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Abstract

Data assimilation transfers information from an observed system to a physically-based
model system with state variables x(t). The observations are typically noisy, the model
has errors, and the initial state x(t0) is uncertain: the data assimilation is statistical. One
can ask about expected values of functions 〈G(X)〉 on the path X = {x(t0), . . . ,x(tm)} of5

the model state through the observation window tn = {t0, . . . , tm}. The conditional (on the
measurements) probability distribution P (X) = exp[−A0(X)] determines these expected
values. Variational methods using saddle points of the “action”A0(X), known as 4DVar (Ta-
lagrand and Courtier, 1987; Evensen, 2009), are utilized for estimating 〈G(X)〉. In a path
integral formulation of statistical data assimilation, we consider variational approximations10

in a realization of the action where measurement errors and model errors are Gaussian.
We (a) discuss an annealing method for locating the path X0 giving a consistent minimum
of the action A0(X0), (b) consider the explicit role of the number of measurements at each
tn in determining A0(X0), and (c) identify a parameter regime for the scale of model errors
which allows X0 to give a precise estimate of 〈G(X0)〉 with computable, small higher order15

corrections.

1 Introduction

In a broad spectrum of scientific fields, transferring the information contained in L observed
data time series yl(tn); l = 1, . . . ,L;n= 0, . . . ,m to a physically-based model of the pro-
cesses producing those observations allows the estimation of unknown parameters and20

unobserved states of the model within an observation window {t0, . . . , tm}. As a sam-
ple of these fields we note applications in meteorology (Talagrand and Courtier, 1987;
Evensen, 2009; Lorenc and Payne, 2007), geochemistry (Eibern and Schmidt, 1999), fluid
dynamics (Zadeh, 2008) and plasma physics (Mechhoud et al. , 2013), among many others.

The conditional probability distribution P (X) = exp[−A0(X)] allows evaluation of ex-25

pected values of physically interesting functions G(X) along the path. P (X) is conditioned
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on the measurements yl(tn); l = 1, . . . ,L;n= 0, . . . ,m. These are L-dimensional, while the
model state is D-dimensional; it is usually the case that D� L. Data assimilation seeks
to use the information in the y(tn) to estimate unknown parameters in the model and un-
observed states of the model. If this is accomplished, one uses prediction for t > tm to
examine the validity of the model.5

The action A0(X) contains terms giving a measurement’s influence on P (X), terms
propagating the model between the measurement times tn, and a term − log[P (x(0))]
representing the uncertainty in the initial state (Abarbanel, 2013). We discuss the famil-
iar case where additive measurement errors are independent at each tn and Gaussian
with covariance R−1m (l, l′, t); l, l′ = 1, . . . ,L. The model is a physical differential equation,10

discretized in space and time and satisfying the D-dimensional stochastic discrete time
map xa(n+ 1) = fa(x(n)) +R

−1/2
f (a,b)ηb(n); a,b= 1, . . . ,D with iid Gaussian noise error

ηa(n)∼N (0,1). We take Rm(l, l′,n) =Rm(n)δl,l′ and Rf (a,b) =Rfδa,b. Rm(n) is zero
except near observation times tn.

With these conditions the action takes a familiar form15

A0(X) =
m∑
n=0

Rm(n)

2

L∑
l=1

[xl(n)− yl(n)]2

+
Rf
2

m−1∑
n=0

D∑
a=1

[xa(n+ 1)− fa(x(n))]2− log[P (x(0))]. (1)

The conditional expected value 〈G(X)〉 of a function G(X) on the path X =
{x(t0), . . . ,x(tm)} is given as20

〈G(X)〉=

∫
dXG(X)exp[−A0(X)]∫

dX exp[−A0(X)]
. (2)

One interesting function G(X) is X itself, whose expected value gives us the average
path over the measurement window [t0, tm]. Estimates of the parameters and P (x(tm))
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permit prediction for t > tm; in this window, one compares observations and predictions
using model output with a user-selected metric. No information is passed to the model in
the prediction window. Importantly, good estimation of observed state variables (a ‘good fit’)
is not sufficient to produce confidence in the quality of the model; good prediction is critical.

To approximate the integral 〈G(X)〉 we follow the stationary path method of5

Laplace (Laplace, 1774) and seek saddle points in path space Xq; labeled by q = 0,1 . . .
satisfying ∂A0(X)/∂Xα = 0. The index α is a label for the state and time α = {a,n}. For
determining their importance in evaluating the integral Eq. (2) paths are sorted by increas-
ing action levels A0(Xq): A0(X0)≤A0(X1)≤ ·· · .

