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Abstract

We present a new approach to estimate local Lyapunov vectors. The so called self-
breeding method is based on the breeding of growing modes technique from medium
range weather forecasting and consists of a continuous forecasting and rescaling cy-
cle. Using the Lorenz96 model we test and characterize the behavior of the algorithm5

regarding error growth, spatial perturbation structure estimates and orthogonalization.
The results indicate that the method can be used to generate error growing modes op-
timized for a certain rescaling interval, thus enabling the user to target specific scales
of error growth. When an additional orthogonalization procedure is applied, the method
is able to produce structures representing the error growth subspace spanned by the10

largest Lyapunov vectors.

1 Introduction

Forecasting future states of chaotic systems such as the atmosphere is prone to errors
due to the implied exponential growth of small (or infinitesimal) errors in the initial state
(Lorenz, 1963). These initial state errors, i.e. the difference between the estimation of15

the state and the true state of the system in model space, therefore inherently gener-
ate uncertainty in the forecast. Generally the spatio-temporal development of errors is
not homogeneous but depends on the state of the system itself, i.e. so called laminar
phases with less rapid error growth rates can interchange with chaotic phases exhibit-
ing rapid and large error growth. In weather forecasting this is called flow-dependent20

predictability (e.g. Berner et al., 2009).
However, the chaotic nature of a system does not imply that the forecast will leave

the attractor of the system but that its trajectory will be part of the same attractor while
deviating from the true trajectory. For short time periods, the shape of these devia-
tions is determined through a linear combination of the error modes of the system, i.e.25

the directions of the major error growth. These directions are called Lyapunov vectors
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(LVs) and the associated exponential error growth rate in each direction is determined
by the corresponding Lyapunov exponent (LE) λi (after Lyapunov, 1992). The largest
Lyapunov exponent λi is called the leading LE and the corresponding spatial structure
is the leading LV. The existence of the LVs and LEs has been proven by Oseledec
(1968).5

When investigating a chaotic system, an overall set of LVs can be estimated which
determines the average error growth regarding the system’s attractor. We will denote
these as the global LVs. However, the current state of the system, i.e. its actual dy-
namical properties at a certain point in phase space characterizing a specific flow or
weather configuration in case of atmospheric forecasting, determine the current grow-10

ing error modes. Therefore, the actual sensitivity of the system to small errors in the
state vector is not based on one set of global LVs but on a different set of LVs at each
point of its attractor. These structures are called the local LVs (e.g. Fujisaka, 1983).

To illustrate the idea, one could think of two typical weather regimes over the North-
Atlantic European regions like a westerly flow and a blocking high. The variability on15

the one to five day scale is very large in the former case with intensive baroclinic
developments and a high degree of sensitivity to the initial state while in the latter,
the variability on the larger scales is low without notable developments. In the first
case, one could imagine to obtain larger local Lyapunov exponents than in the second
case corresponding to different spatial characteristics. An even more complicated case20

could arise when there is a change between these to regimes. Classical Lyapunov
exponents and vectors would represent an average behavior between all these cases
whereas their local counterparts could be more appropriate for forecasting applica-
tions. The example also shows that the specification of the time scale or time period
respectively, might be crucial when deriving local Lyapunov characteristics. Complex25

non-linear models may have not one but multiple regimes of error growth that can be
attributed to different time scales. For instance, atmospheric large scale flow regimes
on time scales of one to five days may embed convective instability regimes on sub-
daily time scales with corresponding error growth. From a longer time scale perspective
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those smaller scale regimes appear “saturated” due to the non-linear effects keeping
the system on its attractor.

Global Lyapunov structures are useful when describing the non-linear characteristics
of a system. Further, the identification of regions with a high average sensitivity to de-
viations of the true state is especially important when planning new observing systems5

or incorporating new observations into a data assimilation scheme. To maximize the
impact of such a permanent addition of observational information, the assessment of
the spatio-temporal error growth structures associated with LVs can be used to iden-
tify locations for an optimal gain in analysis quality (e.g. Lorenz and Emanuel, 1998;
Bishop and Toth, 1999).10

For a single forecast, however, local LVs are much more important as they determine
the actual error growth of a system depending on its current position in the attractor
(e.g. Szunyogh et al., 1997). Therefore, it would be optimal to know the structure of
local LVs when predicting future system states or more precisely, the probability density
function (PDF) of the future system state.15

The general problem when estimating LVs for a system is the number of degrees of
freedom of the system. For large complex models such as weather forecasting models
there is no feasible way to calculate LVs. Therefore, one has to turn to approximate
methods. The breeding of growing modes or bred vector method described in Sect. 2
is one of these methods which uses the full nonlinear model to efficiently approximate20

uncertainty structures in initial states. A different approach to determine the local LV
structures of a system is the Singular Vector (SV) method (Buizza and Palmer, 1995)
which makes use of a tangent linear as well as an adjoint model to estimate the phase
space directions of largest error growth for a predefined optimization time.

The main difference between the BV and SV methods is that BVs describe the uncer-25

tainty structures corresponding to the leading local LV in relation to the past evolution of
the system using the full non-linear model while the SV method approximates the LVs
for the future with respect to the optimization time using a tangent-linear and adjoint
model approach. The BV method therefore project onto the so called backward LVs
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while the SVs are estimates for the forward LVs (Legras and Vautard, 1995). For appli-
cations such as numerical weather prediction (NWP) where the PDF of a future system
state is to be predicted, the forward LVs are more desireable as they are designed to
optimize the error growth with respect to the future evolution of the system.

In this paper we present an adaptation of the bred vector method called self-breeding5

to estimate forward local LVs using the full non-linear model. The approach chosen
for self-breeding also enables us to apply the breeding method to systems with non-
cyclical model space, i.e. boundary conditions are provided at the borders of the model
space. Section 2 contains a detailed description of the bred vector technique as well
as our self-breeding approach. Section 3 gives an overview of the model used and its10

respective experiment setup. Sections 5 and 6 show the results of our experiments and
the conclusions drawn.

