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Anonymous Referee #1

1 Comment

1.1 Comment from Referee

The paper constitutes a review of state of the art of data assimilation of images. It is well written by
the leading expert in the field and addresses itself to a broad audience.

I would appreciate if the topics of data assimilation in medicine namely medical Imaging that inves-
tigates processes in the brain by techniques such as MRI, EEG, MEG and many more could be briefly
addressed. Usually dynamical models based on finite element discretisation approaches are coupled with
data by inversion and data assimilation.

The same relates to image reconstruction from noisy data that is an important inverse problem.
where Electrical Impedance Tomography (EIT)can be used.

Otherwise a very good review that should be published.
See for instance : D. Chapelle, M. Fragu, V. Mallet, P. Moireau: Fundamental principles of data

assimilation underlying the Verdandi library: applications to biophysical model personalization within
euHeart. Medical & Biological Engineering & Computing Vol. 51 (2013) 1221-1233

1.2 Author’s response

The Editor gave a direction to answer this comment based on the scope of the Journal and we thank him
for his answer. Since this journal is focused on geophysics, the text does not address data assimilation in
other domains like medecine. However, the introduction mentions that the thechnique can be applied to
other problems. As an illustration of the application to other problems, we added the reference suggested
by the referee in the introduction.

1.3 Author’s changes in manuscript

See the introduction of the revised manuscript for Author’s cganges.

Referee #2 J. Ma

1 Comment

1.1 Comment from Referee

Data assimilation is the science of coupling information coming from different sources: model, statistics
and observations. Data assimilation has been successfully applied to meteorology and oceanography.
It was also used for fields such as agronomy, economy, medicine, and oil/gas reservoir description in
exploration geophysics (see attached references). Variational method proposed by Le Dimet and Ta-
lagrand in 1986 plays important role in the field of data assimilation. In last decade, the researchers
pay attentions to the use of quantitative information rather than qualitative analysis from the observed
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image sequences. In this paper, the authors made a nice review on the variational data assimilation with
the use of quantitative image information, and described several possibilities for such assimilation and
identify associated difficulties. The paper is well organized and written.

Eq. (26) can be defined as scale-dependent hard thresholding. The thresholding rules in 1 and 3 in
the same page are actually the special cases of Eq. (26). The motivation of the thresholding is to extract
the edge structures of images. The edge structures and motion vectors are extracted simultaneously
by the curvelet transform, in the reference “J. Ma, A. Antoniadis, F.-X. Le Dimet, Curvelets-based
multiscale de- tection and tracking for geophysical fluids, IEEE Transactions on Geoscience and Re-
mote Sensing, 2006, 44 (12), 3626-3638”. The description could be added in the final version. The paper
is recommended to be published. 1. P. Chen, Full-wave seismic data assimilation: theoretical background
and recent Advances, Pure and Applied Geophysics, 168(10):1527-1552. 2. Y. Dong, Y. Gu, D. Oliver,
Sequential assimilation of 4D seismic data for reservoir description using the ensemble Kalman filter, J.
Petroleum Science and Engineering, 2006, 53, 83-99

1.2 Author’s response

We agree with the Referee that the rule in 1 is the special case of Eq. (26) where the threshold is set to
the same value for all scales. The rule in 3 is the special case of Eq. (26) where the threshold is set to
zero for the coarse scale and constant for all other scales.

1.3 Author’s changes in manuscript

See the paragraph 6.1.5 of the revised paper.

Anonymous Referee #3

1 Comment 1

1.1 Comment from Referee

This paper is a very interesting review paper on the problem of assimilation of image data. It is well
written and nicely documented. I particularly appreciated the work of formalization of this new type
of data in order to incorporate it in the traditional formalism of 4D VAR, that is used for conventional
data. This is performed in section 5 and illustrated by numerical experiments in section 6. The paper is
written in a nice way, so that reading is really pleasant. My comments, both on the theoretical aspects
as well as on the applications to image assimilation, is that this paper is worth being published. I suggest
a certain number of improvements so that the paper becomes excellent :

I did not understand the order of the figures. Usually the figures have numbers that correspond to
the appearance in the paper. This is not the case here. For instance figure 6 appears very early in the
text, before some figures that have smaller numbers. Why ? I think that it is better to change the
numbers of the figures to respect the general rule of appearance in the text.

1.2 Author’s response

This is an important point for the reader and we thank the Referee for his attention. We will address
this problem of figure ordering in the revision.

1.3 Author’s changes in manuscript

The figures are now reordered as follows:

• 6 becomes 3

• 3 becomes 4

• 7 becomes 5

• 4 becomes 6
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• 5 becomes 7

• No change for other figures

2 Comment 2

2.1 Comment from Referee

At the end of paragraph 3.1, there is a comment on the two main types of data assimilation meth-
ods (Kalman methods and variational ones). Is it true that Kalman methods are not implemented in
operational centers ? It seems to me that there is a kind of non-objectivity from the authors.

2.2 Author’s response

This question is of crucial importance and we thank the Referee for raising it. Our assertion referred to
the traditional Kalman Filter and should not be associated with all the Kalman Filter approaches as it
is the case in this version of the paper. The Ensemble Kalman Filter (Evensen, 1994) method includes
an elegant definition of the approximation of the covariance matrix and its practical use as long as the
infrastructures allow to run the ensemble forecast.

We also thank the Editor for his comment on this question, as well as O. Talagrand for pointing to
various sources to answer this comment.

2.3 Author’s changes in manuscript

The revised text makes it clear that the problem with the evolution of the covariance matrix is relevant
only for traditional Kalman Filter. It also makes it clear that the ensemble approach solves that problem;
see the section 3.1.

3 Comment 3

3.1 Comment from Referee

The threshholding procedure in 6.1.5 could be more clearly explained for non specialists of curvelets.

3.2 Author’s response

The Referee raises here an important question of the difficulty associated with the topic of curvelet in
general. Paragraph 6.1.2 has a short description of the curvelet decomposition. To help the non specialist
of curvelet understanding the thresholding procedure, and based on the parallel comment of Referee #2
we rewrote the paragraph.

3.3 Author’s changes in manuscript

See our response to the comment of Referee #2.