2 Evaluating 〈G(X)〉10

We take the the usual data assimilation technique (Talagrand and Courtier, 1987; Evensen,
2009; Lorenc and Payne, 2007) several steps further by

1. showing how to find a consistent path X0 for the minimum action level using an an-
nealing method,

2. demonstrating the importance of the number of measurements L at each observation15

time tn, and

3. explaining how to make systematic perturbation corrections to 〈G(X0)〉, i.e. G(X0)
evaluated on the minimum action level path..

For nonlinear problems of interest, there may be many paths Xq; q = 0,1, ... satisfying
the saddle point condition. To assess their contributions to 〈G(X)〉, we expand A0(X) in20

the neighborhood of each Xq as (note that all variables are notated in Table 2):

A0(X) =A0(Xq) + (X −Xq)α1γ
2
α1α2

(Xq)(X −Xq)α2

+
∑
r=3

A(r)(Xq)α1...αr

r!
(X −Xq)α1 . . .(X −Xq)αr . (3)
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There is an implied sum over all paired Greek indices αj . A sum over all terms with compa-
rable action level A0(Xq) then gives an approximation to 〈G(X)〉.

Changing variables to Uα = γαβ(Xq)(X−Xq)β leads to a contribution to the numerator
of 〈G(X)〉 in Eq. (2) from each Xq

exp[−A0(Xq)]

detγ(Xq)

∫
dUexp

(
−U2−V (Xq)

)
[G(Xq) +W (Xq)] (4)5

where

V (Xq) =
∑
r=3

A(r)(Xq)α1...αr

r!
(γ(Xq)−1U)α1 . . .(γ(Xq)−1U)αr ,

W (Xq) =
∑
k=1

G(k)(Xq)α1...αk

k!
(γ(Xq)−1U)α1 . . .(γ(Xq)−1U)αk

.

10

The contributions to the denominator of Eq. (2) are identical to Eq. (4), with the factor
[G(Xq) +W (Xq)] replaced by unity. We sum over the contribution of each Xq to evaluate
〈G(X)〉.

If the lowest action level A0(X0) is much smaller than all others, then exp[−A0(X0)]�
exp[−A0(Xq 6=0)] and its contribution to 〈G(X)〉 totally dominates the integral. We have15

then that

〈G(X)〉=

∫
dUexp

(
−U2−V (X0)

)[
G(X0) +W (X0)

]∫
dUexp

(
−U2−V (X0)

] , (5)

plus exponentially small corrections from the action levels associated with other saddle
paths Xq 6=0.20

3 Annealing to find a consistent minimum action level A0(X0)

We now turn to an annealing method to find the path X0 where exp[−A0(X0)]�
exp[−A0(Xq 6=0)]. Within this method, we first examine the importance of the number L
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of measurements at each observation time tn. We then present an argument that in the
integral Eq. (4) contributions to 〈G(X)〉 from the terms V (Xq),W (Xq) behave as inverse
powers of Rf as Rf/Rm becomes large. This would leave us with 〈G(X)〉 ≈G(X0) with
corrections which are a power series inR−1f . The implication is that all statistical data assim-
ilation questions, as Rf/Rm becomes large, can be well approximated by the contribution5

of the path X0 with the lowest action level A0(X0) along with corrections one can evaluate
via standard perturbation theory. Variations about 〈G(X0)〉would be small and computable.

The term in the action expressing uncertainty in the initial model state x(0), P (x(0)), is
often written assuming Gaussian variation about some base state xbase, so− log[P (x(0)]∝
(x(0)−xbase)2Rbase/2, and this has the form of the measurement term evaluated at n= 0.10

We incorporate this expression into the term with coefficient Rm in the action and no longer
display it. This term, often called a prior, is also seen at the initial condition for the time
evolution of the conditional probability distribution P (X).

3.1 Annealing Details

The annealing method starts with the observation (Quinn, 2010) that the equation for15

the saddle points Xq simplifies at Rf = 0. The action at Rf = 0 has no information
about the model, and relies solely on the measurements. The saddle point solution is
xl(n) = yl(n); l = 1,2, . . . ,L for all observation times. The other (D−L) components of
the model state vector are undetermined, and the solution is quite degenerate. As we in-
crease Rf , the action levels split, and depending on Rm, Rf , L and the precise form of20

the dynamical vector field f(x), there will be 1,2, . . . saddle points of A0(X). The saddle
points of interest are local minima.