2 The Self-breeding method

In this section we present the adaptation of a method to estimate uncertainty structures
in non-linear models called breeding of growing modes. The structures determined by15

this technique are called bred vectors (BVs).

2.1 Breeding of growing modes technique

The BV technique was first described by Toth and Kalnay (1993, 1997) and is related
to the method presented by Wolf et al. (1985). The technique estimates uncertainty
structures in dynamical systems corresponding to the so called errors of the day and20

approximate the leading local LVs. The uncertainty structures are bred by the system
by an iterative procedure called the breeding cycle:

1. Perturb the state of the system using random perturbations.

2. Advance the perturbed and unperturbed state in time using the non-linear model
of the system.25
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3. Rescale the perturbations such that their amplitude equals that of the initial per-
turbations.

4. Add the perturbations to the unperturbed initial state.

5. Repeat steps 2 to 5.

In the following, we describe this procedure in detail.5

Let xa(t0) be an analysis state vector, i.e. the best approximation of the true state
vector (e.g. the output from a data assimilation scheme), of a given model at time
t0. Random perturbations z(t0) are then added to xa(t0) leading to a perturbed state
x
′
a(t0). The full, non-linear model M is then used to advance the analysis state as well

as the perturbed state along their respective trajectories in the phase space to the next10

analysis time t1 = t0 +∆t:

xf(t1) =Mxa(t0) (1)

x′
f(t1) =Mx′

a(t0). (2)

To determine the error growth in these forecasts, a norm ‖ · ‖ is defined to measure the15

amplitude of the model state perturbations zf = xf −x
′
f. With that, we can calculate the

error growth of the perturbations from t0 to t1

eg(t1) =

∥∥x′
f(t1)−xf(t1)

∥∥
‖x′

a(t0)−xa(t0)‖
=

‖zf(t1)‖
‖za(t0)‖

. (3)

Using the error growth value eg(t1), the perturbations zf(t1) are rescaled to match the20

initial perturbation amplitude ‖za(t0)‖

za(t1) =
zf(t1)

eg(t1)
. (4)

The perturbation vector za(t1) is then added to the unperturbed state or a current
analysis state xa(t1), e.g. retrieved from a data assimilation scheme, forming the new25
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perturbed state x
′
a(t1). Then the process is repeated by advancing both – the unper-

turbed state xa(t1) as well as perturbed state x
′
a(t1) – by ∆t to the next analysis time

step, rescaling the perturbations and again, adding them to the current analysis state
and so on.

With the iterative rescaling of the growing error structures, the trajectory of the per-5

turbed state is relocated in the neighbourhood of the phase space location of the un-
perturbed or analysis state. Thus the errors are again small in relation to the new initial
state of the model. Therefore it is expected that they will grow exponentially and that
the resulting error structures – the BVs – will quickly converge towards the leading LV
(Kalnay et al., 2002).10

One of the advantages of the method is that it makes use of the full non-linear model
to estimate the uncertainty structures of the state. Therefore no linear assumptions
have to be made and no tangent linear version of the model has to be determined.
The method is easy to implement and has been used in multiple systems (e.g. Carassi
et al., 2007; Magnusson et al., 2008; Keller et al., 2008).15

In addition, the BV method can be tuned to the specific needs of the user. For ex-
ample, the use of different norms (e.g. Pazó et al., 2013) can lead to different approxi-
mations of uncertainty structures, i.e. the leading local Lyapunov vector with respect to
the properties of the breeding cycle.

2.2 Ensemble approach20

However, the user is often interested not only in the strongest growing error modes, i.e.
the leading local LV, but in forecasting the PDF of the future state of the system given
the current state. To estimate the full expansion of the uncertainty in phase space, one
would need to explore every part of uncertainty contributing to the PDF of the current
state. However, for higher dimensional models, such an undertaking is futile due to the25

large number of degrees of freedom.
A common approach is the so called ensemble method. A sample is taken from the

PDF of the current state and advanced in the future using M. However, depending on
1515
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the size of the sample, the effects of the strongest growing modes upon the ensemble
uncertainty may likely not be included in the sample and thus the ensemble forecast
will not comprise the errors giving the largest contribution to the future state PDF. If
we assume an ensemble size N, we would want our ensemble to include the local
LVs corresponding to the Nth largest local Lyapunov exponents λ1, . . . ,λN . Such initial5

condition perturbations will provide us with the most probable forecast error structures
given our sample from the initial state PDF. Such an approach will at best make use
of forward LVs as these project the initial state of the forecast onto the most likely
directions of growing errors in the future.

The breeding cycle as described in Sect. 2.1 is commonly extended to not only10

use one initial perturbation but N different perturbations. Due to the fact, that the BVs
converge towards the leading local LV, we are provided with N only slightly different
states. Corazza et al. (2003) show that additional realizations of that breeding cycle
will not result in an effective increase of the dimension of the perturbation subspace.
However, the small differences among the BV realizations define a subspace of error15

growing modes which can be used to its full extend by orthogonalizing the BVs (see
Sect. 2.4 and Keller et al., 2010, for details).

Such orthogonalized BVs are still only based on the past evolution of error growth
and do not neccessarily project onto the strongest growing error modes in the system’s
immediate future states. In the next section, we present an adaptation of breeding – the20

self-breeding method – which allows for the estimation of BVs associated with forward
LV structures. In addition, this technique also provides the means to generate state
uncertainty estimates for local area models (LAMs).

2.3 Self-breeding

We propose an alternate approach to implement the breeding cycle which we call self-25

breeding. In our method the breeding cycle is applied to the same time period over and
over again until characteristic perturbations for that specific time have evolved. Different
norms and rescaling periods can be used to target specific scales or phenomena. The
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perturbations estimated with the self-breeding method represent uncertainty structures
associated with local Lyapunov vectors. Note that these estimates correspond to the
specific time and to the targeted scale.

