
Manuscript prepared for Nonlin. Processes Geophys.
with version 5.0 of the LATEX class copernicus.cls.
Date: 30 November 2014

Estimation of the total magnetization direction of approximately
spherical bodies
V. C. Oliveira Jr.1, D. P. Sales1, V. C. F. Barbosa1, and L. Uieda1, 2
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Abstract. We have developed a fast total-field anomaly in-
version to estimate the magnetization direction of multiple
sources with approximately spherical shape and known cen-
tres. Our method can be applied to interpret multiple sources
with different magnetization directions. It neither requires5

the prior computation of any transformation like reduction
to the pole nor the use of regularly spaced data on a horizon-
tal grid. The method contains flexibility to be implemented
as a linear or non-linear inverse problem, which results, re-
spectively, in a least-squares or robust estimate of the com-10

ponents of the magnetization vector of the sources. Appli-
cations to synthetic data show the robustness of our method
against interfering anomalies and errors in the location of the
sources’ centre. Besides, we show the feasibility of applying
the upward continuation to interpret non-spherical sources.15

Applications to field data over the Goiás Alkaline Province
(GAP), Brazil, show the good performance of our method in
estimating geological meaningful magnetization directions.
The results obtained for a region of the GAP, near from
the alkaline complex of Diorama, suggest the presence of20

non-outcropping sources marked by strong remanent mag-
netization with inclination and declination close to −70.35◦

and −19.81◦, respectively. This estimated magnetization di-
rection leads to predominantly positive reduced-to-the-pole
anomalies, even for other region of the GAP, in the alkaline25

complex of Montes Claros de Goiás. These results show that
the non-outcropping sources near from the alkaline complex
of Diorama have almost the same magnetization direction of
that as the ones in the alkaline complex of Montes Claros de
Goiás, strongly suggesting that these sources have been em-30

placed in the crust almost within the same geological time
interval.

1 Introduction

The magnetic method is one of the oldest geophysical tech-35

niques and plays an important role in mineral and petroleum
exploration. This method underwent a great progress after
the advent of magnetometers properly developed for airborne
surveys. Nowadays, the combination of modern satellite po-
sitioning systems and improvements in instrumentation and40

platform compensation makes the aeromagnetic survey one
of the most important data acquisition techniques due to the
ability to cover large areas in a relative short period of time
(Blakely, 1996; Nabighian et al., 2005). The main applica-
tions of the magnetic method are (i) estimating the average45

depth of the basement relief, (ii) mapping geological faults
and abrupt lithological contacts, (iii) defining the limits of
mineral targets, (iv) determining the location of geological
bodies like salt domes in sediments and (v) identifying ge-
ological oil and gas traps. From the physical point of view,50

all these geological scenarios can be associated to a magne-
tization distribution produced by magnetized rocks in sub-
surface. These magnetized rocks are the magnetic sources
producing a magnetic induction that can be measured on
the Earth’s surface or near from it. This magnetic induction55

causes local differences between the measured data and the
magnetic induction predicted by global models describing
the geomagnetic field. By isolating these local deviations, the
interpreter can determine the magnetic induction produced
by the magnetic sources making up the exploration targets.60

The total field is the most common magnetic data mea-
sured in a survey. It is defined as the Euclidean norm of the
magnetic induction produced by all surrounding magnetic
sources. After removing the Euclidean norm of the mag-
netic induction predicted by a global model describing the65

geomagnetic field and correcting the wide range of undesir-
able artefacts affecting the data, the result is a scalar quan-
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tity denominated total-field anomaly. By using the total-field
anomalies, the geophysicist can characterize the magnetic
sources in subsurface and then better defining exploration70

targets (Telford et al., 1990; Blakely, 1996).
Several widely used techniques for interpreting total-field

anomalies require the correct knowledge of the magnetiza-
tion direction of the sources. Among these techniques we
emphasize the reduction to pole (Baranov, 1957; Baranov75

and Naudy, 1964; Silva, 1986), the pseudogravity transfor-
mation (Baranov, 1957) and the amplitude of the analytic sig-
nal (Nabighian, 1972, 1974, 1984; Li, 2006). Besides, several
widely used magnetic inversion methods for estimating the
distribution of the magnetization-intensity contrasts in the80

subsurface also require the knowledge of the correct magne-
tization direction (Li and Oldenburg, 1996; Pilkington, 1997;
Portniaguine and Zhdanov, 1999, 2002; Barbosa and Silva,
2006).

Due to the great importance of the magnetization direction85

of the sources in interpreting total-field anomalies, several
methods for determining the magnetization direction of the
sources have been developed. These methods can be divided
into two groups. The first one comprises methods that do not
impose strong constraints on the shape of the sources. Fedi90

et al. (1994), for example, accomplished successive RTP’s in
the wavenumber domain by using different tentative magne-
tization directions. Among this set of RTP anomalies, these
authors choose that one whose amplitude of the negative
part is minimum. Since this method uses a wavenumber ap-95

proach, it requires that the total-field anomaly be regularly
spaced in a horizontal grid with constant height to achieve
the computational efficiency of the FFT. Besides, it is known
that the RTP in the wavenumber domain is unstable at low
latitudes and cannot be applied for interpreting total-field100

anomalies produced by magnetic sources having different
magnetization directions. Medeiros and Silva (1995) used
the source moments up to second order derived from the
multipole expansion of the magnetic potential for estimat-
ing the magnetization direction and the spatial orientation of105

a magnetic source. Although this method does not strongly
constraint the source’s shape, it presumes that the magnetic
source has three orthogonal planes of symmetry intersecting
each other at the centre of the source. It is also presumed
that the source is far from the observation points. Phillips110