For any Rf > 0 the search for saddle points of the action requires an unconstrained nu-
merical optimization problem to be solved: minimize A0(X). This is 4DVar in its ‘weak’ for-
mulation (Talagrand and Courtier, 1987; Evensen, 2009). The methods we have utilized25

for performing this numerical optimization range from Newton and quasi-Newton meth-
ods (Press et al., 2012) to more sophisticated interior point methods (Waëchter , 2002).
Each search for saddle paths requires an initial guess X(0) which is then iterated via the
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algorithm to produce X(1), then X(2), and continuing on to produce a final path X(final)

for each value of Rf .
We begin the annealing process by choosing the initial Rf , denoted Rf0, as very small,

but nonzero; indeed, if Rf0 was chosen to be vanishing, the set of optimal paths would be
all paths whose measured components match the data, and whose unmeasured compo-5

nents are entirely unconstrained. Such a solution is infinitely degenerate and gives no more
insight than the data itself. Therefore we begin the search at some Rf0� 1 with the first
L(m+ 1) components of X(0) taken as the observations y(tn);n= 0,1, ...,m. The remain-
ing components of X(0) are chosen from a uniform distribution reflecting the dynamical
range of the unmeasured state variables.10

Because the search algorithm is an iterative process with potentially many basins of at-
traction, it is not evident which minimum or saddle point we will hit in this initial optimization.
Accordingly, we actually start with NI copies of this procedure, making NI independent,
initial choices of X(0;r); r = 1,2, ...,NI at Rf0; in other words, we initiate many such an-
nealing procedures in parallel. These NI choices differ in the unmeasured components of15

the path, independently drawn from a uniform distribution over the range of each variable.
In the next step of the annealing process, the value of Rf is increased to Rf0ξ where

ξ > 1. Using as our initial paths the final paths X(final;r) from the previous optimization with
Rf =Rf0, we perform the numerical optimization procedure once again, independently for
each of theNI paths. This results in a new set ofNI saddle paths X(final;r) ;r = 1,2, ...,NI20

at Rf =Rf0ξ.
This process is repeated as many times as desired, increasing Rf from one iteration to

the next by a power of ξ. We use the NI final paths from each value of Rf as the initial
paths for the next value of Rf . The output is a set of NI paths and action values for each
value of β = 0,1, ...,βmax, and the action levels for each of the NI final paths is plotted for25

each Rf . Specific examples of this will be presented below.
All of these optimizations, for each r and each β, is a 4DVar calculation for which we

have used various algorithms (Press et al., 2012; Waëchter , 2002). In a sense we can
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think of this as an ensemble version of 4DVar, with the important aspect that we perform NI

calculations of 4DVar at each β.
As Rf/Rm grows large, the errors in the model diminish relative to the measurement

errors and impose high precision x(n+ 1)≈ f(x(n)) on the model dynamics. The noise
in the measurement has been taken to be Gaussian N (0,σ2), so the measurement error5

term in the action satisfies a χ2 distribution (NIST Handbook of Statistical Methods , 2012)
with mean Rmσ2(m+1)L/2 and standard deviation Rmσ2

√
(m+ 1)L/2. We note that this

observation has been made by (Bennett , 2002) when the weak form of 4DVar, here using
the action as the objective function, results in accurate representation of the dynamics.

Using properties of the χ2 distribution the action level for large Rf approximately ap-10

proaches a lowest value

A0(X0)→ Rmσ
2

2
L(m+ 1)

[
1± 1√

(m+ 1)L/2

]
. (6)

σ2 is the noise level in yl(n) and (m+ 1) is the number of measurement times tn. This
provides a consistency condition on the identification of the path X0 by giving a consistent15

minimum action value A0(X0). If the action levels revealed by our annealing procedure do
not give this result for A0(X0), it is a sign that the data is inconsistent with the model.

At the beginning of the annealing procedure when Rf =Rf0 there was a degeneracy in
the action values. As Rf increases, this degeneracy is broken and the action levels split.
If the action level A0(X0) is substantially smaller than the action level on the next saddle20

path A0(X0)�A0(X1), all expected values 〈G(X)〉 are given by G(X0), and corrections
due to fluctuations about that path. The contribution to the expected values of the path
integral for 〈G(X)〉 from X1 with the next action level is exponentially smaller, of order
exp[−(A0(X1)−A0(X0))].

