - ax)t + |—ap + 5‘]{(772 - CLI)2 + (771)2710}2%

(29)
_Hp2}

5

Therefore

1 J

J{ntvp}_apt+§J{(nz_ax)2+(nm)27p}:%' 240
(30)

Hence

1
—ape+J{m + 5[(n. — ax)’ + (1.)%] + g,p} =0. (31

Using [I3) we have

245

1
—a (b it [0 — )+ (0] 50 =0 (32)
It follows then that

1
a5~ aa)’ + ()] + 5 =

We can eliminate) from this equation by differentiating with
respect to: and use[(28)

R(p). (33)

L R(p). (39)

et |7+ S0 — a)? + (2)?] 5

2

3 Time Evolution of Stratified Flow

In this section we shall consider the time evolution of
stratified shearless base flow viz. a flow which satisfies
t— —0o0
H—z
1. 0 t? b = b)
im p°(t,z,2) 7

r——00

lim v=0

r——00

lim w=1,

r——00

(H is a height at which ~ 0). The conditions om, v imply
that asymptotically)’ = 2. We note that this is the standard
setup that has been used to analyze experimental observa-
tions of gravity waves (Jumper et al 2004, Vernin et al 2007,
Shutts et al, 1988). The solutions bf126) ahd (27) which we
discuss below represent therefore gravity waves which are
generated by low lying topography.

In these limits Eq.[{A7) is satisfied. Substituting these lim
iting values in[[Zb) we obtain that

z 1 H(l-p) 1
R(p) = 3 + 5 = 3 + 5
However it is obvious that different profiles of the base flow
will yield different R(p).

We now consider perturbations from the (shearless) base
flow described by[{35) due to shape of the topography viz.

(36)

n=n"+ep, p=p"+eC. (37)

From egs.[{26)[{27) we obtain to first ordekithe following
equations fory and(

8¢ 96 HC

5 ot g (38)
¢ ¢ 10¢

o Tor Ho: o (39)

To find the general form of the solution of these equations
we usel(3B) to expregsin terms of¢ and substitute i (39).
This yields the following equation fap

¢
otox

0%
o2

0% 10

It is possible to find "elementary solutions" to this equatio
by separation of variables if we let

(b :p(tvx)F(Z)v

wherec is arbitrary positive constant so thatto represents
a perturbation moving forward in time. This leads to

2p
ot

2 2
+ 250 + 5
p B F(z)

wherew? is the separation of variables constant. Primes de-
2 note differentiation with respect to the appropriate Vialea
a5 solving [@1) we obtain the following elementary solution
for ¢

_lF(z)’i 2

= —w

(41)

b = C,, exp[Buw?z] [G(z — t) coswt + K (x — t) sinwt]
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Humi: Time Dependent Long Equation

(42) 290

whereG(z —t), K (x—t) are arbitrary smooth functions and
C,, is a constant.

The corresponding solution f@rcan be obtained by sub-
stituting this result in[(38)

295

(=0C, %d exp[Bw?2] [G(x —t) coswt — K (z — t)sinwt].
(43)

Hence the general solution fgrcan be written as

300
oo

= /exp[ﬁsz] [Go(x —t)coswt + K, (x —t)sinwt] dw

0
(44)

with similar expression fog.

3.1 Boundary Conditions

We consider a flow in an unbounded domain overtopograph)c((),x,o) =_ f(@) , 02(0,2,0) = —f'(x),

with shapef (x) and maximum height and impose the fol-
lowing boundary conditions gmands in the limitsz = —oo
andt = —oo

Y(—o0, —oo,z) =z, p(—o0, —oo,z) = pO(z>. (45)

(This implies that in this limitg) = x).

5

with respect to x) aneh = —z + e¢. Therefore we infer that
the boundary condition on along the topography is

¢Z(0,$,€f($)) = _fl(x)

(which is consistent witH{39)).

As to the boundary condition of(t, oo, z) we observe that
the system[{26).(27) contains no dissipation terms aneather
fore only radiation boundary conditions can be imposed in
this limit. (Physically this means that the horizontal goou
velocity is positive and energy is radiated outward). Simi-
larly at z = o it is customary to impose (following [7]) radi-
ation boundary conditions. However in view bf14P)J(43it i
obvious that the perturbation described by these equation i
propagating forward in time and this condition is satisfi&d.
formal verification of this constraint is possible by exsieg
F, G, K inthese equations using Fourier transform represen-
tation.

For low lying topography (viz <« 1) it is customary to
replace the boundary conditioisS14€).1(47) by

(49)

H (50)
Example If f(x) is given by a "witch of Agnesi" curve
then

a?

(@+2)

202z

@+ay D

fl@) = (@)=~

At the topography we impose the following boundary con- Let the initial perturbation ip be

dition onp att =0

pl0,2,7 () = (e ) = L) (@6)
but
p(0,z,ef(x)) ~ p°(0,2,0) +€C(0,z,2).
Hence at the topography
_ S
C(O,x,ef(x)) - _T~ (47)

To derive the corresponding boundary condition fpr

C(0,2,2) = 7,

where ) is a constant. Fron_{b0) we infer that the general
expression fot is given by [4B) withv = X. Hence at =0
we must have

_ [
G(z) = _ﬁ—)\
Similarly the boundary condition op yields
f'(x)
K(@)=—7 %

we first consider the appropriate boundary condition on theFigs. 1 and2 exhibit cross sections of the perturbatiorrat

stream function) along the topography. To this end we as- 9 54, — 20 at different times WithC,, = 0.1, a = 2, and
sume that the topography is a line on which the stream func- _ | ’ ’

tion is constant and this constant can be chosen to be zero.

For the base flow described {46) = z andy) = g + €y

whereq); is the perturbation due to to the topography. Hemce4 Summary and Conclusions
along the topography

0=10+ €1 =z+e1(0,z,ef () =
ef(x)+e1(0,z,ef(x)

Steady state solutions of Long’s equation model the verti-
cal structure of plane parallel gravity waves. These sohgi

are useful, for example, in the parameterizations of unre-
solved gravity wave drag where the WKBJ approximation is
Therefore along the topography we lét (0,z,¢f(x)) =s0 invoked to describe the time dependent amplitude spectrum
—f(x). We now observe that by definitiot, =7,. But of a packet of gravity waves propagating in a slowly varying
1, = epl = —ef’(z), (Where primes denote differentiation background.

(48)
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Humi: Time Dependent Long Equation

The present paper presents an alternative analytical apRichter, Jadwiga H., Fabrizio Sassi, Rolando R. Garciayard a

proach to solve (under several restrictions) this and simi-

lar time dependent problems without having to invoke the
WKBJ approximation. The analytical insights derived frfm

this approach might be used to complement and verify the

numerical results obtained from the WKJB method.
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Figure 1. A cross section of the perturbation jrat z = 2
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Figure 2. A cross section of the perturbation jrat x=20