(2005) proposed a method based on the numerical evalua-
tion of the integrals developed by Helbig (1963) for estimat-
ing the magnetization direction and the location of multiple
magnetic sources from their first-order magnetic moments.
This author stresses that the method is useful for rapid analy-115

sis of gridded magnetic data and works best for isolated and
compact sources and largely fails for horizontally elongated
sources. Tontini and Pedersen (2008) extended this method
for using the magnetic moments up to second order to obtain
additional information about the horizontal and vertical posi-120

tions of the centre of the magnetization distribution. Danne-
miller and Li (2006) extended the method proposed by Roest

and Pilkington (1993), who tackled total-field anomalies pro-
duced by generalized 2-D sources, to estimate the magneti-
zation direction of 3-D sources by using the correlation be-125

tween the vertical gradient and the total gradient of the RTP
anomaly obtained through a set of trial directions. These au-
thors stressed that the method assumes that the total-field
anomaly is produced by a set of 3-D causative bodies with
the same magnetization direction and not by multiple sources130

with different magnetization directions. A similar method
was proposed by Gerovska et al. (2009) based on the com-
parison between the RTP anomaly and the total magnitude
anomaly. Lelièvre and Oldenburg (2009) developed a very
flexible method for estimating the magnetization vector dis-135

tribution in complex geological scenarios. This method dis-
cretizes the subsurface of the Earth into a grid of 3-D prisms
and estimates the three components (in Cartesian or spheri-
cal coordinates) of the magnetization vector of each cell by
imposing strong constraints on the solution to deal with the140

nonuniqueness. Recently, Ellis et al. (2012) presented a sim-
ilar method to interpret magnetic data in mineral exploration
surveys.

The second group of methods to estimate the magnetiza-
tion direction of the sources assumes the knowledge of the145

shape of the source. The methods belonging to this group
have led to a few published papers. Bhattacharyya (1966),
for example, proposed an iterative method for determin-
ing the magnetization of a uniformly magnetized rectangu-
lar prism. The performance of this method is highly depen-150

dent on the correct position of the centre and on the deter-
mination of the major and minor axes of the body. Emilia
and Massey (1974) developed an iterative method for esti-
mating the vertical magnetization distribution of seamounts.
This method approximates the seamounts by vertically jux-155

taposed right prisms having polygonal horizontal cross sec-
tions, which have the same magnetization direction and dif-
ferent magnetization intensities. Parker et al. (1987) also de-
veloped a method for estimating the magnetization direction
of seamounts. This method was formulated as an optimiza-160

tion problem, named seminorm minimization, to allow esti-
mating a magnetization distribution that is as close as pos-
sible to the uniform distribution. However, in practical ap-
plications, this constraint may yield a poor data fit. Finally,
Kubota and Uchiyama (2005) discretized the seamount vol-165

ume as a grid of juxtaposed right rectangular prisms and esti-
mated the Cartesian components of the magnetization vector
of each prism.

In this work, we present a computationally efficient
method for inverting the total-field anomaly produced by170

multiple sources with approximately spherical shape to esti-
mate their magnetization directions. We assume sources with
known centre, which can be provided by Euler deconvolu-
tion, for example. The proposed method is part of the group
of methods imposing assumptions about the shape of the175

magnetic sources. It can be applied for interpreting multi-
ple sources with different magnetization directions. It does
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not require the use of regularly spaced data on a horizontal
grid and contains flexibility to be implemented in two dif-
ferent numerical approaches. The first one minimizes an L2-180

norm, resulting in a linear inverse problem to obtain a least-
squares estimate. The second approach comprises the itera-
tive minimization of an L1-norm, resulting in a non-linear
inverse problem to obtain a robust estimate. Applications to
synthetic data show the robustness of our method against in-185

terfering anomalies and errors in the location of the sources’
centre. Additionally, we show how the upward continuation
can be used to make possible the application of our method
to interpret non-spherical sources. Applications to field data
over the Goiás Alkaline Province (GAP), Brazil, show the190

good performance of the proposed method in estimating ge-
ological meaningful magnetization directions. The obtained
results over a region of the GAP, near from the alkaline com-
plex of Diorama, suggest the presence of non-outcropping
sources with strong remanent magnetization, corroborating195

previous works. The estimated inclinations and declinations
are close to −70.35◦ and −19.81◦, respectively.

2 Methodology

2.1 Parameterization and forward problem

Let ∆T o be the observed data vector, whose ith element200

∆T o
i , i= 1, . . . ,N , is the total-field anomaly measured at

the position (xi, yi, zi) (black dots in Fig. 1). In this Carte-
sian coordinate system, x points to the geographic north, y
points to east and z points downward. In general, the total-
field anomaly is produced by a magnetized susceptibility dis-205

tribution which is anomalous with respect to the mean sus-
ceptibility of the crust. Mathematically, ∆T o

i can be written
as

∆T o
i = ‖T i‖−‖F i‖, (1)

210

where ‖ · ‖ indicates the Euclidean norm, F i is the geomag-
netic field vector and T i is the total-field vector, both at (xi,
yi, zi). The total-field vector can be represented by the sum

T i = F i +Bi, (2)
215

where Bi is the total magnetic induction vector produced by
all magnetic sources (magnetized anomalous susceptibility
distribution) at the position (xi, yi, zi) (Blakely, 1996; Lan-
gel and Hinze, 1998).

For local or regional scale magnetic studies, it is very com-220

mon to consider that (i) the geomagnetic field F i (Eq. 1) is
a constant vector F 0 throughout the study area and (ii) that
‖F 0‖ � ‖Bi‖, i= 1, . . . ,N (Telford et al., 1990; Blakely,
1996). The second assumption is equivalent to say that the
total magnetic induction Bi (Eq. 1) is a small perturba-225

tion of the geomagnetic field F i throughout the study area.
These two assumptions make possible to approximate the

Euclidean norm of the total-field vector T i (Eq. 1) by a first-
order Taylor’s expansion as follows

‖T i‖ ≈ ‖F 0 +Bi‖

≈ ‖F 0‖+ F̂TBi,
(3)230

where the superscript T indicates transposition and

F̂ =
F 0

‖F 0‖
(4)

is a unit vector (with the same direction of the geomagnetic235

field F i) representing the gradient of the function ‖T i‖ with
respect to the components of the vector T i (Blakely, 1996).
By introducing this first-order Taylor’s expansion into the
total-field anomaly (Eq. 1), we obtain the well-known ap-
proximated total-field anomaly given by240

∆Ti ≈ F̂TBi, i= 1, . . . ,N. (5)

Let’s consider that the magnetic sources can be repre-
sented by a set of L uniformly magnetized spheres. In this
case, the total magnetic induction Bi is given by245

Bi =

L∑
j=1

bji , i= 1, . . . ,N, (6)

being bji the magnetic induction produced, at the position
(xi, yi, zi), by the jth sphere, j = 1, . . . ,L, with radius Rj