The annealing procedure discussed above is different from standard simulated anneal-25

ing (Aguiar e Oliviera et al., 2012). We call this annealing because varying Rf is similar to
varying a temperature in a statistical physics problem where Rf is inversely proportional to
the temperature. At high temperatures, small Rf , the dynamics among the degrees of free-
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dom xa(n) is essentially irrelevant, and we have a universal solution where the observed
degrees of freedom match the observations. As the temperature is decreased, the dynam-
ics plays a more and more significant role, and allowed paths “freeze” out. Action levels
play the role of energy levels in statistical physics, and as the action is positive definite,
the paths are directly analogous to instantons in the Euclidian field theory represented by5

A0(X) (Zinn-Justin, 2002).
The calculations used in the annealing process may seem formidable. We have chosen

NI = 100 in the examples we present now, because we wish to make clear the scope
of the calculations and their implications. We chose this rather than concentrating now
on optimizing the algorithms. This will come with some experience with different model10

structures. Nonetheless, due to the manner in which the action levels space themselves
and split Rf is increased, it might prove less demanding to use a large NI for the first few
values of Rf , and then significantly decrease the number of paths from NI . Our goal is to
trace accurately just the lowest action value state X0 and the next X1 to estimate the scale
of the dominance of A0(X0) in performing the path integral.15

4 Examples from the Lorenz96 Model

We now present the results of a set of calculations on the Lorenz96 (Lorenz, 2006) model
used frequently in geophysical data assimilation discussions as a testbed for proposed
methods. The model has D degrees of freedom xa(t) satisfying the differential equation

ẋa(t) = xa−1(t)(xa+1(t)−xa−2(t))−xa(t) + f + ζa(t); (7)20

a= 1, . . . ,D; x−1(t) = xD−1(t), x0(t) = xD(t), xD+1(t) = x1(t); ζa(t) is N(0,R−1f ) Gaus-
sian noise. f = 8.17, for which the xa(t) are chaotic (Kostuk, 2012). We studied D = 20
and added f as an additional degree of freedom satisfying ḟ = 0. The number of model
equations in the action is therefore equal to D+ 1.25

We performed a twin experiment in which we solved these equations, with ζa(t) = 0 and
with an arbitrary choice of initial conditions x(0) using a fourth order Runga–Kutta solver

9
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with ∆t= 0.025 over 160 steps in time. Here, t0 = 0 and tm = T = 4. We then added iid
Gaussian noise with zero mean and variance σ2 = 0.25 to each time series. L= 1,2, . . . of
the data series were then represented in the action at each measurement time tn during
our annealing procedure. In our calculations Rf0 = 0.01 and ξ = 2.

In the action we selected Rm = 4, the inverse variance of the noise added to the data5

in our twin experiment, so the minimum action level we expect is 80.5L± 8.97
√
L. The

paths are (m+1)(D+1) = 3381-dimensional. Our search for minimum paths used a BFGS
routine (Press et al., 2012) to which we provided an analytical form of the gradient ofA0(X).
The search was initialized with NI = 100 times with initial paths from a uniform distribution
of values in the interval [-10,10].10

We also investigated using the public domain numerical optimization package
IPOPT (Waëchter , 2002) and found that it also worked well giving essentially the same
results as BFGS. Any existing method for 4DVar should work as well for this annealing
procedure.

In Fig. 1 we display the computed action levels for L= 5,7,8 and 9 at each value of15

logRf ∝ β . For L= 5 there are many close action levels associated with the extremum
paths of the action Eq. (1); as L increases, the lowest action level visibly separates from
the others. At the bottom of each panel, we indicate the lowest action level value and its
standard deviation. The next-lowest action level A0(X1), for L= 5,7,8, and 9, is at 403.8,
749.8, 1161.6, and 2256.1, respectively. This means for L= 5 we would have to sum over20

the contributions of many paths Xq to evaluate the expected value 〈G(X)〉. At L= 7 or
higher, X0 dominates the integral. Our estimate for the forcing parameter, set to 8.17, was
8.22 at large β.

We think it important to note that if we had begun our search for the saddle point paths
Xq at large values of Rf we would be almost sure to miss the actual path X0 which gives25

the lowest action level, since the Hessian matrix of A0 is ill-conditioned when Rf is large;
see Fig. 4.6 in (Quinn, 2010).