4 Comment 4

4.1 Comment from Referee

The paragraph 6.2 is not written as well as the other ones. I suggest to rewrite it in a style that is
consistent with the rest of the paper and that is easier to understand.

4.2 Author’s response

The remark of the Referee is capital for this paragraph that focus on the topic of Lyapunov exponents as
observation operator for images in Data Assimilation. We rewrote the paragraph to get more uniformity.
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4.3 Author’s changes in manuscript

The paragraph 6.2 is rewritten, see the revised manuscript.

W. Hsieh (Editor)

1 Comment 1

1.1 Comment from the Editor

I am pleased that all three reviews are generally positive about this manuscript, and the requested
revisions are not major.

in regard to Review #1, since this journal is focused on geophysics, addressing data assimilation in
medicine will be interesting but not essential for this review paper.

1.2 Author’s response

We thank the Editor’s for answering the comment from Referee #1;

2 Comment 2

2.1 Comment from the Editor

Review #3, point 2) wondered if the authors were non-objective in claiming Kalman filters were not used
in operational centers. In defense of the authors, I believe their claim is indeed true. Maybe the authors
can give an order of magnitude estimate on the computing power needed to do data assimilation with a
Kalman filter as compared to using variational assimilation for a typical operation model, which should
demonstrate that the Kalman filter is far too expensive to be practical.

2.2 Author’s response

We thank the Editor’s for giving indications to answer the comment from Referee #3.

3 Comment 3

3.1 Comment from the Editor

It seems Sects. 6.1.5 and 6.2 need to be made clearer, based on Reviews #3 and #2.

3.2 Author’s response

We rewrote section 6.1.5 and section 6.2, see our response to Reviews #2 and #3.

O. Talagrand

4 Comment

4.1 Comment from O. Talagrand

I pop up into the discussion on the question of operational use of Kalman Filter (KF) and Variational
Assimilation (4D-Var). Yes, Kalman Filter is used in operational Numerical Weather Prediction. It is
used at the Canadian Meteorological Center (CMC) in the form of Ensemble Kalman Filter (EnKF).
And, unless it has changed recently, the US National Centers for Environmental Prediction uses a sequen-
tial assimilation algorithm which is essentially a Kalman Filter where the updating of the background
with new observations is achieved through minimization of an appropriate objective function (3D-Var).
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However, I do not remember how the prediction error covariance matrix is evolved in time (if at all).
That should be eas y to check. As to the compared numerical cost of KF and 4D-Var, it can depend very
much on the numerical implementation of the algorithms (for instance, number of elements in EnKF,
or degree of parallelization). Buehner et al. (2010a, b) have made a rather clean comparison at CMC,
which possesses both a lgorithms in operational order (but uses at present EnKF). They found that, for
the same overall computational cost, the two algorithms produce results that can be different , but are
of globally similar quality.

4.2 Author’s response

We Thank O. Talagrand for pointing to various sources to answer the question of the referees. We used
those informations to answer the comments from Referee #3

Additional change in the text
Author added few lines of text in the introduction, and rewrote the acknowledgement section.
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Abstract. The equations that govern geophysical fluids
(namely atmosphere, ocean and rivers) are well known but
their use for prediction requires the knowledge of the initial
condition. In many practical cases, this initial condition is
poorly known and the use of an imprecise initial guess is not5

sufficient to perform accurate forecasts because of the high
sensitivity of these systems to small perturbations. As ev-
ery situation is unique, the only additional information than
can help to retrieve the initial condition are observations and
statistics. The set of methods that combine these sources of10

heterogeneous information to construct such an initial condi-
tion are referred to as data assimilation. More and more im-
ages and sequences of images, of increasing resolution, are
produced for scientific or technical studies. This is particu-
larly true in the case of geophysical fluids that are perma-15

nently observed by remote sensors. However, the structured
information contained in images or image sequences is not
assimilated as regular observations: images are still (under)
utilized to produce qualitative analysis by experts. This pa-
per deals with the quantitative assimilation of information20

provided in an image form into a numerical model of a dy-
namical system. We describe several possibilities for such
assimilation and identify associated difficulties. Results from
our ongoing research are used to illustrate the methods. The
assimilation of image is a very general framework that can25

be transposed in several scientific domains.

1 Introduction

For more than six decades, following the works of J. Von
Neumann and J. Charney, the fluid envelope of the Earth has30

been described by mathematical models giving the evolution

of its state variables: wind, temperature, pressure and mois-
ture for the atmosphere, current, temperature, salinity and
surface elevation for the sea. Models are routinely used for
prediction and the level of prediction has been dramatically35

improved over the last few years.
For more than five decades, the fluid envelope of the Earth

has been observed by satellite providing a long time and total
coverage of the ocean and of the atmosphere. Billions of im-
ages have been produced, some of which are exhibited in art40

galleries showing the beauty of our Earth. These images and
their dynamics show complex structures in different areas:
tropical depressions, storms at mid-latitudes but also tem-
perature, salinity and phytoplankton blooming in the ocean.
These images are often used in meteorological bulletins on45

TV to illustrate the evolution of the weather. Thus they are
important for a qualitative understanding of the evolution of
the weather.

Images and models describe the same objects but with
different tools. Images are often used to verify models – in50

general in fluid dynamics and turbulence – but it is done in
a qualitative way rather than in a quantitative one. Both mod-
els and experiments display, for instance, images of Kelvin
waves showing that models can mimic nature. But to what
extent? How is it possible to quantitatively compare images55

of Kelvin waves observed from experiments and images from
numerical models?

Over more than two decades, data assimilation has pro-
gressed into a very important development which is consid-
ered as the main reason for the improvement of forecasts.60

By data assimilation, we mean all the methods able to link
together all the available information on geophysical fluids:

1. mathematical information provided by models
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2. physical information provided by in-situ or remote ob-
servations65

3. statistical information issued both from observations
and from past predictions

4. a priori information, e.g. the regularity of the fields.

For many years, numerical models and images have both
been used for a qualitative prediction. However, the struc-70

tured information borne by images and by models are not
presently used together in a quantitative framework.