The method can be applied several times with different initial perturbations leading
to a set of different estimates of uncertainty structures, i.e. the BVs. These structures5

can serve as state-dependent initial conditions for ensemble forecasts which allow us to
predict the PDF of the near future model state – again, for a specific time and scale. The
BVs estimated with the self-breeding method are comparable with the perturbations
estimated using the SV method in a sense that they are the estimates of the future
error growth, i.e. they are associated with the forward LVs. In comparison to the SV10

method, self-breeding generates these perturbations by applying the full non-linear
model.

Our method is implemented as follows. We choose an arbitrary rescaling cycle time
interval δt for which we want to generate a set of localized BVs. Our breeding cycle
will then start at the initial time tinitial. We denote the unperturbed or control state at the15

initial time step as x(tinitial).
The initialization of the self-breeding cycle can be done in analogy to the standard

breeding cycle with random perturbations. However, complex non-linear models usu-
ally have several different parameters which are linked to each other as defined by the
underlying system. Therefore, an alternative approach would be to generate reason-20

able initial conditions for the cycle which are balanced between the model parameters.
One possibility to accomplish this is to conduct an initial run prior to tinitial which is also
initiated using random perturbations but allows the model to adapt to these perturba-
tions and generate balanced perturbations as initial conditions for the self-breeding
cycle.25

The perturbed state is denoted as x̃0(tinitial) with the subscript 0 indicating the initial
cycle of the self-breeding process. In a next step the full non-linear model M is then
used to advance the states x(tinitial) as well as x̃0(tinitial) to time tend. Then, a norm is
used to measure the perturbation growth

1517
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eg =
‖z0(tend)‖
‖z0(tinitial)‖

(5)

over the elapsed time with z0(tinitial) = x̃0(tinitial)−x0(tinitial) and z0(tend) = x̃0(tend)−
x0(tend) respectively. z0(tend) is then rescaled to the initial perturbation amplitude and
added to the unperturbed control state at tinitial thus leading to the initial state for the5

next breeding cycle x̃0(tinitial). The process is then repeated to “breed” the perturba-
tions. The cycling can be conducted for a fixed number of cycles or with some termi-
nating condition, e.g. until an approximation of the error growth to a saturation value
can be observed.

2.4 Orthogonalization10

As mentioned before, BVs tend to converge towards the leading local LV hence ex-
hibiting only small variations among their state vector structure. In order to maximize
the subspace spanned by the BVs an orthogonalization is applied as an ensemble
transform (ET, e.g. Bishop and Toth, 1999). The orthogonalization is implemented as
a singular value decomposition (SVD) of the similarity matrix of the single BVs (see15

Keller et al., 2010, for details). In this implementation we calculate the matrix over all
timesteps in a breeding cycle such that

Ci j =
Nt∑
t=1

NBV∑
i=1

NBV∑
j=1

(
z

(c,t)
i ·z(c,t)

j

)
(6)

is one element of the similarity matrix with Nt the number of timesteps in a breeding20

cycle, NBV the number of BVs generated, z(c,t)
i the pertubation of BV i of cycle c and

time step t.
In this way the orthogonalization is only performed in the subspace of the BVs

which is NBV-dimensional. For common applications in geophysics such as weather
1518
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forecasting NBV is much smaller compared to the dimension of the model phase space
itself hence making the orthogonalization feasible at very low computational costs.

3 Model and experiments

We conduct a series of experiments in order to test the proposed self-breeding algo-
rithm using a simple model nevertheless exhibiting chaotic behavior.5

3.1 Model

For our experiments on the self-breeding algorithm, we use the Lorenz96 model
(Lorenz, 1995) which is a toy model developed in order to investigate non-linear system
behavior in a simple environment. The Lorenz96 model can be seen as a representa-
tion of a latitude circle of the earth’s atmosphere reproducing continuous time variations10

in its parameter while exhibiting chaotic behavior. For each of the Nx parameters in the
model, the dynamics are described by

dxk
dt

= (xk+1 −xk+2) ·xk−1 −xk + F . (7)

The dynamics comprise quadratic non-linear advection, dissipation as well as a forcing15

term (F ). The model is integrated using a 4th-order Runge–Kutta scheme with the
time step as well as the forcing being set to the values originally proposed by Lorenz
(∆t = 0.005, F = 8) but for a system dimension of N = 50.

3.2 Experiment setup

To thoroughly examine the characteristics of the perturbation structures determined20

with the self-breeding algorithm, we employ several experiments with different set-
ups. These are designed to illustrate the characteristics and sensitivities of the
method regarding initial perturbation, rescaling interval and diversity. The basis for the

1519
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experiments is an unperturbed control run generated as reference with a spin up of
1000 time steps.

Then 50 sets of random perturbations are generated as deviations from the control
representing our initial conditions for the self-breeding process. This yields 50 realiza-
tions for the same initial time step. Further, the procedure is conducted for 10 different5

initial time steps.
To investigate the impact of different rescaling interval lengths, the aforementioned

experiments are repeated for different settings for the self-breeding cycle rescaling
interval δt from 10 to 100 time steps with an increment of 10. In each case, the end
of the cycling is set to the same time step of the control run in order to compare the10

characteristics from the generated breeding modes.