Another sense of why beginning a search at large values of Rf may fail to find the action
level identified in the anneal approach is that the basin of attraction of the minimum action

10



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

level is likely to be so small, relative to the size of path space, that ‘falling into it’ through an
arbitrary initial path used in any version of a variational procedure is unlikely. The annealing
method systematically tracks the known minimum for very small Rf and, in that manner,
starts in and remains in, the appropriate basin of attraction.

The real test of an estimation procedure in data assimilation is not accuracy in the es-5

timation of measured states and fixed parameters, but accuracy in prediction beyond the
observation window. The predictions require accurate estimation of the unobserved model
state variables at the end of the observation window. Indeed, one can achieve good “fits” of
observed variables which lead to inaccurate predictions for t > tm = T (Abarbanel, 2013).

As this is a twin experiment, we show in Fig. 2 the data, the estimated state variable,10

and the predicted state variable for an an observed variable x3(t) and for an unobserved
variable x12(t) for L= 8. In a real experiment, we could not compare our estimates for the
parameters or the unobserved state variables. Although the estimation procedure for the
path X0 with the minimum action value is rather good, both in estimating the 12 unobserved
states and the one parameter, there nevertheless exist errors in our knowledge of the full15

state x(t= 4). The predictions thus lose their accuracy in time because of the chaotic
nature of the trajectories at f = 8.17.

In the Lorenz96 equations, one usually has a single forcing parameter f . To see how well
our procedure works for several unknown parameters, we introduced 10 different forcing
parameters fa into the Lorenz96 model at D = 10: ẋa(t) = xa−1(t)(xa+1(t)−xa−2(t))−20

xa(t) + fa, that is, with no fluctuations in the dynamics. Noise was added to the solutions
to the Lorenz96 system before the xa(t) are used as data. For D = 10, the lowest action
level stands out from the rest at L= 4. In Table 1 we show our estimates for the ten forcing
parameters for L= 4, 5, and 6, as well as the actual value used in the calculations of the
data. In these estimates, and for the single forcing parameter reported above for D = 20,25

there is a known source of bias (Kostuk et al., 2012). As one can see in the examples it is
small here.

In the twin experiments we presented noisy data from the known model as L= 1,2, ...
data series of observations. To give some sense of what one might expect if the model were

11
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totally wrong, in the sense that the data we presented came either from a completely
different model system or from enormously noisy data, we presented data from a collection
of 1963 Lorenz model (Lorenz, 1963) oscillators to a Lorenz96 D = 10 model. Twelve time
series data are generated by four individual Lorenz63 (Lorenz, 1963) systems with different
initial conditions. Gaussian white noise with zero mean and standard deviation σ = 0.5 are5

added to each time series. All these “data” yl(t) are rescaled to lie within [−10,10].
We then place these signals as “data” in the action with the model taken as Lorenz96

D = 10, the single forcing parameter is treated as a time-dependent state variable obeying
ḟ = 0. We use L= 5 and L= 6 as measurements using the data time series taken in the
order y1(t),y3(t),y5(t),y7(t),y9(t) for L= 5, and y1(t),y3(t),y5(t),y7(t),y9(t),y2(t) for L=10

6. In Fig. 3 we display the action levels versus log[Rf/Rf0] = β associated with this for
L= 5 and 6. Results for other values of L are consistent with these. This example provides
a graphic illustration of the inconsistency of the data and the model and how this makes its
appearance in the annealing procedure.

We also investigated, but do not display here, the action levels when the parameter f is15

held at a different value in the model than was used for generating the data. In particular,
we generated the data with f = 8.17 and then held f = 18 in evaluating the action levels for
a Lorenz96 model with D = 5 and L= 1 and 2. In each case no minimum action level split
from the collection of Xq and no level was close to the consistent χ2 condition discussed
above. This actually emphasizes the importance in allowing the variational method to in-20

clude all parameters as state variables with a zero vector field, allowing the estimation of
the parameters along with the unmeasured state variables.