The purpose of this paper is Direct Image Assimilation,
which can be summarized as: How to couple the information
provided by numerical models and the information provided75

by images? And the dual problem: how to validate mathe-
matical models of flows using images and their dynamics.
By validating, we mean a quantitative validation and not just
a qualitative one. We must deal with a very general problem
arising in many other fields out of geophysical problems. In80

nature, every situation is unique; steady state or asymptotic
solutions do not exist. Most of the time, this assumption of
uniqueness is implicitly used in modeling. Because of the
enhancement of modeling, this fact will become crucial. In
many cases, the initial condition and/or boundary conditions85

can not be experimentally controlled and consequently math-
ematical models are not sufficient to give an accurate repre-
sentation of the situation. More information must be added
and inserted into models. Images are, in some situations,
candidates for this purpose.

:::
We

::::::
would

::::
like

:::
to

:::::
point

:::
out

::::
the90

:::::::::
ambiguity

::
of

:::
the

:::::::
nature

::
of

:::::
some

::::::::::
sequences

::
of

:::::::
images.

::::::
Some

::::::::
elements

:::
are

:::::::
clearly

:::::::::::
lagrangian,

::::
this

:::
is

:::
the

:::::
case

:::
of

::::::
small

:::::::
cumulus

::::::::
humilis

:::::::
clouds

:::::::
drifted

::::
with

::::
the

::::::
wind,

::::::
under

::::
the

::::::
tropics

::::
they

::::
are

:::::
used,

:::
by

:::::::::::
operational

:::::::
centers,

:::
as

::::::::::
lagrangian

::::::::
markers.

:::
As

:::::
such,

:::::
they

::::
give

:::
an

::::::::::
estimation

::
of

::::
the

:::::
wind

::::
that95

:::
can

:::
be

::::
used

::
in

::
a

::::
data

:::::::::::
assimilation

:::::::
scheme.

::::::
Some

::::::::
elements

:::
are

::::::
clearly

::::::::
eulerian:

::::
this

::
is

::::
the

::::
case

:::
of

::::::::::
lenticularis

:::::::
clouds,

:::::
they

::::
seem

:::
to

:::
be

:::::
quasi

:::::::
steady,

::::
but

::
in

::::
fact

:::::
they

:::
are

::::
the

:::::::::
signature

::
of

::
a

::::::
strong

::::::
wind.

::::::::::
Estimating

:::::
wind

::::::::
velocity

:::::
from

::::
the

:::::
shift

::
of

:::::
these

:::::::
clouds

::::::
would

::::
lead

:::
to

:::::::::
erroneous

:::::
data.

:::
In

:::::::::
betweens100

::::
these

::::::::::
examples,

:::::
many

::::::
visual

:::::::::
elements

::
in

:::::::::::
geophysical

::::::
fluids

::::::::
dynamics

:::::
have

:::::
both

::
an

::::::::
eulerian

::::
and

::
a

::::::::::
lagrangian

:::::::::
character.

:::
The

:::::::::
methods

::::::::::
developed

:::
for

::::::::::::
assimilating

:::::::
images

::::::
could

:::
be

::::::
helpful

:::
for

::
a

:::::
better

:::::::::::::
understanding

::
of

::::
the

::::::::::
underlying

:::::::
physics.

:

For engineering problems, the unknown conditions may105

be some parameters which have to be identified as a solution
of an inverse problem, a methodology which can be included
in data assimilation as it is. ,

:::
see

::::
for

::::::::
example Chapelle et al.

(2013)
::
for

:::::::::::
application

::
in

::::::::::
Biological

:::::::::::
Engineering

::::::::::
problems.

Nevertheless, this paper will be more oriented towards appli-110

cations to geophysical fluids. The remaining part of the paper
is organized as follows: Sect. 2 gives a brief description of
the observation by satellites. Section 3 is devoted to a brief
introduction to data assimilation using variational methods. It
also describes the characteristics of satellite observations in115

the sense of data assimilation. Section 4 describes the use of

images as the source of pseudo-observations in data assimila-
tion. Section 5 gives a methodology for direct assimilation of
images and introduces the notion of an observation operator
for images. Examples of such operators are given in Sect. 6120

as well as associated numerical results. Section 7 concludes
the paper.

2 Satellite observations

At the present time, more than forty satellites are continu-
ously scanning the atmosphere and the ocean. As an illustra-125

tion, Fig. 1a gives the number of observations provided by
satellites and its evolution from 1996 to 2010.

2.1 Classification of satellites

Satellites can be classified according to many criteria: usage
and orbit characteristics are the major criteria. In terms of130

usage, we are interested in earth observation and weather
satellites. The next section gives a brief description of data
provided by those satellites. In terms of orbit characteristics,
the most important are the altitude and the inclination (in ref-
erence to the equatorial plane). The altitude and the inclina-135

tion define the resolution, the coverage, and the acquisition
conditions (local solar time at the acquisition point) of the
measurement instruments on board the satellite. Most of the
earth observation and weather satellites can be classified as
geostationary or polar orbiting:140

1. Geostationary satellites. They are synchronous with
Earth rotation, consequently, because of the Coriolis
force, they are necessarily located above the equator
at an altitude of ∼ 35786 km. Their position above the
equator makes it almost impossible to observe polar re-145

gions and the high altitude does not allow acquisition
in the microwave band. The spatial resolution of mea-
surements is fine at the equator and degrades gradually
as one moves away. Their stationary position above the
earth makes it possible to get frequent measurements150

at the same point. At the current time, most of the op-
erational weather geostationary satellites provide a full
image of their coverage area every 15 min. The cover-
age area for such a satellite is about the quarter of the
surface of the Earth. There are presently around ten155

geostationary satellites, each one observing a part of
the Earth. Most of the visual information displayed on
weather bulletins on TV are issued from these satellites.
They clearly show the evolution of the large scale air
masses, the birth of tropical depressions and hurricanes160

and, even at a local scale, the development of thunder-
storms. Figure 1b shows the coverage of the Earth by
observations from geostationary satellites.