4 Local Lyapunov estimates

In order to investigate the representation of error growth characteristics defined by the
phase space of the Lyapunov vectors, the set of local Lyapunov vectors has to be de-
termined, i.e. the spatial structures representing the directions of error growth for the15

section of the model’s attractor corresponding to the spatio-temporal state of the self-
breeding interval. To analyze the subspace of the attractor, 50 random perturbations
are generated for each initial time step of each self-breeding experiment with the max-
imum perturbation amplitude varying from 0.005 to 0.1 and simulations are conducted
using these perturbations on the initial conditions.20

Then the linearized propagator for the 4th-order Runge–Kutta-scheme

Mt = I+
1
6

[(
I+

(
I+

(
I+

1
2
∆tJ3

)
1
2
∆tJ2

)
∆tJ1

)
∆tJ0 (8)

+
(

2I+
(

I+
1
2
∆tJ3

)
∆tJ2

)
∆tJ1 + (2I+∆tJ3)∆tJ2 +∆tJ3

]
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is calculated at each time step of each simulation with Ji the Jacobians of the system at
the (intermediate) Runge–Kutta time steps, I the identity matrix and ∆t the model time
step. These propagators are then sequentially applied (i.e. the matrices are multiplied)
to generate an overall propagator for the simulations period

M = MNt
MNt−1 . . .M1. (9)5

In order to determine the Lyapunov exponents and vectors, a matrix

M2 = MMT (10)

is caluculated. Then the average of these matrices M2 is determined over all 51 simula-10

tions (1 control plus 50 random perturbed runs). Finally, a singular value decomposition
is used obtain a set of eigenvalues ei and eigenvectors ei . Then, λi = lnei/Nt and ei
represent the local Lyapunov exponents and vectors corresponding to the evolution
of the system over the corresponding self-breeding cycling interval. The procedure is
then repeated for all self-breeding cycling periods and all target time steps. In theory,15

the global Lyapunov exponents and vectors could be obtained by repeating this pro-
cedure for an inifinite number of target time steps and averaging over the resulting
structures.

Results for the local Lyapunov estimation can be found in Figs. 1 and 2. The local
Lyapunov spectra for all experiments are shown in Fig. 1 with the exponent decreasing20

from left to right. The small black vertical line in each row represents the numerical shift
from positive to negative exponents.

The differences between the breeding cycling intervals (represented by the different
rows in the diagrams ascending from top to bottom) exhibit a flattening of the spectra
from smaller to larger rescaling intervals. Similarly, the number of positive and negative25

exponents is shifted from more negative to more epositive exponents with increasing
rescaling intervals for most target time steps. However, the change of the spectra with
the rescaling intervals is not the same for all target time steps, thus indicating the
dependence of the local Lyapunov exponents on the system’s state.
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Figure 2 shows the first four Lyapunov vector estimates for the target time step 2000
with each column representing the vector in model space determined for a specific tra-
jectory length (rescaling interval). While the structures exhibit certain similarities among
the rescaling intervals especially for the vectors corresponding to the first two local Lya-
punov exponents (right panels), the structures still differ even though they are estimated5

for the same target time step. This variability is more pronounced for vectors 3 and 4
(left panels).

5 Results

5.1 Self-breeding implementation

First, the evolution of the BVs developing when using the self-breeding technique is10

investigated. Figure 3 shows a Hovmüller diagram of the self-breeding cycles for the
first five realizations for 25 cycles with a 20 time steps rescaling interval.

After approximately ten cycles, all realizations (also those not shown) have attained
a steady four-dimensional state, i.e. the model perturbations converge to the same per-
turbed state at every iteration of the self-breeding cycle. While the model state evolution15

in the first cycles is different depending on the initial random perturbations, their spatial
structure is the same among all realizations after the convergence except for the sign
and minimal variations among the realizations. This structure would be expected to be
in correspondence with the leading local Lyapunov vector. However, a comparison with
the leftmost columns in the panels of Fig. 2 suggests that the BVs are in accordance20

with the second local Lyapunov vector. In the initial cycles, realizations 1, 2, 4 and 5
seem to converge towards the structure associated with the leading local Lyapunov
exponent but are then drawn to the second.

The average error growths (for each cycle) corresponding to the BV structures (lower
panel in Fig. 3) also demonstrate the convergence of the uncertainty estimates, with all25

realizations exhibiting the same value after the 10th iteration. During the initial phase,
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the error growth exhibits divergent behavior for the five realizations shown. All realiza-
tions exhibit a reduced error growth compared to the saturation error growth sooner or
later during the initial phase (up to cycle 11).

While realizations 1 and 4 quickly converge to the saturation error growth after a few
self-breeding cycles, realization 5 shows a pronounced error growth in the second5

cycle which is larger than that during the saturation phase. Here, the spatial struc-
tures strongly correspond to the leading Lyapunov vector, thus explaining the higher
error growth rate. During the following transition phase of this realization towards the
steady state, the error growth strongly decreses (with a minimum in cycle 8) before
rising again and finally reaching the saturation value in cycle 11. This behavior indi-10

cates that the self-breeding technique may be able to reproduce other modes of error
growth, although not by applying the simple implementation. This is further discussed
in Sect. 5.3.

To compare the perturbation structures for different rescaling intervals, further exper-
iments are conducted with a time shift of the initial state for each rescaling interval such15

that all self-breeding cycles end at the same time step relative to the control run. As dis-
cussed in Sect. 4, the local Lyapunov vectors differ for the different rescaling lenghts.
Therefore, it is expected that the self-breeding algorithm also produces different BV
structures.

As can be seen from Fig. 4, the converged error mode structures from all experi-20

ments exhibit similar spatial structures. However, the structures become more complex
and their spatial extent in model space is growing from shorter to longer rescaling inter-
vals (top to bottom). This indicates that the spatial self-breeding BV structures are also
not independent from the length of the rescaling interval, similar to the corresponding
local Lyapunov vector estimate in Fig. 2 (second panel from the left).25

The estimated BVs are specifically dependent on the processes corresponding to the
temporal scales of the chosen rescaling interval and can therefore identify uncertainty
structures, i.e. error growing modes, in accordance with the local Lyapunov estimates
corresponding to the respective rescaling interval. Therefore, the length of the rescaling
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interval can be seen as an optimization time to target specific processes and their
uncertainty or error growth characteristics with respect to the phase space state, i.e. to
the error growth characteristics of the attractor sub-space in consideration.