(dashed straight lines in Fig. 1), centre at (xcj , ycj , zcj)250

(grey dots in Fig. 1) and magnetization vector mj given by

mj =

mxjmyj
mzj


3×1

. (7)

The magnetic induction bji (Eq. 6) can be written as

bji = CmMj
i

4

3
πR3

jm
j , (8)255

where Cm is a constant given by µ0/4π = 10−7 H/m, µ0 is
the vacuum permeability and Mj

i is the matrix

Mj
i =


(

∂2

∂x∂x
1
rj

) (
∂2

∂x∂y
1
rj

) (
∂2

∂x∂z
1
rj

)
(

∂2

∂x∂y
1
rj

) (
∂2

∂y∂y
1
rj

) (
∂2

∂y∂z
1
rj

)
(

∂2

∂x∂z
1
rj

) (
∂2

∂y∂z
1
rj

) (
∂2

∂z∂z
1
rj

)

3×3

, (9)

260

whose elements are the second derivatives, evaluated at the
position (xi,yi,zi), of the function

1

rj
≡ 1√

(x−xcj)2 + (y− ycj)2 + (z− zcj)2
(10)

with respect to the variables x, y and z. By substituting the265

magnetic induction bji (Eq. 8) into the total magnetic induc-
tion vector Bi (Eq. 6) and using the approximated total-field
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anomaly (Eq. 5) we obtain the predicted total-field anomaly
di produced by the set of L spheres at the position (xi,yi,zi)
as follows270

di = F̂T
L∑

j=1

Mj
ih

j , (11)

where

hj = Cm
4

3
πR3

jm
j , j = 1, . . . ,L. (12)

275

This equation shows that each vector hj has the same direc-
tion of the magnetization vector mj , j = 1, . . . ,L (Eq. 7). In
Cartesian coordinates, we have hj = [hxjhyjhzj ]

T (Fig. 2),
where hαj = Cm

4
3πR

3
jmαj , α= x,y,z, j = 1, . . . ,L, and

mαj , α= x,y,z, are the elements of the magnetization vec-280

tor mj (Eq. 7). Equation (11) can be rewritten as

di(h) = aT
i h, (13)

where

h =

 h1

...
hL


3L×1

, (14)285

and

ai =

M1
i F̂
...

ML
i F̂


3L×1

. (15)

Note that, in Eq. (13), the predicted total-field anomaly di290

(Eq. 11) is represented by di(h) in order to express its de-
pendence on the parameter vector h (Eq. 14). The linear re-
lationship given by Eq. (13) can be written in matrix notation
as

d(h) = Ah, (16)295

where d(h) is the N -dimensional predicted data vector,
whose ith element is di(h) (Eq. 13), and A is a N × 3L ma-
trix that can be partitioned as

A =

 aT
1
...

aT
N


N×3L

, (17)300

being ai, i= 1, . . . ,N , the 3L-dimensional vector defined in
Eq. (15).

2.2 Inverse problem

We assume that the magnetic sources giving rise to the305

observed data ∆T o can be approximated by a set of
L uniformly magnetized spheres with known coordinates

(xcj ,ycj ,zcj), j = 1, . . . ,L, of their centres. We also as-
sume that the direction of the constant geomagnetic field F 0

(Eq. 4) is known. Under these hypotheses, we formulate a310

linear inverse problem of estimating the parameter vector h
(Eq. 14) from ∆T o. The problem of estimating a parameter
vector h (Eq. 14) containing the magnetization vectors mj

(Eq. 7), j = 1, . . . ,L, of the L spheres can be done by mini-
mizing the goal function315

Ψ(h) =
1

N
[∆T o−d(h)]T[∆T o−d(h)]. (18)

Differentiating Eq. (18) with respect to h and equating the
result to the null vector, we obtain the normal equation for
the least-squares estimate ĥ, i. e.,320

(ATA)ĥ = AT∆T o. (19)

The least-squares estimate ĥ (Eq. 19) minimizes the goal
function (Eq. 18) and produces the predicted data d(ĥ)
(Eq. 16) as near as possible from the observed data ∆T o,325

in the L2-norm sense (Bard, 1973; Twomey, 1977; Menke,
1989; Aster et al., 2005).

The least-squares estimate ĥ (Eq. 19) is very sensitive to
outliers in the observed data. In some cases, if the outliers
are not properly removed from the observed data, the esti-330

mated parameters can be seriously misleading. When work-
ing with field data, the outliers can be caused by interfering
magnetic sources or cultural noise, for example. To counter-
act this problem automatically, we can use a robust scheme
for minimizing the goal function335

Γ(h) =
1

N

N∑
i=1

|∆T o
i − di(h)| . (20)

Different from Eq. (18), the parameter vector h minimiz-
ing the Eq. (20) cannot be obtained by solving a linear sys-
tem. One practical way is the Iteratively Reweighted Least340

Squares algorithm (Scales et al., 1988; Aster et al., 2005). In
this algorithm, at each iteration k, the following linear system
is solved:

(ATRkA)h̃k+1 = ATRk∆T o, (21)
345

where Rk is a diagonal N×N matrix whose ith element rki ,
i= 1, . . . ,N , is given by

rki =
1∣∣∣∆T o

i − di
(
h̃k
)

+ ε
∣∣∣ , (22)

being ε a small positive number used to prevent singularities.350

This iterative process begins (iteration k = 0) with the least-
squares estimate h̃0 = ĥ (Eq. 19). With this initial approxi-
mation h̃0, we calculate the matrix R0 (Eq. 22). By using the
matrix R0, we solve the linear system given by Eq. (21) for
obtaining the estimate h̃1. By using the updated estimate h̃1,355
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we calculate the matrix R1 (Eq. 22), solve the linear system
(Eq. 21) for obtaining the updated estimate h̃2 and so on.
After some iterations, this iterative procedure converges to
the estimate h̃, which is named robust estimate and is an ap-
proximation of the parameter vector minimizing the function360

Γ(h) (Eq. 20).
Both ĥ (least-squares estimate) and h̃ (robust estimate) are

estimates of the parameter vector h (Eq. 14), which is repre-
sented as a function of the vectors hj , j = 1, . . . ,L (Eq. 12)
and the magnetization vectors mj , j = 1, . . . ,L (Eq. 7). The365

magnetization vectors are represented in Cartesian coordi-
nates, however they are commonly represented in terms of
its intensity, declination and inclination. Therefore, for con-
venience, we will represent the vectors hj (Eq. 12) in spher-
ical coordinates as follows370

hj =Qj

cosIj cosDj

cosIj sinDj

sinIj


3×1

, (23)

where the intensity Qj , declination Dj and inclination Ij are
given as functions of the elements hxj , hyj and hzj (Fig. 2)
of hj , i.e.,375