2. Polar orbiting satellites. These satellites have an alti-
tude between 400 and 800 km. At that elevation, they165
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can cover the broad spectrum of radiation including the
microwave range as opposed to geostationary satellites.
Also, the spatial resolution of measurements is very fine
thanks to the low altitude. However, the geographical
coverage is quite narrow at a given time. Also, the time170

resolution is coarse. In some orbits, it takes several days
for the satellite to travel above the same point. They
need several orbits to cover the entire globe. These satel-
lites pass over the poles at each revolution, making it
possible to get information more frequently in those ar-175

eas not covered by geostationary satellites and almost
inaccessible by conventional instruments. According to
their inclination, they can be divided into subclasses.
The subclass that draws attention is the subclass of sun-
synchronous orbit. The polar sun-synchronous satellites180

pass the equator at the same local time on every pass.
Those satellites are useful for imaging and weather. Fig-
ure 1c shows the distribution of observations from polar
orbiting satellites equipped with the AMSU-A sensor.

2.2 Content of satellite measurements185

Satellite sensors measure radiation reflected or emitted by
the Earth, the seas or the atmosphere. The measured radia-
tions are reflected light for visible channels and radiance for
infrared channels. Depending on the wavelength employed,
the measured radiations quantify a variable or a set of vari-190

ables of the studied system. They can therefore be considered
as observations in the sense of data assimilation.

In visible channels, satellites measure the reflective prop-
erties of the observed system (see Fig. 3). This is often lim-
ited to the upper layer of clouds. If the atmosphere is not195

cloudy, the observed surface can be extended to the Earth and
sea surface. The observation of the sea in the visible chan-
nel produces the sea surface color (see Fig. 2). It shows the
concentration of the phytoplankton in a thin upper layer of
the sea. In infrared channels, satellites measure an integration200

over a certain thickness of the emissive properties of the ob-
served system. Examples are water vapor images in the atmo-
sphere and the sea surface temperature (SST) images. The in-
tegration thickness is highly dependent on the observed sys-
tem. The sea is impervious to electromagnetic waves making205

measurements to be limited to a very thin layer of the sea
surface. SST measurements, for example, are limited to only
a few millimeters of the sea surface. This thickness is negli-
gible compared to the thickness of the top layer in numerical
models of the sea, which can extend to some hundred me-210

ters. Data like the SST are thus more related to interactions
between the sea and the atmosphere than to the sea state vari-
ables. For the atmosphere, the probed layer can extend to its
full thickness under the satellite. In the case of water vapor,
the thickness of the probed layer is more important than in215

the case of the SST, but depends on the distribution of mois-
ture in the atmosphere. Some specialized satellites provide
more complex data, an example is the Jason type satellites

that give the sea surface elevation with a precision of some
centimeters.220

As opposed to in-situ measurement devices that usually
acquire observations at a single point at each time, satellite
measurements provide observation of a large area at the same
time. Thus, these satellites provide the image of their cov-
erage area by the radiation function at each time. For this225

reason, satellite observations are usually called images. Sub-
sequently, the expression “satellite image” means satellite
observation.

3 Data assimilation

3.1 Definition of data assimilation230

By data assimilation, we mean the methods permitting the
best retrieval of the state of the environment, a mandatory
step prior to prediction. From the formal point of view, the
problem is to link heterogeneous sources of information, the
heterogeneity bearing on the nature, the quality and density.235

Basically we have:

1. Mathematical information. This is the model which is
used to describe the flow.

2. Physical information. It is given by data issued from in
situ or remote measurements such as images.240

3. Statistical information. It could be produced from statis-
tics on the observations as well as statistics on the out-
puts of the model.

4. A priori information, for instance on the regularity of
the fields or the existence of singularities. More gener-245

ally, qualitative information used in the analysis.

Basically, there are two approaches of data assimilation
methods for combining all the previously mentioned infor-
mation:

1. Approaches derived from the Kalman filter. They250

are based on Bayesian estimation and are of
great theoretical importance, but having

:
.

:::::::
Having

to deal with a huge covariance matrix, they
::
the

:::::::::
traditional

::::::::
Kalman

:::::::
filters

:
are not implemented in

operational centers.
:::
The

:::::::::::
Ensemble

:::::::::
Kalman

:::::
filter255

::
of

::::::::::::::::::::::::::
Evensen (1994) overcomes

:::::
that

:::::::::::
limitation

::::
by

::::::::::
introducing

::::
an

:::::::::::
ensemble

:::::::::::::::
approximation

::::
of

::::
the

:::::::::
covariance

:::::::
matrix.

:

2. Variational approaches. They are based on optimal con-
trol and the calculus of variations. These methods are260

presently used by most important operational centers for
weather prediction. They seem well adapted for the as-
similation of images and, in the sequel, we will only
consider the variational approaches.
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3.2 Variational data assimilation265

The ingredients of variational data assimilation are:

– A model describing the evolution of the state variable
X ∈ X . The model is usually given as a system of par-
tial differential equations (PDE) of the form:

dX

dt
=M(X), t ∈ [0,T ],

X(0) = U ,
(1)270

where the initial condition U ∈ X is unknown, X is the
state space and M is the model operator. For illustra-
tion, in the case of atmospheric systems, the state vari-
able X represents variables such as wind, temperature,275

pressure, etc., and the dynamic modelM describes the
set of physical laws that the variables must respect over
time. These laws are: thermodynamics laws, conserva-
tion laws, etc.

– A set of observations Y o given by physical measure-280

ment (direct or indirect) of the system state. For the sake
of simplicity, we will assume observations to be contin-
uous in time:

Y o : R+→O,
t 7→ Y o(t); (2)

285

– An operator of observation H: observations are usually
made up of partial or indirect measurements of the state
variables. The observation space O is not necessarily
the same as the state spaceX . The observation operator
H is defined as the mapping operator from X onto O:290

H :X →O
X(t) 7→ Y (t) =H[X(t)]. (3)

– A background estimation Ub of the initial state U .
In operational meteorology, this background estimation
can be deduced from previous forecasts.295

– Statistical information, for instance the error covariance
matrix Q of the observation error and the covariance
matrix B of the background estimation.

Variational data assimilation (VDA) defines the optimal ini-
tial condition Ua as:300

Ua = argmin J(U), (4)

where the so-called cost function J is defined as:

J(U) =
1
2

T∫
0

‖ H[X(t)]−Y o(t) ‖2Q−1 dt+
1
2
‖U −Ub ‖2B−1 ,

(5)305

with the norms ‖Y ‖Q−1 =‖Q− 1
2 Y ‖ and

‖U‖B−1 =‖B− 1
2 U‖.