In the experiments for target time step 2000, the maximum average error growth is
obtained for a 40 time step rescaling interval with the growth rates being smaller for5

longer as well as shorter cycling periods (cf. Fig. 4). This also supports the hypothesis,
that specific scales of error growth can be targeted by using the length of the rescaling
interval as the different perturbation growth amplitudes can be attributed to processes
at different temporal scales when considering the same region in the system phase
space.10

5.2 Estimation of local Lyapunov vector structures

To further investigate the representation of the phase space of model error growth by
the BVs, one has to compare two vector spaces spanned by the respective two sets
of bred and LVs. The LVs are calculated according to the method described in Sect. 4
and the BVs are taken as the mature state at the end of each self-breeding cycle. One15

can not expect a one-to-one correspondence between each vector tuple. However one
can look for an orthogonal rotation matrix U applied to the BV and another orthogonal
rotation V applied to the LVs such that the corresponding expansions coefficients form
a diagonal matrix. This is a variant of the classical canonical correlation analysis (e.g.
von Storch and Zwiers, 1999). The entries of the diagonal matrix are called canonical20

correlations and indicate that an orthogonal rotation of one specific BV can be found
which projects perfectly onto a rotated LV in case that the canonical correlation is one.
Canonical correlation less than one indicate that such a pair of rotations can only be
found up to an angle ϕ between a pair of rotated BVs and LVs such that the cosϕ is
equal to the canonical correlation.25

The results of this procedure can be found in Fig. 5. The left panel shows the canon-
ical correlation coefficients of the 50 components of the BVs (y axis) to the estimated
local Lyapunov vectors for the different self-breeding cycling intervals (x axis) with a

1524
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separate diagram for each of the 10 different target time steps. While using the full set
of BVs, the correlation coefficients are either 0 or 1. The right panel shows the same
diagram but for the average over the ten different target time steps.

It can be seen that the representation of the 50-dimensional Lyapunov space by the
BVs varies considerably among the different system states. The simple self-breeding5

BVs cover at least seven dimensions of the Lyapunov space (deepest dips in the his-
tograms in Fig. 5 for target time step 2500 and breeding cycle length of 30 time steps).
In other combinations of target time step and cycling interval length the full Lyapunov
space is spanned by the BVs (highest levels of histograms). On average (Fig. 5b) ei-
ther a short cycling length interval (20 time steps) or a longer cycling interval of 80 to10

100 timesteps leads to BVs spanning the desired Lyapunov space while intermediate
values provide BVs with less information about the LVs of the Lorenz96 model. This
indicates that higher error growth rates which have been found to be largest at these
intermediate cycling interval lengths lead to a more uniform development of the per-
turbations thereby further reducing variation and enhancing similarity among the BV15

structures.
With the number of canonical correlation coefficients being equal to the dimension

of the model space, the set of BVs allows for a full representation of the phase space
of error growth. However, in real world scenarios, the possible number of realizations
(or ensemble members) is limited to a small fraction of the dimensions of the system.20

Therefore, canonical correlations between BVs and Lyapuov vectors are calculated
with an increasing number of BVs. An example of the results of this procedure for
a rescaling interval of 20 time steps and target time step 2000 can be found in the left
panel of Fig. 7.

Using the first 11 BVs to estimate the Lyapunov space (left column) leads to a canon-25

ical correlation of 0.5 or higher for only 3 dimensions indicating a large projection of BVs
onto the calculated LVs. This number increases with the number of BVs used but – for
this example – reaches a saturation value of 16 dimensions. The large white area de-
notes the dimensions of Lyapunov phase space which are not represented through the
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simple self-breeding BVs. Thus, such a set of BVs would not be able to reproduce the
full spectrum of error growth dimensions.

5.3 Ensemble transform

As can be seen in Fig. 3, the perturbations exhibit the strong similarities common for
the breeding technique. This is due to the characteristic of the method that all members5

tend to converge towards one (local) Lyapunov vector. In order to account for this be-
havior, an ensemble transform (ET) approach is used to maximize the diversity among
the realizations and to optimize the usage of the subspace of the perturbation phase
space spanned by the bred vectors (cf. Sect. 2.4). The structures determined by this
approach are hereafter called ensemble transform bred vectors (ETBVs).10

Figure 6 shows the results of the ET implementation for the first five realizations
with a rescaling interval of 20 time steps. In comparison to the simple breeding imple-
mentation, the orthogonalized perturbation structures exhibit a strong diversity. Here,
each of the single members represents a different uncertainty structure corresponding
to a different Lyapunov exponent. A comparison with the left column of the first four15

local Lyapunov vectors shown in Fig. 2 shows that the spatial structures of these Lya-
punov estimates can be obtained from the first five ETBVs. The swapping of the ETBV
structures between different realizations is a result of the orthogonalization process.

The lower panel of Fig. 6 is an error growth diagram for the ET self-breeding process.
The results show that the maximum error growth is larger (approx. 5.5 % per time step)20

than that achieved with the simple self-breeding implementation (approx. 4 % per time
step) which is to be expected as the BVs in the simple approach converge towards
the local Lyapunov vector corresponding two the second largest Lyapunov exponent
while the ETBV of realization 1 matches the spatial structures associated with the
largest local Lyapunov exponent. Further, the error growth for the other realizations in25

the ET version varies considerably, representing the different directions of error growth
in the subspace spanned by the local Lyapunov vectors corresponding to the system
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state. Thus, the ETBVs allow for assessing a much larger spectrum of error growth
characteristics than the simple BVs.

This is further supported by the canonical correlation analysis in Fig. 7. The right
panel shows the canonical correlations for subsets of the ETBVs and the estimated
local Lyapunov vectors. Compared to the simple self-breeding BVs in the left panel,5

the ETBVs are able to fully represent the respective subspace of error growth, i.e. the
subspace of the local Lyapunov phase space. The missing dimension in each column
results from the canonical correlation procedure itself as the calculations are based on
patterns which have to sum to zero.