Qj =
√
hx2j +hy2j +hz2j , (24)

Dj = arctan

(
hyj
hxj

)
, (25)

and

Ij = arctan

 hzj√
hx2j +hy2j

 . (26)380

Note that, according to Eq. (12), the declinations Dj

(Eq. 25) and inclinations Ij (Eq. 26), j = 1, . . . ,L, are equal
to that ones of the magnetization vectors mj , j = 1, . . . ,L
(Eq. 7). After obtaining the least-squares estimate ĥ or the385

robust estimate h̃, we calculate the declinations D̂j or D̃j

(Eq. 25) and inclinations Îj or Ĩj (Eq. 26), j = 1, . . . ,L, of
the total magnetization vector of all spheres. We use a caret
(∧) and a tilde (∼) to distinguish estimates of the declinations
and inclinations which are computed by using, respectively,390

the least-square estimate ĥ and the robust estimate h̃.

2.3 Uncertainty of the estimated parameters

In a magnetic survey, the measurements are always affected
by noise due to the wide range of experimental errors and in-
accuracies that happens in a geophysical survey. The noise in395

the observed data ∆T o affects the estimated parameter vec-
tor, independently of the used method. To quantify this effect
on the estimated parameters, we can use the propagation of
covariance (Bard, 1973; Aster et al., 2005). By presuming
that the errors of all observed data ∆T o

i , i= 1, . . . ,N , are400

independent and of equal variance σ2, we obtain the data co-
variance matrix D = σ2I, where I is the N ×N identity ma-
trix. The parameter covariance matrix Ĉ of the least-squares
estimate ĥ (Eq. 19) is given by

Ĉ = ĤDĤT, (27)405

where

Ĥ = (ATA)−1AT. (28)

Similarly, the parameter covariance matrix C̃ of the robust410

estimate h̃ (Eqs. 21 and 22) can be given by

C̃ = H̃DH̃T, (29)

where

H̃ = (ATRkA)−1ATRk, (30)415

and the matrix Rk (Eq. 21) is the last one calculated in the
iterative process for estimating h̃ (Bard, 1973; Aster et al.,
2005).

The diagonal of the parameter covariance matrices Ĉ420

(Eq. 27) and C̃ (Eq. 29) contains the variances of the ele-
ments of the estimates ĥ (Eq. 19) and h̃ (Eqs. 21 and 22), re-
spectively. Let v be a 3L-dimensional vector whose element
vj , j = 1, . . . ,3L, represents the jth element of the diagonal
of the covariance matrix Ĉ (Eq. 27) or C̃ (Eq. 29). This vec-425

tor can be represented by

v =

v
1

...
vL


3L×1

, (31)

where

vj =

(σxj)
2

(σyj)
2

(σzj)
2


3×1

, (32)430

and σαj , α= x,y,z, j = 1, . . . ,L, are the uncertainties of the
components hαj , α= x,y,z, j = 1, . . . ,L, of the vectors hj ,
j = 1, . . . ,L (Eq. 12), forming the estimated parameter vec-
tor ĥ or h̃. The uncertainties of the intensity Qj , declination435

Dj and inclination Ij can be given as functions of the uncer-
tainties σαj , α= x,y,z, j = 1, . . . ,L (Eq. 32). To do it, we
use the propagation of uncertainties (Fornasini, 2008) and
presume that the components hαj , α= x,y,z, j = 1, . . . ,L,
of the vector hj (Eq. 12) are statistically independent. From440

this assumption, the uncertainties σQj , σDj and σIj of the in-
tensity Qj (Eq. 24), declination Dj (Eq. 25) and inclination
Ij (Eq. 26) are respectively given by

σQj =

√(
∂Qj

∂hxj
σxj

)2

+

(
∂Qj

∂hyj
σyj

)2

+

(
∂Qj

∂hzj
σzj

)2

,

(33)

σDj =

√(
∂Dj

∂hxj
σxj

)2

+

(
∂Dj

∂hyj
σyj

)2

(34)445
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and

σIj =

√(
∂Ij
∂hxj

σxj

)2

+

(
∂Ij
∂hyj

σyj

)2

+

(
∂Ij
∂hzj

σzj

)2

.

(35)

The first-order derivatives shown in Eqs. (33), (34) and (35)450

are given by

∂Qj

∂hαj
=
hαj

Qj
,α= x,y,z, (36)

∂Dj

∂hxj
=

−hyj
(hxj)

2
+ (hyj)

2 , (37)

∂Dj

∂hyj
=

hxj

(hxj)
2

+ (hyj)
2 , (38)

∂Ij
∂hαj

=
−hαjhzj

Q2
j

√
(hxj)

2
+ (hyj)

2
,α= x,y, (39)455

and

∂Ij
∂hzj

=

√
(hxj)2 + (hyj)2

Q2
j

. (40)

We use a caret (∧) and a tilde (∼) to distinguish the uncer-460

tainties (σ̂ and σ̃) computed by using, respectively, the least-
squares ĥ and the robust h̃ estimates.

3 Application to synthetic data

3.1 Validation test

Figure 3a shows the synthetic noise-corrupted total-field465

anomaly produced by two uniformly magnetized bodies
embedded in nonmagnetic host rocks. The first one is a
sphere with radius 1000 m, centre at xc= 3000 m, yc=
3000 m, zc= 1000 m and magnetization vector with inten-
sity 6 Am−1, declination 10◦ and inclination 20◦. The sec-470

ond synthetic body is a rectangular prism with horizontal
and vertical dimensions equal to 1000 m, depth of the top
at 200 m, centre at xc= 7000 m, yc= 7000 m, zc= 700 m
and magnetization vector with intensity 6 Am−1, declina-
tion 40◦ and inclination 30◦. We simulated a constant ge-475

omagnetic field F o (Eq. 3) with declination 15◦ and in-
clination 10◦. The total field anomaly produced by these
synthetic bodies (indicated by A and B in Fig. 3) was cal-
culated at N = 10000 irregularly spaced points (xi,yi,zi),
i= 1, . . . ,N , on the plane with constant vertical coordinate480

z =−150 m, extending from 0 to 10 000 m in both x and y
directions. The pseudorandom Gaussian noise added has a
zero mean and a standard deviation of 5 nT.