The cost function contains two terms: the first one is the
discrepancy between observations and the solution of the
model associated with the initial condition U . The second310

one is the background term. It will require the solution to be
located in the vicinity of Ub. It is also a regularization term
in the sense of Tikhonov (1963). This term is mandatory due
to the ill-posedness of the problem. In operational meteorol-
ogy, the dimension of the state vector, and consequently the315

dimension of the initial condition, is of the order of one bil-
lion while the number of daily observations is of the order of
ten millions. Therefore we would have to deal with a severely
ill-posed problem (as defined by Hadamard) if the regular-
ization were not introduced. A necessary condition for the320

optimality is given by the Lagrange–Euler equation:

∇J(Ua) = 0, (6)

this is also a sufficient condition if J is strictly convex and co-
ercive. This is the case if we have a linear model but realistic325

models are nonlinear in general. Solving the Lagrange–Euler
equations requires the gradient ∇J of the cost function. The
main difficulty is that J is an implicit function of U . In VDA,
∇J is computed through the adjoint variable P , which is de-
fined as the solution of the adjoint model:330 

dP

dt
+
[
∂M
∂X

]∗
·P =

[
∂H
∂X

]∗
.Q−1(H(X)−Y o), t ∈ [0,T ]

P (T ) = 0,
(7)

where the ∗ denotes the adjoint operator. The adjoint model
is deduced from the direct model Eq. (1) using calculus of
variations based on the Gateaux derivatives, see Le Dimet335

and Talagrand (1986) for details. The gradient of the cost
function∇J(U) is given by

∇J(U) =−P (0) + B−1(U −Ub). (8)

The gradient is then used in an optimization algorithm (Trun-340

cated or Quasi-Newton methods, L-BFGS) to compute an es-
timate of the optimal solution.

3.3 Satellite observations and data assimilation

Observations that are quantitatively used in data assimilation
are usually limited to measurements of the state variables,345

such as wind, moisture and pressure given by terrestrial cen-
ters for meteorological prediction. These observations will
be named conventional in the subsequent. Apart from con-
ventional observations, there exists another class of observa-
tions that is mainly used only for qualitative purposes: these350

are images. Among the various sources of images, satellites
plays an important role for the observation of the atmosphere
and seas.



F.-X. Le Dimet et al.: Toward the Assimilation of Images 5

As we mention in Sect. 2.2, satellite observations or satel-
lite images are indirect measurements of the state variables355

of observed systems like the atmosphere or the sea. Thanks
to post processing, they can be converted into observations
of the associate variables. As an example, Fig. 2 shows the
SST and the chlorophyll concentration derived from MODIS
(on board satellite Aqua) observation of the Gulf Stream.360

MODIS stand from Moderate-resolution Imaging Spectro-
radiometer; it is a 36-channels scientific instruments that
equips NASA satellites Terra and Aqua.

Thanks to their high resolution and their spatial coverage,
satellite images also provide information on structures rang-365

ing from mesoscale to synoptic scale. Structure refers to the
spatial organization of individual measurements. A sequence
of images shows the dynamical evolution of the structures.
As example, in addition to the SST and the chlorophyll con-
centration, Fig. 2 shows a couple of large Gulf Stream ed-370

dies. The similarity of observed structures between SST (in-
frared channel) and Chlorophyll concentration (visible chan-
nel) shows that such information can be obtained from dif-
ferent measurements. The example of Fig. 3 shows a depres-
sion over western Europe and its evolution from 28 April to375

29 April 2008. The observed structures (eddies for the sea,
depression for the atmosphere, etc.) represent Lagrangian in-
formation and are clearly useful for the prediction of the ob-
served system. From the above description, we can distin-
guish two major types of satellites observations:380

1. indirect measurements of the state variables of observed
systems;

2. characteristic structures of the observed system and
their dynamics.

3.3.1 Satellite observations as indirect measurements of385

the state variables

From this point of view, one can derive two approaches for
using satellite observations. The first approach consists in
extracting the variables that are indirectly observed and use
them as conventional observations in a model that contains390

those variables in the system state. The second approach con-
sists in modeling an appropriate observation operator that
computes radiance from the system state given by the model.
In both cases, satellite observations are used as conventional
observations; this consideration will not be taken into ac-395

count in the rest of this paper. The two cases are subject to
some problems including: the difficulty of extracting vari-
ables from indirect measurements or modeling the appro-
priate observation operator; the sensitivity of satellite mea-
surements to acquisition conditions. For example, a substan-400

tial cloud cover makes the error rate prohibitive in the ob-
servations of temperature and moisture of the atmosphere.
In these cases, measurements are used to derive other prod-
ucts such as velocity fields (atmospheric motion vector or
AMV). However the combination of four Dimensional Vari-405

ational Data Assimilation (4D-VAR) and the use of satel-
lite measurements has significantly improved the forecasts as
shown by Fig. 4. This figure shows the anomaly correlation at
500 hPa height for 3, 5 and 7 days forecast between the years
1992 to 2007. Before the year 2000, there was a significant410

difference between the forecast in the Northern Hemisphere
(high performance) and Southern Hemisphere (poor perfor-
mance). The difference was due to the lack of conventional
observation in the Southern Hemisphere. In the early 2000s,
the introduction of satellite observations in data assimilation415

made it possible to get the same performance in both hemi-
spheres.

3.3.2 Satellite observations as characteristic structures
of the studied system and their dynamics

This is the approach that will be developed in the rest of this420

paper. In this case, satellite measurements can not simply be
used as conventional observations. In fact, as structures refer
to the spatial organization of individual measurements, a sin-
gle measurement is useless. Similarly, as the dynamics refers
to the evolution of measurements in time, a single image is425

not sufficient. However, the observed structures are indirectly
present in the model output, provided with appropriate initial
conditions and other parameters of the model. The question
that arises is: how to use such information in data assimila-
tion? The answer to this question is the assimilation of im-430

ages. This is a concept that emerged recently with the aim of
using images as observations in data assimilation. There are
two basic approaches:

1. Assimilation of pseudo-observations. In a first step, the
images are analyzed. The results of the process is a field435

of velocities obtained by the comparison of two or sev-
eral successive images. In a second step, these velocities
are assimilated as conventional observations in a classi-
cal method of data assimilation.