6 Conclusions10

The self-breeding method is a new approach to estimate local Lyapunov structures in
non-linear models. Thereby, the technique makes no simplifications or assumptions of
linearity but uses the full non-linear model to estimate modes of error growth.

The experiments using the Lorenz96 model show that the simple self-breeding al-
gorithm without orthogonalization is able to estimate growing modes which are inde-15

pendent from the initial perturbation. While the time necessary to identify the fastest
growing error modes does not seem to be dependent on the number of breeding cy-
cles, the spatial structures itself vary considerably among different rescaling intervals
– even for the same target time step.

Further, the different error growth rates between experiments with different optimiza-20

tion times suggest that the BVs generated with self-breeding are not only dependent on
the system state but also on the temporal scale of the self-breeding cycling. Hence, the
self-breeding technique allows for targeting the specific uncertainties originating from
the underlying non-linear process dominant on the temporal scale in consideration.

The BVs are therefore estimates for the perturbation structures specific to the rescal-25

ing interval which in turn can be seen as the error growth optimization time. When ini-
tializing an ensemble forecast at the initial time of the self-breeding cycle, the ensemble
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will then exhibit an optimal error growth for this temporal scale. In that sense, the ap-
proach is similar to the singular vector method but without the assumption of linear-
ity, i.e. no tangent linear or adjoint model is necessary to generate the growing error
modes.

The study also shows that the self-breeding approach produces BVs that can at5

least partially represent the phase space of error growth. The extent of representation
strongly depends on the system state (target time step) as well as the optimization
time (rescaling interval length) such that for some combinations, the full local Lyapunov
phase space can be reproduced.

However, a major shortcoming of simple BVs is the uniformity among the estimated10

error mode structures which could well be the result of the very regular Lorenz96
model. The inclusion of an ensemble transform implementation into the self-breeding
cycle does not only abate the homogeneity among the BVs, but constitutes a complete
estimate of the first NBV dimensions of the Lyapunov vector phase space. A compar-
ison to the estimated first Lyapunov vectors shows that these structures can even be15

reproduced by the ETBVs.
Thus, self-breeding provides a simple way to estimate forward error growing modes

which can be used for covariance estimation as well as ensemble initialization. The
results presented are strictly valid only for the Lorenz96 model which exhibits a higher
number of degrees of freedom compared to models usually employed in such experi-20

ments. However, the results are not yet representative for complex real world models,
e.g. weather forecasting models.
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Weather Research.25
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Fig. 1. Estimated local Lyapunov spectra for all experiments. The
10 panels depict the Lyapunov exponents for the target time steps
(as denoted on the left) and the different values for the 9 self-
breeding rescaling intervals (20 to 100 from top to bottom) within
each diagram. The vertical black bar in each row denotes the change
of sign from positive to negative Lyapunov exponent.

Then 50 sets of random perturbations are generated as de-360

viations from the control representing our initial conditions
for the self-breeding process. This yields 50 realizations for
the same time. Further, the procedure is conducted for 10 dif-
ferent initial time steps.

To investigate the impact of different rescaling interval365

lengths, the aforementioned experiments are repeated for dif-
ferent settings for the self-breeding cycle rescaling interval δt
from 10 to 100 time steps with an increment of 10. In each
case, the end of the cycling is set to the same time step of the
control run in order to compare the characteristics from the370

generated breeding modes.

4 Local Lyapunov estimates

In order to investigate the representation of error growth
characteristics defined by the phase space of the Lyapunov
vectors, the set of local Lyapunov vectors have to be deter-375

mined, i.e. the spatial structures representing the directions
of error growth for the section of the model’s attractor cor-
responding to the spatio-temporal state of the self-breeding
interval. To analyze the subspace of the attractor, 50 ran-
dom perturbations are generated for each initial time step of380

each self-breeding experiment with the maximum perturba-
tion amplitude varying from 0.005 to 0.1 and simulations are
conducted using these perturbations on the initial conditions.

Fig. 2. The estimated local Lyapunov vectors corresponding to
the largest 4 Lyapunov exponents for the first target time step
(2000). The model space dimensions are denoted on the y-axis. The
columns in each diagram represent the estimated Lyapunov vectors
for a self-breeding cycling interval (left 20, right 100).

Then the linearized propagator for the 4th-order Runge-
Kutta-scheme385

Mt = I +
1

6

[
(I + (I + (I +

1

2
∆tJ3)

1

2
∆tJ2)∆tJ1)∆tJ0

+ (2I + (I +
1

2
∆tJ3)∆tJ2)∆tJ1 (8)

+ (2I + ∆tJ3)∆tJ2) + ∆tJ3

]
is calculated at each time step of each simulation with Ji the
Jacobians of the system at the (intermediate) Runge-Kutta390

time steps, I the identity matrix and ∆t the model time step.
These propagators are then sequentially applied (i.e. the ma-
trices are multiplied) to generate an overall propagator for
the simulations period

M = MNt
MNt−1 . . .M1. (9)395

In order to estimate the Lyapunov exponents and vectors, a
matrix

M2 = MMT (10)

is caluculated. Then the average of these matrices M2 is de-
termined over all 51 simulations (1 control plus 50 random400

perturbed runs). Finally, a singular value decomposition is
used obtain a set of eigenvalues ei and eigenvectors ei. Then,
λi = lnei/Nt and ei represent the local Lyapunov exponents
and vectors corresponding to the evolution of the system over
the corresponding self-breeding cycling interval. The proce-405

dure is then repeated for all self-breeding cycling periods and
all target time steps. In theory, the global Lyapunov expo-
nents and vectors could be obtained by repeating this proce-
dure for an inifinite number of target time steps and averaging
over the resulting structures.410

Figure 1. Estimated local Lyapunov spectra for all experiments. The 10 panels depict the Lya-
punov exponents for the target time steps (as denoted on the left) and the different values for
the 9 self-breeding rescaling intervals (20 to 100 from top to bottom) within each diagram. The
vertical black bar in each row denotes the change of sign from positive to negative Lyapunov
exponent.
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Fig. 1. Estimated local Lyapunov spectra for all experiments. The
10 panels depict the Lyapunov exponents for the target time steps
(as denoted on the left) and the different values for the 9 self-
breeding rescaling intervals (20 to 100 from top to bottom) within
each diagram. The vertical black bar in each row denotes the change
of sign from positive to negative Lyapunov exponent.