By assigning the correct positions of the centres of the
simulated bodies, we invert the noise-corrupted total-field485

anomaly (Fig. 3a) to obtain the least-squares estimate ĥ
(Eq. 19) and robust estimate h̃ (Eqs. 21 and 22). Next, we

use these estimates to calculate the estimated declinations
and inclinations (Eqs. 25 and 26). Finally, we calculate the
uncertainties using the propagation of covariance (Eqs. 27–490

30) and assuming that the standard deviation of the errors is
equal to the true one (σ = 5 nT). The results (Table 1) show
that our method is able to retrieve the magnetization direc-
tions of the true sources by using either the least-squares or
robust estimate. Even in the case of the prism that violates495

the premise assumed by our method that the bodies can be
approximated by spheres, the estimates are very close to the
true ones with a small uncertainties. We can attribute this
good performance of our method to three factors: (i) the ab-
sence of interfering signals produced, for example, by multi-500

ple magnetic sources, (ii) the simulated prism is a cube that
seems a sphere-like body; and (iii) the use of the correct lo-
cations of the centres of the simulated bodies. The following
tests will show how these factors affect the results obtained
by using the least-squares and robust estimates.505

3.2 Robustness against interfering anomalies

Figure 3b shows the noise-corrupted total-field anomaly
shown in Fig. 3a contaminated with interfering anoma-
lies. These interfering anomalies are characterized by mid-
wavelength components which mostly affect the positive sig-510

nals of the original total-field anomaly (Fig. 3a), resulting in
non-dipolar total-field anomalies (Fig. 3b). Notice that this
test violates the premise assumed by our method that the
total-field anomalies are caused by dipolar bodies (spheres).
Although these interfering anomalies are different from ran-515

dom Gaussian noise or outliers marked as spurious errors
dominated by short-wavelength spectral contents, they can
also be seen as a data noise.

We repeated the numerical test presented in the previ-
ous section (Sect. 3.1), but using the contaminated total-field520

anomaly shown in Fig. 3b. The results are shown in Table 2.
As we can see, the results obtained with the least-squares es-
timate are very affected by the interfering anomalies if com-
pared with that ones obtained by using the robust estimate.
By comparing the true values of inclination I and declination525

D with that ones obtained with the least-squares estimate, the
differences reach approximately 14◦ in declination and 9◦ in
inclination. On the other hand, the differences between the
results obtained with the robust estimate and the true values
reach only 2◦ in declination and 3◦ in inclination. These re-530

sults suggest that the least-squares estimate is more sensitive
to interfering anomalies than the robust estimate.

3.3 Robustness against non-spherical sources

In the previous subsections, we applied our method to es-
timate the magnetization direction of a rectangular prism535

whose total-field anomaly is indicated by B in Fig. 3. This
total-field anomaly is similar to one that would be produced
by a sphere. Two factors contribute to this: (i) the prism has
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all edges equal to 1000 m and (ii) the distance between its
top depth and the plane surface on which the data were cal-540

culated is 350 m. In this subsection, we analyse the effect of
these two factors on the results obtained with our method.
To do it, we applied our method to estimate the magneti-
zation direction of 11 rectangular prisms with different side
lengths Lx, Ly and Lz (Fig. 4a) and top at 10 m deep. All545

prisms have uniform magnetization with intensity, declina-
tion and inclination equal to 6 Am−1, −40◦ and 30◦, re-
spectively, centre at xc= 0 m, yc= 0 m and zc= 510 m and
side lengths Lx= Lz = 1000 m. For simplicity, we adopted
dimensionless quantities by normalizing all coordinates and550

lengths by the numerical value of Lz (1000 m), implying that
Lx= Lz = 1.0. The only difference between these 11 prisms
is the side length Ly, which varies regularly from 0.2 to 1.8.
Figure 4b shows the x–y cross-section of three different rect-
angular prisms with Ly equal to 0.2, 1.0 and 1.8. We calcu-555

lated the noise-corrupted total-field anomalies produced by
all prisms on horizontal planes with constant z equal to 0.0,
−0.3 and −0.6 (dashed lines in Fig. 4b), resulting in 33 syn-
thetic data sets. All data are calculated at N = 3000 points
irregularly spaced over an area extending from−5 to 5 along560

the x and y directions. The pseudo-random Gaussian noise
added has a zero mean and a standard deviation of 5 nT. The
simulated constant geomagnetic field F 0 (Eq. 3) has decli-
nation −15◦ and inclination −10◦.

Figure 5a–c show that total-field anomalies calculated near565

from the sources are very different to that ones produced by
spherical bodies (dipolar sources) and exhibit strongly non-
dipolar features. These non-dipolar features are attenuated if
the data are calculated far from the sources (Fig. 5g–i), show-
ing the well known property that the magnetic field produced570

by a non-dipolar source tends to the field produced by a dipo-
lar source at great distances. This attenuation is more notice-
able for sources presenting symmetry around three orthogo-
nal axis. This higher attenuation for symmetrical sources can
be seen by comparing Fig. 5b, e and h, which show anomalies575

produced by a cube with Lx= Ly = Lz = 1.0, with Fig. 5a,
c, d, f, g and i, which show anomalies produced by other
rectangular prisms. For example, on the plane z =−0.3, the
total-field anomaly produced by the cube (Fig. 5h) displays
approximately a dipolar feature while the total-field anoma-580

lies produced by the other prisms (Fig. 5d and f) exhibit non-
dipolar features.

We applied our method to interpret these 33 data sets and
the results are shown in Fig. 6. In all these applications, we
presume the correct location of the centre of the sources. Fig-585

ure 6 shows that the robust estimates (red dots) are much
better than the least-squares estimates (blue dots). This bet-
ter performance is noteworthy for the estimated declinations
obtained by inverting the total-field anomalies near from the
sources (red dots in Fig. 6a). The least-squares estimates590

(blue dots in Fig. 6a and b) seem to be more sensitive to the
strong non-dipolar total-field anomalies (e.g., Fig. 5a–c). By
inverting the total-field anomalies far the sources (e.g., Fig.