2. Direct assimilation of images. Images (image struc-440

tures) are considered as conventional observations and
assimilated as such. To do so, depending on the applica-
tion, we need to define an adequate mathematical space
in which images or image structures will be modeled.
Corresponding observation operators that map the con-445

trol space into the structure space should be constructed.
The structure space must conserve and extract the most
pertinent information of the images. If we want to re-
main in the framework of optimal control methods, then
the space must be defined in such a way that the rules450

of differential calculus can be applied. It is also impor-
tant to underline that, for computing purposes, the space
dimension should not be too large.

In both cases, a preliminary step for using images in data
assimilation is the identification of the underlying process.455

However, this paper does not focus on this preliminary step;
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instead, it focuses on the mathematical aspects of the use of
images in data assimilation. Before moving forward, let us
give some illustrations of the importance of that preliminary
step. Lenticular clouds may be observed under the wind over460

a mountain; they are an Eulerian property of an area where
there is condensation of water vapor. These clouds appear to
be quasi-stationary, consequently if they were used as a La-
grangian tracer, they would lead to a small wind velocity.
Such an analysis would be a misinterpretation of reality as465

these clouds are actually the signature of a strong wind. This
is also the case of some small cumulus clouds that can appear
at the vertical edge of some crops with strong radiative prop-
erties. They are the signature of a local vertical convection
and therefore are not useful for retrieving horizontal veloc-470

ities. It is important to mention that phase errors and joint
phase-amplitude should be considered in the assimilation of
remote measurements. This issue is not addressed in this pa-
per as it is not the main topic of this paper. However, there
is a significant literature on the topic that can be of interest475

to the reader (Hoffman et al., 1995; Hoffman and Grassotti,
1996; Brewster, 2003a,b; Ravela et al., 2007).

4 Images as source of pseudo-observations in data as-
similation

4.1 Principle of assimilation of pseudo-observations480

Since the early 80’s with the works of Horn and Schunck
(1981), research has been carried out to derive velocity fields
from images sequences, with applications to fluid dynamics
mainly (and very recently to movie compression and medi-
cal imagery). The velocity field derived from the image pro-485

cessing techniques can be used as pseudo-observations of
wind in an assimilation system, for instance in a regular VDA
scheme.

The left panel of Fig. 5 shows the principle of assimilation
of pseudo-observations of velocity fields. From a sequence490

of images, a velocity fields is estimated and used as observa-
tion of the velocity field in a regular scheme of data assim-
ilation. There are several methods to extract a velocity field
from a sequence of images. They can be divided into two
categories: the frame-to-frame motion estimation and the so-495

called image model technique. Motion estimation or frame-
to-frame motion estimation is a technique from image pro-
cessing that aims at estimating the velocity field that trans-
ports an image to another. A mathematical description of this
technique is given in Sect. 4.2. From frame-to-frame motion500

estimation, one gets a velocity field between each pair of suc-
cessive images of a sequence, but there is no guarantee of
consistency in the resulting sequence of fields if it is applied
to many pairs of images of the same sequence. In such cases,
the image model technique can be more appropriate. It cou-505

ples the frame-to-frame technique with an evolution model
for the velocity field. For details on this technique, the reader

is referred to Herlin et al. (2006); Huot et al. (2006); Koro-
taev et al. (2007).

4.2 Frame-to-frame motion estimator510

The description of motion estimation in this paper is limited
to optical flow. It is a variational method and is well suited
for image sequences in geophysics. There also exist statisti-
cal methods based on the correlation between successive im-
ages. For more information on those methods, the reader is515

referred to Adrian (1991) that describes the commonly used
one: Particle Image Velocimetry (PIV). Optical flow is a clas-
sical method of motion estimation. It is based on the conser-
vation of the global luminance between two images (Horn
and Schunck, 1981). Let I : Ω×R→ R be the luminance520

function defined on the pixel grid Ω⊂ R2 and the time t ∈ R,
the optical flow is the vector field V (x,y) that satisfies the
luminance conservation given by the following equation:

dI
dt

=
∂I

∂t
+∇I ·V = 0. (9)

525

According to the nature of the images, the law of conser-
vation of the luminance Eq. (9) can be replaced by a spe-
cific law. For example, with images of the ocean’s color,
conservation of chlorophyll (with source and sink terms)
can be considered; with images of Sea Surface Temperature530

(SST), the Boussinesq approximation can be used, etc. In
many cases, the validity of these laws, from the optical point
of view, is dubious. For instance, between two satellite im-
ages, the enlightenment will have changed and some correc-
tive term will have to be added to the equation. As a conse-535

quence, it is necessary to carry out a preliminary study of the
images to detect structures on which the information borne
by the equation of conservation and the images is maximized.
For instance, if we are working with Sea Surface Temper-
ature (SST), filaments are important structures which have540

to be identified in the analysis. They are characterized by:
elongated structures, constant temperature, significant con-
trast with the surrounding area, and motion by translation. To
identify filaments, it is necessary to use the tools of mathe-
matical morphology (Serra, 1988; Najman and Talbot, 2010).545

In the images, it will also be necessary to discard points with
a weak spatial gradient or with a weak temporal evolution.
Detecting and/or eliminating structures from the images re-
quires the application of a thresholding operator (e.g. on the
norm of the gradient of the SST). Of course, the analysis will550

be sensitive to the threshold value chosen. The choice of the
threshold is usually empirical.