Then 50 sets of random perturbations are generated as de-360

viations from the control representing our initial conditions
for the self-breeding process. This yields 50 realizations for
the same time. Further, the procedure is conducted for 10 dif-
ferent initial time steps.

To investigate the impact of different rescaling interval365

lengths, the aforementioned experiments are repeated for dif-
ferent settings for the self-breeding cycle rescaling interval δt
from 10 to 100 time steps with an increment of 10. In each
case, the end of the cycling is set to the same time step of the
control run in order to compare the characteristics from the370

generated breeding modes.

4 Local Lyapunov estimates

In order to investigate the representation of error growth
characteristics defined by the phase space of the Lyapunov
vectors, the set of local Lyapunov vectors have to be deter-375

mined, i.e. the spatial structures representing the directions
of error growth for the section of the model’s attractor cor-
responding to the spatio-temporal state of the self-breeding
interval. To analyze the subspace of the attractor, 50 ran-
dom perturbations are generated for each initial time step of380

each self-breeding experiment with the maximum perturba-
tion amplitude varying from 0.005 to 0.1 and simulations are
conducted using these perturbations on the initial conditions.

Fig. 2. The estimated local Lyapunov vectors corresponding to
the largest 4 Lyapunov exponents for the first target time step
(2000). The model space dimensions are denoted on the y-axis. The
columns in each diagram represent the estimated Lyapunov vectors
for a self-breeding cycling interval (left 20, right 100).

Then the linearized propagator for the 4th-order Runge-
Kutta-scheme385

Mt = I +
1

6

[
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∆tJ2)∆tJ1)∆tJ0

+ (2I + (I +
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2
∆tJ3)∆tJ2)∆tJ1 (8)

+ (2I + ∆tJ3)∆tJ2) + ∆tJ3

]
is calculated at each time step of each simulation with Ji the
Jacobians of the system at the (intermediate) Runge-Kutta390

time steps, I the identity matrix and ∆t the model time step.
These propagators are then sequentially applied (i.e. the ma-
trices are multiplied) to generate an overall propagator for
the simulations period

M = MNt
MNt−1 . . .M1. (9)395

In order to estimate the Lyapunov exponents and vectors, a
matrix

M2 = MMT (10)

is caluculated. Then the average of these matrices M2 is de-
termined over all 51 simulations (1 control plus 50 random400

perturbed runs). Finally, a singular value decomposition is
used obtain a set of eigenvalues ei and eigenvectors ei. Then,
λi = lnei/Nt and ei represent the local Lyapunov exponents
and vectors corresponding to the evolution of the system over
the corresponding self-breeding cycling interval. The proce-405

dure is then repeated for all self-breeding cycling periods and
all target time steps. In theory, the global Lyapunov expo-
nents and vectors could be obtained by repeating this proce-
dure for an inifinite number of target time steps and averaging
over the resulting structures.410

Figure 2. The estimated local Lyapunov vectors corresponding to the largest 4 Lyapunov ex-
ponents for the first target time step (2000). The model space dimensions are denoted on the
y axis. The columns in each diagram represent the estimated Lyapunov vectors for a self-
breeding cycling interval (left 20, right 100).
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Figure 3. Hovmüller diagrams (upper panel) of the perturbations for the realizations 1 to 5 with
rescaling intervals of 20 time steps and the corresponding mean error growth per time step
(lower panel) for each rescaling interval (solid realization 1, dotted 2, dashed 3, dash-dotted 4
and dash-dot-dot-dotted 5).
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Figure 4. Hovmüller diagrams (upper panel) of the perturbations for the first realization from the
set of experiments with different rescaling intervals and the corresponding mean error growth
per time step (lower panel) for each rescaling interval (solid 20, dotted 40, dashed 60, dash-
dotted 80 and dash-dot-dot-dotted 100 time steps).
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Figure 5. Canonical correlations between the set of simple self-breeding BVs and the full set of
estimated Lyapunov vectors for the 10 different target time steps (left panels) and the average
over these 10 cycling intervals (right panel).
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Fig. 6. Same as Fig 3 but for the implementation using the esnemble
transform to maximize the usage of the uncertainty phase space.

trix U applied to the BV and another orthogonal rotation V
applied to the LVs such that the corresponding expansions
coefficients form a diagonal matrix. This is a variant of the
classical canonical correlation analysis (e.g. von Storch and530

Zwiers, 1999). The entries of the diagonal matrix are called
canonical correlations and indicate that an orthogonal rota-
tion of one specific BV can be found which projects perfectly
onto a rotated LV in case that the canonical correlation is one.
Canonical correlation less than one indicate that such a pair535

of rotations can only be found up to an angle ϕ between a
pair of rotated BVs and LVs such that the cosϕ is equal to
the canonical correlation.

The results of this procedure can be found in Figure 5.
The left panel shows the canonical correlation coefficients of540

the 50 components of the BVs (y-axis) to the estimated lo-
cal Lyapunov vectors for the different self-breeding cycling
intervals (x-axis) with a separate diagram for each of the 10
different target time steps. While using the full set of BVs,
the correlation coefficients are either 0 or 1. The right panel545

shows the same diagram but for the average over the ten dif-
ferent target time steps.