5d–i), the least-squares estimates are approximately similar
to the robust estimates (Fig. 6c–f).595

The greater the distance between the sources and the data,
the greater the attenuation of the non-dipolar features; and
thus the smaller the difference between the least-squares and
robust estimates. In this case, a good practice when applying
our method is to perform an upward continuation of the total-600

field anomaly to be inverted.

3.4 Robustness against errors in the centre location

In all previous tests with synthetic data, we presume the cor-
rect location of the centre of the sources. However, in real
world scenarios, the position of the sources cannot be ob-605

tained directly and have to be estimated. This estimation can
be done, for example, by using the Euler deconvolution tech-
nique (Thompson, 1982; Reid et al., 1990). This is a classical
technique to estimate the 3-D position of magnetic sources
(Reid et al., 2014; Uieda et al., 2014). Like all numerical610

techniques, the estimates obtained via Euler deconvolution
contain errors that will affect the results obtained with our
method. So, in this subsection, we analyse how the errors in
the coordinates of the centre of the source affect the results
obtained with our method.615

We simulated a uniformly magnetized sphere (not shown)
with centre at xc= 5000 m, yc= 5000 m and zc= 1000 m,
radius R= 1000 m and magnetization vector with intensity
8.0 Am−1, declination−13◦ and inclination−40◦. The sim-
ulated constant geomagnetic field F 0 (Eq. 3) has declination620

−13◦ and inclination −9.5◦. The noise-corrupted total-field
anomaly (not shown) produced by this sphere is calculated
at N = 2601 points equally spaced on a plane with constant
z =−150 m, extending from 0 m to 10000 m along both the
x and y axis. The pseudo-random Gaussian noise added has625

null mean and standard deviation equal to 2 nT.
We applied our method to this synthetic data for estimating

the magnetization direction of the simulated spherical body.
This application was done by presuming different locations
of the centre of the source along three orthogonal straight630

lines which are parallel to the x, y and z axis and cross the
centre of the simulated spherical body. Along each line, we
varied the centre of the source at 21 points regularly spaced
in a range of 2000 m. The results obtained along the x, y and
z axis are shown in Fig. 7a–f, respectively.635

We can clearly see that the wrong choice of the x and y co-
ordinates of the center of the source leads to poor estimates of
the magnetization direction (declinations and inclinations in
Fig. 7a–d) when compared with the true magnetization vec-
tor (continuous black lines in Fig. 7). On the other hand, the640

estimated declinations and inclinations are less sensitive to
the wrong choice of the z coordinate of the centre of the
source (Fig. 7e and f), especially the ones obtained by the
least-squares estimate. These results show that our method is
more sensitive to uncertainties in the prior information about645

location of the centre of the source along the horizontal direc-
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tions than in the vertical direction. Fortunately, the sensitivity
of Euler deconvolution to estimate the 3-D position of mag-
netic sources works in opposite direction. As shown by Silva
and Barbosa (2003) and Melo et al. (2013), the estimates of650

the source horizontal positions in Euler deconvolution are
very accurate while the depth estimates may fail. This char-
acteristic makes Euler deconvolution a suitable technique for
providing the centre of the source to be used by our method
as prior information to form the matrix given in Eq. (17).655

4 Application to field data

In Goiás state, central region of Brazil, there are occurrences
of Cretaceous alkaline rocks along a lineament NW–SE that
have been studied since the 60’s. In a broad regional scale
study, Almeida (1983) denominated these occurrences as Rio660

Verde–Iporá Igneous Province. Posteriorly, Sgarbi and Gas-
par (2002) grouped the Rio Verde–Iporá Igneous Province
and the Alto Paranaı́ba Igneous Province (between the Goiás
and Minas Gerais states, Fig. 8) into the Minas-Goiás Alka-
line Province. According to these authors, the Minas-Goiás665

Alkaline Province would be divided into four sub-provinces:
Mata da Corda, Alto do Paranaı́ba, Iporá and Santo Antônio
da Barra. In the same year, Junqueira-Brod et al. (2002) re-
turned to the concept of two distinct provinces. These authors
maintained the old name Alto Paranaı́ba Igneous Province670

for designating the alkaline rocks located between the Goiás
and Minas Gerais states and denominated the alkaline rocks
near from Rio Verde and Iporá cities (in the Goiás state) as
Goiás Alkaline Province (GAP). Here, we use this nomen-
clature proposed by Junqueira-Brod et al. (2002).675

The GAP is formed by mafic to ultramafic alkaline rocks
presenting a wide variety of petrographic types (Almeida,
1983; Junqueira-Brod et al., 2005; Carlson et al., 2007;
Marangoni and Mantovani, 2013). Among the main alkaline
complexes in the north portion of GAP are the Montes Claros680

de Goiás, Diorama, Córrego dos Bois, Morro do Macaco and
Fazenda Buriti (Fig. 8). These alkaline intrusions are sur-
rounded by Precambrian basement and the Phanerozoic sed-
imentary rocks of the Paraná basin. In 2004, this region was
flown by an aeromagnetic survey at an approximately con-685

stant height of 100 m from the terrain (approximately con-
stant normal height of 500 m). This survey has a flight pattern
with N–S lines spaced from 500 m and E–W tie-lines spaced
from 5000 m. Along each line, the data are spaced from ap-
proximately 8 m. The data were corrected for diurnal varia-690

tion and subtracted from the geomagnetic field modelled by
using the International Geomagnetic Reference Field (IGRF)
evaluated at the 2004.62 epoch, with declination −18.5◦ and
inclination −19.5◦. This region is characterized by intense
total-field anomalies (with notable remnant magnetization)695

that are generally associated to the alkaline rocks of GAP
(Dutra and Marangoni, 2009; Dutra et al., 2012; Marangoni
and Mantovani, 2013).