For a two dimensional problem, the velocity field V =
(u,v) is determined as the solution of an optimization prob-
lem. To this end, one defines a cost function J to be mini-555

mized as follows:

J(u,v) =
1
2

T∫
0

∫
Ω

[
∂I

∂t
+u

∂I

∂x
+ v

∂I

∂y

]2

dxdydt. (10)
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A necessary condition for optimality is expressed by the
Euler–Lagrange equations that involve the gradient of J with560

respect to u and v. For the cost function of Eq. (10), the
Euler–Lagrange equations give the solution V ∗ = (u∗,v∗) as
the solution of the linear system:

u

[
∂I

∂x

]2

+ v · ∂I
∂x
· ∂I
∂y

=−∂I
∂t
· ∂I
∂x

(11)

u · ∂I
∂x
· ∂I
∂y

+ v ·
[
∂I

∂y

]2

=−∂I
∂t
· ∂I
∂y
. (12)565

The determinant det of this system and the determinants detu
and detv relative to unknowns u and v are all zero, mean-
ing that the solution is not unique. The problem is ill-posed.
In fact, let V = (u,v) be a solution of the non regularized570

problem, and W = (w1,w2) a vector fields, orthogonal to
the image gradient, i.e. (〈W ,∇I〉= 0). We have:

J(V +αW ) = J(V ),∀α ∈ R. (13)

As a consequence, it is impossible to determine the motion575

in the direction orthogonal to the image gradient: this is the
aperture problem that is well known in computer vision. It is
a source of ill-posedness. To address the ill-posedness, reg-
ularization techniques are used. The literature on the regu-
larization for image processing is very large. The references580

Tikhonov (1963), Horn and Schunck (1981), Alvarez et al.
(1999), Nagel (1983), Schnörr (1994), Suter (1994), Weick-
ert and Schnörr (2001), Black and Anandan (1991), Hinter-
berger et al. (2002), and Mémin and Perez (1998) give a start
point for the interested reader.585

5 Direct assimilation of images

5.1 Mathematical formulation

By direct assimilation of images, we mean using image ob-
servations directly in the cost function of variational data as-
similation. In this case, image observations are jointly used590

with conventional observations to compute the optimal con-
trol variable of numerical models. The right panel of Fig. 5
shows a schematic representation of direct assimilation of
images. Images are used directly in the optimality system
jointly with conventional observations. This direct use of595

images in the optimality system requires the definition of
a mathematical space for the images with adequate topology
and the associated images observation operator. An images
observation operator is a mapping from the space of the nu-
merical solution of the model toward the space of images. No600

prior step to extract pseudo-observations of state variables is
needed. Direct assimilation of images requires the modifi-
cation of the cost function in order to take into account the
image observations. The cost function that takes into account

images can be written as follows:605

J(X0) =
1
2

T∫
0

‖H (X(t))−Y o(t)‖2Q−1 dt

︸ ︷︷ ︸
conventional cost

+
1
2

T∫
0

‖HX→F (X(t))− f(t)‖2F dt,

︸ ︷︷ ︸
image cost

(14)

where f(t) is the image function at time t, ‖.‖F is the ap-
propriate norm in the image space F , and HX→F is the ob-610

servation operator for images; subsequently, it will be called
the model to image operator. In Eq. (14), the background
and regularization terms are omitted for sake of clarity. The
regularization term will be the canonical one in VDA.

5.2 Observation operators for images615

A first consideration of the image cost function is to take the
norm of the left hand side of the equation of the optical flow
Eq. (9). The image is considered as a passive tracer moving
with respect to the dynamics of the system, and more pre-
cisely with the motion field V . This approach, proposed in620

Béréziat and Herlin (2011); Papadakis and Mémin (2008);
Gorthi et al. (2011) leads to the following image cost func-
tion:

1
2

T∫
0

∫
Ω

∥∥∥∥∂I∂t +∇I ·V
∥∥∥∥2

Q−1

dxdydt. (15)

625

This cost function can not be turned easily into the form sug-
gested by Eq. (14). The covariance matrix Q is defined with
respect to the image gradients ∇I in order to restrict image
information to pertinent areas containing discontinuities. If
the model M is monotone and ensures the spatio-temporal630

continuity of the state X(t), the regularization of the flow
V at time t now only depends on the regularity of the back-
ground condition V 0.

Due to the characteristics of images, they should not be
used directly as an array of pixels in the cost function. Spe-635

cific structures of the image, such as lenticular clouds men-
tioned above, may have their own dynamics. In such cases,
image observations can not simply be considered as a pas-
sive tracer moving under the dynamics of the studied system.
It is also important to point out that from a dynamical point640

of view, information in an image sequence are located in dis-
continuities and the dynamics of those discontinuities. Even
with advanced covariance matrices, the pixel representation
of images is not suitable to describe such phenomena in data
assimilation. Additional operators should be used to isolate645

structures of interest from the image. In this case, the cost
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function Eq. (14) takes the form:

J(X0) =
1
2

T∫
0

‖H (X(t))−Y o(t)‖2Q−1 dt

︸ ︷︷ ︸
conventional cost

+
1
2

T∫
0

‖HX→S (X(t))−HF→S (f(t))‖2S dt,

︸ ︷︷ ︸
image cost

(16)
650

where S is the space of features of interest to be isolated
from the image. This notation is borrowed from Titaud et al.
(2009) where such a space is called the “space of structures”.
HF→S is the image to structure operator and HX→S is the
model to structure operator.655

Image to structure operator: The goal of such an operator
is to extract features of interest from image observations. As
we said previously, the main information obtained by human
vision from the image is located in the discontinuities. A def-
inition of S must be related to the discontinuities in the im-660

age function. Discontinuities are well characterized in spec-
tral spaces. Thus, the basic definition of S may be based on
a spectral decomposition such as Fourier, wavelet or curvelet.

Model to structure operator: This operator extracts fea-
tures of interest from the system state given by the model. It665

can be defined as:

HX→S =HF→S ◦HX→F , (17)

whereHX→F is the model to image operator previously de-
fined. Setting the image to structure operator to be the iden-670

tity (HF→S = Id), we get the cost function given by the
Eq. (14). Another approach of using image observation in
Laboratory data assimilation can be found in Ravela et al.
(2010). The authors used computer vision system to ex-
tract measurements from the physical simulation with paral-675

lel computing and decomposition to account for observation
in real time as well as using the numerical model to adapt the
observing system.