We now have seen that a consistent smallest action level can be identified via an an-
nealing process and the dependence of the action levels on the number of measurements,
L, has been demonstrated. We have no formal proof the path X0 gives a global minimum25

of the action; our criteria of consistency with Eq. (6) and excellent predictions after the
observation window are functionally useful features of the procedure.
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5 Corrections to the contribution of a saddle path to 〈G(X)〉

We turn back to the evaluation of the path integral for 〈G(X)〉 Eq. (2). In that integral for
our action we have

1

2
A

(2)
0 (X) = γ2αβ(X) =Rm(n)δa,lδb,l′ +Rfhαβ(X) andA(r)

0 (X) =Rfg
(r−2)(X),

5

for r ≥ 3. The functions h(X) and g(X) are derivable from the form of A0(X). These are
to be evaluated at X = Xq for the qth saddle path.

In the form of the integral Eq. (4) we see that the term in the exponential with order r in U
has order of magnitude about Rf/(Rm +Rfh(Xq))r/2 for r ≥ 3. Similarly in the expansion
of G(X) the term of order k has a denominator of order 1/(Rm +Rfh(Xq))k/2 for k ≥ 1.10

Since only terms with even powers of U are nonzero in the integral because of symmetry,
we have a collection of terms which, as Rf becomes large with respect to Rm, decrease as
1/Rf or faster. As a rule of thumb in the calculations we presented for Lorenz96 D = 20,
we see that for β = 15 or larger, or Rf/Rm ≈ 100 or larger, the terms in the path integral
beyond the quadratic term in the expansion of the action become small. A stronger estimate15

would come from evaluating the leading term in 1/Rf .

6 Conclusions

We have examined the path integral formulation of data assimilation Eq. (2) and asked
how well a variational approach to the conditional expected values of functions G(X) on
the path X = {x(0),x(1),x(2), ...,x(m)} can approximate the integral. We use Laplace’s20

method, which estimates the path integral by seeking saddle paths of the action where
∂A0(X)/∂Xα = 0. This approximation is widely used in meteorology and other fields where
it is known as weak 4DVar (Talagrand and Courtier, 1987; Evensen, 2009; Lorenc and
Payne, 2007). The action is the cost function which is minimized.

When measurement errors and model errors are distributed as iid Gaussian noise, we25

have described an annealing method in the strength Rf with which the model errors enter
13
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the action that permits following a collection of action levels from Rf = 0, where the saddle
paths are known precisely, through a set of increasing values of Rf at each of which a
numerical optimization algorithm produces a set of saddle paths which are used as the
initial conditions for the solution of the variational approximation at the next larger value of
Rf . This permits the identification of a lowest action level associated with a saddle path X0

5

where A0(X0) is split from the action values for the other possible saddle paths Xq>0) at
each Rf : A0(X0)<A0(Xq>0)). The contribution of X0 then dominates the integral.

We also explored the dependence of the action levels revealed through the annealing
method on the number of measurements L made at each observation time. When L reaches
and exceeds a critical value, related to the number of unstable directions in the deterministic10

chaotic dynamics of the model, the contribution of the path X0 is either certainly the domi-
nant contribution to the conditional expected value of G(X), or it is the only path satisfying
the saddle path condition. By expanding the integrand of Eq. (2) about X0 we argued that
the resulting corrections to the contribution of X0 produced a power series in R−1f .

In previous work with variational principles for data assimilation, we are unaware of any15

procedure such as our annealing method using Rf to identify a consistent minimum action.
Nor are we aware of a systematic exploration of the dependence of the action levels on
the number of measurements at each observation time. (Of course, there is the discussion
in Quinn, 2010, which suggested this work.) Finally, we do not know of any previous dis-
cussion of the corrections to the variational approximation, which here is shown to consist20

of small perturbations when the resolution of the model error term in the action is increased,
namely Rf becomes large.

The relation of the annealing method to familiar 4DVar calculations (Talagrand and
Courtier, 1987; Evensen, 2009) is simple to state: each set of calculations during the an-
nealing in Rf , at each value of Rf , is a 4DVar calculation. The annealing has the added25

advantage of allowing one to establish an identified lowest action value path X0 which gives
the dominant contribution to the quantities of interest, namely, the conditional expected val-
ues of functions G(X) on the path.

14
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A similar annealing procedure in the importance of the model errors as represented by
Rf can be incorporated into a Monte Carlo calculation of the path integral. The relation
between that method of approximating the high dimensional integral and the variational
method we have focused on here is through the Langevin equation in ‘algorithmic time’
described in (Abarbanel, 2013). In each approach the statistics of moments about X0 or5

marginal distributions of selected state variables is achieved by the choice of G(X). This
paper has compared those evaluations in the variational method to standard 4DVar by us-
ing 4DVar at each stage of the annealing adding the identification of the path X0 with the
lowest action level. By performing the annealing procedure in a Monte-Carlo context, one
could compare it to other standard ensemble methods such as the Ensemble Kalman Filter10

(EnKF) (Evensen, 2009). However, that is a subject for another investigation of the anneal-
ing approach; we have focused here only on variational methods.