We applied our method to interpret the data located in
the area delimited by the red rectangle shown in Fig. 8,700

near from the alkaline complex of Diorama. The data are
shown in Fig. 9. To attenuate the non-dipolar effects present
in the data, we applied the Polynomial Equivalent Layer
(Oliveira Jr. et al., 2013) to continue the anomaly up-
ward to a constant normal height of 1000 m in a regu-705

larly spaced grid. By inverting the upward continued data
(not shown), we estimated the centre of the body by ap-
plying the Euler deconvolution and obtained its magnetiza-
tion direction by using least-squares and robust estimates.
We obtained the estimated inclinations Î =−69.25595◦±710

0.00013◦ and Ĩ =−71.41751◦± 0.00182◦ and declina-
tions D̂ =−16.22821◦± 0.00050◦ and D̃ =−23.39541◦±
0.01049◦. The caret (∧) and tilde (∼) denote the results com-
puted by using, respectively, the least-squares and robust es-
timates.715

For verifying the plausibility of the estimated inclinations
and declinations, we used them to reduce the observed total-
field anomaly (Fig. 9) to the pole. Figure 10 shows that the
estimated magnetization directions obtained with the least-
squares and robust estimates lead to very confident RTP720

anomalies, since the dipolar characteristic of observed total-
field anomaly (Fig. 9) is almost completely suppressed. We
also used this estimated magnetization directions for reduc-
ing another total-field anomaly (Fig. 11) to the pole. This
total-field anomaly is located over the Montes Claros de725

Goiás alkaline complex (Fig. 8), which is near from the al-
kaline complex of Diorama. Figure 12 shows that this esti-
mated magnetization directions are very good because they
yield predominantly positive RTP anomalies. These results
show that the magnetization direction of the sources in the730

alkaline complex of Montes Claros de Goiás are very close
to that ones estimated from the total-field anomaly (Fig. 9)
near from the alkaline complex of Diorama, suggesting that
these sources emplaced at depth within almost the same ge-
ological time interval.735

5 Conclusions

We present a computationally effective method for estimat-
ing the magnetization direction of multiple sources with
approximately spherical shapes by inverting the total-field
anomaly produced by them. Our method assumes that the740

sources have uniform magnetization and that the positions of
their centres are known. Prior knowledge about the source
sizes is not required. Our method can be applied for inter-
preting multiple sources with different magnetization direc-
tions. Besides, it can be directly applied to interpret irreg-745

ularly spaced total-field anomaly data measured on uneven
surfaces and requires no prior transformation like reduction
to the pole, total gradient or total magnitude anomalies. The
method also contains flexibility to be implemented in two
different numerical approaches. The first one is based on the750
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minimization of the L2-norm of the residuals between the
observed and predicted total-field anomalies. This approach
results in a linear inverse problem for obtaining a least-
squares estimate of the magnetization vector components of
the sources. The second approach is based on the minimiza-755

tion of the L1-norm of the residuals between the observed
and predicted total-field anomalies, leading to a non-linear
inverse problem for obtaining a robust estimate of the mag-
netization vector components of the sources.

The results obtained with the synthetic data simulating760

a spherical source with known centre show the good per-
formance of our method in retrieving the true magnetiza-
tion direction. Tests with synthetic data produced by sim-
ulated sources that violates the premisses assumed by our
method show the robustness of our method against interfer-765

ing anomalies and against errors in the location of the cen-
tre of the source. The results show that our method is sen-
sitive to errors in the horizontal location of the centre of
the source. On the other hand, it is insensitive to errors in
the depth of the centre of the source. Additionally, we show770

how the upward continuation can be used to make possible
the application of our method for interpreting non-spherical
sources producing total-field anomalies with non-dipolar fea-
tures. These non-dipolar features can greatly affect the results
obtained with the least-squares estimate, especially when the775

data are near from the source. Applications to field data over
the Goiás Alkaline Province (GAP), Brazil, show that our
method can be a powerful tool for interpreting real geolog-
ical scenarios. Our estimates near from the alkaline com-
plex of Diorama, suggest the presence of non-outcropping780

sources with strong remanent magnetization, corroborating
previous works. This estimated magnetization direction leads
to very plausible RTP anomalies not only over the region
near from the complex of Diorama, but also over the alka-
line complex of Montes Claros de Goiás. These results show785

that the non-outcropping sources near from the alkaline com-
plex of Diorama have almost the same magnetization direc-
tion of that ones in the alkaline complex of Montes Claros de
Goiás, strongly suggesting that these sources have emplaced
at depth within almost the same geological time interval.790

Although the upward continuation seems to be useful for
overcoming the difficulties in the interpretation of strongly
non-dipolar total-field anomalies, there will always be a limit
for using this technique. The interpreter should always ver-
ify the quality of the estimated magnetization direction by795

using, for example, a reduction to the pole. One might think
that the high sensitivity of our method to uncertainties in the
horizontal coordinates of the centres of the sources is a draw-
back. This is not true because these coordinates are generally
well estimated by the Euler deconvolution. The high sensitiv-800

ity of our method to errors in horizontal location of the centre
of the sources suggests that the horizontal coordinates of the
sources’ centres could also be estimated by inversion. On the
other hand, the insensitivity our method to errors in the depth
of the sources suggests that the sources’ depth could not be805

easily estimated by inversion and would need some a priori
information.
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Table 1. Test with the synthetic data (Fig. 3a) produced by a sphere
and a rectangular prism. Comparison between the estimated and
true values of the magnetization declination D and inclination I .
The uncertainties σD and σI are calculated by using Eqs. (34) and
(35). All values are in degree (◦). We use a caret (∧) and a tilde (∼)
to distinguish the quantities computed by using, respectively, the
least-squares ĥ and robust h̃ estimates.

Sphere Prism

D −10.00000 −40.00000

D̂ −10.07141 −40.63733
σ̂D 0.00000 0.00113

D̃ −10.03229 −40.24585
σ̃D 0.00130 0.03601
I −20.00000 30.00000

Î −19.99437 31.04075
σ̂I 0.00000 0.00068

Ĩ −20.01263 30.60551
σ̃I 0.00042 0.02047

Table 2. Test with the synthetic data (Fig. 3b) produced by a sphere
and a rectangular prism. Comparison between the estimated and
true values of the magnetization declination D and inclination I .
The uncertainties σD and σI are calculated by using Eqs. (34) and
(35). All values are in degree (◦). We use a caret (∧) and a tilde (∼)
to distinguish the quantities computed by using, respectively, the
least-squares ĥ and robust h̃ estimates.