It can be seen that the representation of the 50-dimensional
Lyapunov space by the BVs varies considerably among the
different system states. The simple self-breeding BVs cover550

at least seven dimensions of the Lyapunov space (deepest
dips in the histograms in Figure 5 for target time step 2500
and breeding cycle length of 30 time steps). In other com-
binations of target time step and cycling interval length the
full Lyapunov space is spanned by the BVs (highest levels555

of histograms). On average (Figure 5b) either a short cycling
length interval (20 time steps) or a longer cycling interval of
80 to 100 timesteps leads to BVs spanning the desired Lya-

punov space while intermediate values provide BVs with less
information about the LVs of the Lorenz96 model. This indi-560

cates that higher error growth rates which have been found to
be largest at these intermediate cycling interval lengths lead
to a more uniform development of the perturbations thereby
further reducing variation and enhancing similarity among
the BV structures.565

With the number of canonical correlation coefficients be-
ing equal to the dimension of the model space, the set of
BVs allows for a full representation of the phase space of
error growth. However, in real world scenarios, the possible
number of realizations (or ensemble members) is limited to570

a small fraction of the dimensions of the system. Therefore,
canonical correlations between BVs and Lyapuov vectors are
calculated with an increasing number of BVs. An example of
the results of this procedure for a rescaling interval of 20 time
steps and target time step 2000 can be found in the left panel575

of Figure 7.
Using the first 11 BVs to estimate the Lyapunov space (left

column) leads to a canonical correlation of 0.5 or higher for
only 3 dimensions indicating a large projection of BVs onto
the calculated LVs. This number increases with the number580

of BVs used but – for this example – reaches a saturation
value of 16 dimensions. The large white area denotes the
dimensions of Lyapunov phase space which are not repre-
sented through the simple self-breeding BVs. Thus, such a
set of BVs would not be able to reproduce the full spectrum585

of error growth dimensions.

5.3 Ensemble Transform

As can be seen in Figure 3, the perturbations exhibit the
strong similarities common for the breeding technique. This
is due to the characteristic of the method that all members590

tend to converge towards one (local) Lyapunov vector. In or-
der to account for this behavior, an ensemble transform (ET)
approach is used to maximize the diversity among the real-
izations and to optimize the usage of the subspace of the per-
turbation phase space spanned by the bred vectors (cf. section595

2.4). The structures determined by this approach are hereafter
called ensemble transform bred vectors (ETBVs).

Figure 6 shows the results of the ET implementation for
the first five realizations with a rescaling interval of 20 time
steps. In comparison to the simple breeding implementation,600

the orthogonalized perturbation structures exhibit a strong di-
versity. Here, each of the single members represents a differ-
ent uncertainty structure corresponding to a different Lya-
punov exponent. A comparison with the left column of the
first four local Lyapunov vectors shown in Figure 2 shows605

that the spatial structures of these Lyapunov estimates can
be obtained from the first five ETBVs. The swapping of the
ETBV structures between different realizations is a result of
the orthogonalization process.

The lower panel of Figure 6 is an error growth diagram610

for the ET self-breeding process. The results show that the

Figure 6. Same as Fig. 3 but for the implementation using the ensemble transform to maximize
the usage of the uncertainty phase space.
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Fig. 7. Canonical correlations between estimated Lyapunov vectors and simple BVs (left panel) and BVs from the orthogonalized self-
breeding procedure (right panel).

maximum error growth is larger (approx. 5.5% per time step)
than that achieved with the simple self-breeding implemen-
tation (approx. 4% per time step) which is to be expected as
the BVs in the simple approach converge towards the local615

Lyapunov vector corresponding two the second largest Lya-
punov exponent while the ETBV of realization 1 matches the
spatial structures associated with the largest local Lyapunov
exponent. Further, the error growth for the other realizations
in the ET version varies considerably, representing the dif-620

ferent directions of error growth in the subspace spanned by
the local Lyapunov vectors corresponding to the system state.
Thus, the ETBVs allow for assessing a much larger spectrum
of error growth characteristics than the simple BVs.

This is further supported by the canonical correlation anal-625

ysis in Figure 7. The right panel shows the canonical correla-
tions for subsets of the ETBVs and the estimated local Lya-
punov vectors. Compared to the simple self-breeding BVs in
the left panel, the ETBVs are able to fully represent the re-
spective subspace of error growth, i.e. the subspace of the630

local Lyapunov phase space. The missing dimension in each
column results from the canonical correlation procedure it-
self as the calculations are based on patterns which have to
sum to zero.

6 Conclusions635

The self-breeding method is a new approach to estimate lo-
cal Lyapunov structures in non-linear models. Thereby, the
technique makes no simplifications or assumptions of linear-

ity but uses the full non-linear model to estimate modes of
error growth.640

The experiments using the Lorenz96 model show that the
simple self-breeding algorithm without orthogonalization is
able to estimate growing modes which are independent from
the initial perturbation. While the time necessary to identify
the fastest growing error modes does not seem to dependent645

on the number of breeding cycles, the spatial structures itself
vary considerably among different rescaling intervals – even
for the same target time step.

Further, the different error growth rates between exper-
iments with different optimization times suggest that the650

BVs generated with self-breeding are not only dependent on
the system state but also on the temporal scale of the self-
breeding cycling. Hence, self-breeding technique allows for
targeting the specific uncertainties originating from the un-
derlying non-linear process dominant on the temporal scale655

in consideration.
The BVs are therefore estimates for the perturbation struc-

tures specific to the rescaling interval which in turn can be
seen as the error growth optimization time. When initializing
an ensemble forecast at the initial time of the self-breeding660

cycle, the ensemble will then exhibit an optimal error growth
for this temporal scale. In that sense, the approach is similar
to the singular vector method but without the assumption of
linearity, i.e. no tangent linear or adjoint model is necessary
to generate the growing error modes.665

The study also shows that the self-breeding approach pro-
duces BVs that can at least partially represent the phase space

Figure 7. Canonical correlations between estimated Lyapunov vectors and simple BVs (left
panel) and BVs from the orthogonalized self-breeding procedure (right panel).
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