We have worked within a framework where the measurement errors and the model errors
in the data assimilation are Gaussian, with the inverse covariance of the model errors taken
to be of order Rf . We have shown that the path which gives a consistent minimum action15

level can be traced by an annealing procedure starting with a setting where the dynamical
model essentially plays no role, Rf ≈ 0, then systematically increasing the influence of the
model dynamics. As the scale of the model error reaches about 100 times the scale of
the measurement error, the path X0 associated with a consistent global minimum action
level dominates the path integral with corrections of order 1/Rf . The important role of the20

number of measurements L at each measurement time is also demonstrated.
If the noise terms represented by the model errors is not Gaussian, one can still use the

annealing method to identify a path with the lowest action level, but showing that perturba-
tion theory about the path X0 giving that lowest action level is a power series in R−1f may
not succeed. The precise way Rf enters the matrix γ2αα′(X0) determines that.25

In this paper we do not address the typical situation where the number of measurements
actually available is less than that needed to allow the ground level of the action A0(X0) to
lie well below the next level. For a solution to that problem we have used information from
the waveform of the measurements as shown in some detail in (Rey et al., 2014).

15
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The results here justify the use of the variational approximation in data assimilation, focus
on the role of the number of measurements one requires for accuracy in that approximation,
and permits the evaluation of systematic corrections to the approximation when the form of
the action is Eq. (1). We anticipate that our use of Gaussian model error and measurement
error is a convenience and that other distributions of these errors will permit many of the5

same set of statements about the value of variational approximations to statistical data
assimilation.
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Table 1. Known and estimated forcing parameters for the Lorenz96 Model at D = 10, L= 4, 5, and
6.

Known fa L= 4 L= 5 L= 6

5.7 5.742 5.737 5.768
7.1 7.096 7.080 7.094
9.6 9.696 9.686 9.654
6.2 6.156 6.174 6.131
7.5 7.605 7.592 7.604
8.4 8.353 8.330 8.349
5.3 5.310 5.278 5.214
9.7 9.679 9.703 9.643
8.5 8.632 8.629 8.626
6.3 6.334 6.336 6.308
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Table 2. List of Important Mathematical Notations (in alphabetical order)

Symbol Description
A(X) action of path X
D dimensionality of the dynamical system

fa(x(n)) one step discrete time map of the dynamical system
L dimensionality of the measured time series
m number of time steps in observation window

P (X) conditional probability of path X given measurements y
Rf inverse of covariance matrix for model error
Rm inverse of covariance matrix for measurement noises
x(t) state variables of the dynamical system
x(0) initial state of the dynamical system
X path of the model state composed by states variables X = {x(t0), . . . ,x(tm)}
Xq paths satisfying the saddle point condition, ordered by action values A0(Xq))

y(tn) measured data time series
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Figure 1. Action levels as a function of Rf for Lorenz96 model, D = 20, Rf0 = 0.01. (a) At L= 5
we used y1(t), y3(t), y5(t), y7(t), y9(t) in the action; (b) at L= 7, y11(t), y13(t) are added; (c) at
L= 8, y15(t) is added; (d) at L= 9, y17(t) is added. The expected values of the lowest action level
are denoted by black dashed lines.
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Figure 2. Data, estimated, and predicted time series for the Lorenz96 model (Lorenz, 2006) with
D = 20, L= 8. (a) x3(t) was an observed state variable, and (b) x12(t) was unobserved. The data
(black) the estimated state variable (red) and the predicted state variable (blue) are shown for each
of them.
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Figure 3. Action levels as a function of Rf for Lorenz96 model, D = 10, Rf0 = 0.01. (a) L= 5
and (b) L= 6 when the wrong data is used for the Lorenz96 model. We actually used data from four
realizations of the Lorenz63 model (Lorenz, 1963). The structure of the action levels vs.Rf shows no
trace of the minimum allowed level Eq. (6). This indicates the data and the model are incompatible.
The action levels are also quite large, and, for L= 6, numerous and not well separated.
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