Sphere Prism

D −10.00000 −40.00000

D̂ −4.28547 −23.63607
σ̂D 0.00000 0.00130

D̃ −8.73648 −39.37397
σ̃D 0.00135 0.03679
I −20.00000 30.00000

Î −25.11757 39.08012
σ̂I 0.00000 0.00064

Ĩ −21.75674 33.40926
σ̃I 0.00027 0.01648
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Fig. 1. Schematic representation of L= 2 spheres uniformly mag-
netized at the subsurface. These spheres have radii Rj (dashed
straight lines), constant magnetization vectors mj and centres (grey
dots) at (xcj , ycj , zcj), j = 1, . . . ,L. The magnetic effect pro-
duced by these spheres can be observed at the points (xi, yi, zi),
i= 1, . . . ,N (black dots). In this Cartesian coordinate system, x
points to the geographic North, y points to East and z points down-
ward.

Fig. 2. Schematic representation of the vector hj (Eq. 12) with el-
ements hxj , hyj and hzj in Cartesian coordinates. This vector has
a declination Dj (positive in the clockwise sense) and inclination
Ij (positive downward), j = 1, . . . ,L.
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Fig. 3. Validation test and robustness against interfering anomalies.
(a) Synthetic noise-corrupted total field anomaly produced (nT) by
a sphere and a rectangular prism. (b) Synthetic anomaly shown in
(a) plus produced by an interfering anomaly. The anomalies pro-
duced by the sphere and prism are pinpointed as (A) and (B), re-
spectively.

Fig. 4. Robustness against non-spherical sources. (a) Rectangular
prism with dimensions Lx, Ly and Lz and centre at the grey dot.
(b) Projection of three prisms on the plane yz. All prisms have top at
z = 10m and side lengths Lx= Lz = 1000m. The horizontal di-
mension Ly of each prism is equal to 200m, 1000m and 1800m.
The dashed lines represent the vertical coordinate z of three differ-
ent horizontal planes above the prisms. For convenience, all coor-
dinates and lengths are normalized by the numerical value of Lz
(1000m) to obtain dimensionless quantities.
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Fig. 5. Robustness against non-spherical sources. Noise-corrupted total-field anomaly produced by each one of the three rectangular prisms
shown in Fig. 4b on three horizontal planes with different constant vertical coordinates z (dashed lines in Fig. 4b). We consider that the
centre of all prisms are located at xc= 0.00, yc= 0.00 and zc= 0.51.The intensity, declination and inclination of the magnetization vector
of all prisms are equal to 6Am−1, −40◦ and 30◦, respectively. The simulated geomagnetic field is constant, with declination −15◦ and
inclination −10◦. The data are in nT and all coordinates and lengths are dimensionless (see Fig. 4).
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Fig. 6. Robustness against non-spherical sources. The blue and
red dots represent, respectively, the results obtained with the least-
squares ĥ (Eq. 19) and robust h̃ (Eqs. 21 and 22) estimates. Each
dot represents an estimated declination or inclination obtained from
the total-field anomaly produced by a rectangular prism with a dif-
ferent Ly (Fig. 4). z indicates the constant vertical coordinate of
the planar surface on which the total-field anomaly was calculated
(dashed lines in Fig. 4b). The continuous black lines represent the
true declinations (or inclinations). The dashed lines represent the
true declination (or inclination) ±5◦.
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Fig. 7. Robustness against errors in the centre location. The blue
and red dots represent, respectively, the magnetization direction
of a simulated spherical body obtained with the least-squares ĥ
(Eq. 19) and robust h̃ (Eqs. 21 and 22) estimates. The estimated
declinations and inclinations were obtained by presuming different
positions for the centre of the source along the x, y and z axis.
Along each axis, the magnetization direction was estimated by con-
sidering 21 different centres regularly spaced in a range of 2000m
on a line passing through the right coordinates of the centre of
the simulated spherical body (vertical dashed lines). The continu-
ous black lines represent the true declinations (or inclinations). The
dashed lines represent the true declination (or inclination) ±5◦.
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Fig. 8. Application to field data on the Goiás Alkaline Province (GAP), Brazil. Simplified geological map of the study area, which is
represented by a red dot in the inset map of Brazil. The inset also shows the Goiás (dark grey area) and Minas Gerais (light grey area) states.
The total-field anomaly over the area delimited by the red rectangle is shown in Fig. 9. The coordinates are referred to the WGS84 datum.
The numbers indicate the main alkaline complexes in this region: 1 – Montes Claros de Goiás, 2 – Diorama, 3 – Córrego dos Bois, 4 – Morro
do Macaco and 5 – Fazenda Buriti.
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Fig. 9. Application to field data on the Goiás Alkaline Province (GAP), Brazil. Total-field anomaly observed over the area delimited by the
red rectangle in Fig. 8. The flight lines of the aeromagnetic survey are shown in black. The magnetic data are in nT and the coordinates are in
UTM on the SAD-69 datum, with central meridian 51◦W. The origins of the east and north coordinates are 500 and 10 000 km, respectively.
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Fig. 10. Application to field data on the Goiás Alkaline Province
(GAP), Brazil. Observed total-field anomaly (Fig. 9) reduced to
the pole. The upper and lower panels show the RTP anomalies
computed by using, respectively, the estimated magnetization direc-
tion obtained with the least-squares (inclination Î =−69.25595◦±
0.00013◦ and declination D̂ =−16.22821◦± 0.00050◦) and ro-
bust (inclination Ĩ =−71.41751◦±0.00182◦ and declination D̃ =
−23.39541◦± 0.01049◦) estimates.
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Fig. 11. Application to field data on the Goiás Alkaline Province (GAP), Brazil. Total-field anomaly observed over the Montes Claros de
Goiás alkaline complex (Fig. 8). The flight lines of the aeromagnetic survey are shown in black. The magnetic data are in nT and the
coordinates are in UTM on the SAD-69 datum, with central meridian 51◦W. The origins of the east and north coordinates are 500 km and
10000 km, respectively.
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Fig. 12. Application to field data on the Goiás Alkaline Province
(GAP), Brazil. Observed total-field anomaly (Fig. 11) reduced to
the pole. The upper and lower panels show the RTP anomalies
computed by using, respectively, the estimated magnetization direc-
tion obtained with the least-squares (inclination Î =−69.25595◦±
0.00013◦ and declination D̂ =−16.22821◦± 0.00050◦) and ro-
bust (inclination Ĩ =−71.41751◦±0.00182◦ and declination D̃ =
−23.39541◦± 0.01049◦) estimates.