5.3 Adjoint model in direct image assimilation

When the image term is added to the cost function, Eq. (16),680

the adjoint model of variational data assimilation, Eq. (7) be-
comes:

dP

dt
+
[
∂M
∂X

]∗
·P =

[
∂H
∂X

]∗
.Q−1(H(X)−Y o)︸ ︷︷ ︸

conventional forcing term

+
[
∂HX→S
∂X

]∗
.(HX→S [X]−HF→S [f ])︸ ︷︷ ︸
image forcing term

P (T ) = 0,
(18)

The expression685 [
∂HX→S
∂X

]
, (19)

is the Jacobian of the model to structure operator. The pres-
ence of this expression means that the model to structure op-
erator must be differentiable. Then we can compute its Ja-690

cobian and the gradient of the cost function in order to be
able to carry out an optimization algorithm and identify the
optimal initial condition.

6 Examples of direct image assimilation techniques

In this section, we describe two tools that can be used to con-695

struct observation operators. The first method uses the ad-
vection of a passive tracer whose concentration map is con-
sidered as the image. This method is well adapted for as-
similating a sequences of images. The second method uses
the computation of Lagrangian Coherent Structures (LCS)700

of the flow. This method exploits the integrated informa-
tion contained in tracer images and is well suited for single
image assimilation. We will also discuss different examples
of mathematical spaces for image structures. All the associ-
ated topologies will be of L2-type. The main purpose of this705

choice is its convenience; other choices, e.g L1 that is com-
monly used in image processing, could be considered. Also
the question of introducing some covariance matrix into the
definition of the topology remains open. The choices shown
below are not exhaustive. Many other potential spaces could710

be considered. The choice of the mathematical space for im-
ages defines the image to structure operator that has been
introduced in the previous section.

6.1 Observation operators based on the advection of
passive tracer715

In this subsection, we consider the case where the model to
structure operator can be decomposed into a model to image
operator and an image to structure operator. We focus only
in the image to structure operator that is the most important
as stated in Sect. 5. A simple example of the model to image720

operator can be defined by considering images as observa-
tions of a passive tracer. Image evolution is then modeled
by a transport equation, the initial distribution of the passive
tracer being given by the first image. Interpolation from the
grid points of the numerical model toward the grid points of725

the image can be necessary. In this case, an image is consid-
ered as the concentration of the passive tracer.

6.1.1 Pixel representation of image

The pixel representation of a 2-D image is a discretization
(numerical representation) of a mathematical function of two730

variables that defines the image. It is usually given as a 2-D
array, each entry of the array being the value of the image
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at the associated grid cell of the discretization. The simple
case of image assimilation is to consider the identity image to
structure operator. In this case, the cost function associated735

with the image will take the form:

J(U) =
1
2

T∫
0

‖HX→F (X(t))− f(t)‖2F dt (20)

where,HX→F defines the concentration of the passive tracer
from the system state and f is the observed concentration740

(image) at time t. In this case, the image is considered as an
array of Eulerian observations of the tracers and the features
of the dynamics (fronts, vortices, etc.) are not explicitly taken
into account.

6.1.2 Multiscale analysis of images: curvelets745

Recent years have seen a rapid development of new tools for
harmonic analysis. For general fluid dynamics and also for
geophysical flows, there are coherent structures evolving in
an incoherent random background. If the flow is considered
as an ensemble of structures, then the geometrical represen-750

tation of flow structures might seem to be restricted to a well-
defined set of curves along the singularities in the data. The
first step in using images as observations in data assimila-
tion is to separate the resolved structures, which are large,
coherent and energetic from the unresolved ones, which are755

supposed to be small, incoherent and bearing little energy.
One of the first studies in this sense can be found in Farge
(1992). It shows that the coherent flow component is highly
concentrated in wavelet space. Wavelet analysis is a partic-
ular space-scale representation of signals which has found760

a wide range of applications in physics, signal processing
and applied mathematics in the last few years. The literature
is rich regarding wavelets. The interested reader can be re-
ferred to Mallat (1989), Coifman (1990), and Cohen (1992)
for example. A major inconvenience of wavelets is that they765

tend to ignore the geometric properties of the structure and
do not take into account the regularity of edges. This issue
is addressed by the curvelet transform. The curvelet trans-
form is a multiscale directional transform that allows an al-
most optimal nonadaptive sparse representation of objects770

with edges. It has been introduced by Candès and Donoho
(Candes and Donoho, 2004, 2005a,b; Candes et al., 2006).
In R2, the curvelet transform allows an optimal represen-
tation of structures with C2-singularities. As curvelets are
anisotropic, they have a high directional sensitivity and are775

very efficient in representing vortex edges.
A function f ∈ L2(R2) is expressed in terms of curvelets

as follows:

f =
∑
j,l,k

〈f,Ψl,j,k〉Ψl,j,k. (21)
780

where Ψj,l,k is the curvelet function at scale j, orientation
l and spacial position k (k = (k1,k2)). The orientation pa-

rameter is the one that makes the major difference with the
wavelet transform. The set of curvelet functions Ψj,l,k does
not form an orthonormal basis as it is the case for some fam-785

ilies of wavelets. However, the curvelet transform satisfies
the Parseval relation so that the L2-norm of the function f is
given by:

‖f‖2 =
∑
j,l,k

|cj,l,k|2, (22)
790

where cj,l,k are the curvelet coefficients given by:

cj,l,k = 〈f,Ψl,j,k〉 . (23)

In Fig. 6 from Ma et al. (2009), the supports of some wavelets
and curvelets are presented. The figure shows the strong795

anisotropy curvelets and suggest that curvelet representation
will give a better adjustment for 2-D-curves.

Figure 7 shows an illustrative comparison of the approxi-
mation of a circle by wavelets and by curvelets. The curvelets
provide a better approximation of this perfectly anisotropic800

object. The convergence of curvelets is also better: the best
m-term approximation fm of a function f has the represen-
tation error

‖f − fm‖≈m−1
805

for wavelets and

‖f − fm‖≈Cm−2(lnm)3

for curvelets. Another interesting property of curvelets in the
framework of variational data assimilation is that the adjoint810

of the curvelet transform is the inverse of the curvelet trans-
form. Therefore, to represent an image, we will consider the
truncation of its expression in a curvelet frame.

6.1.3 Numerical experiments

In this subsection, we present numerical experiments of di-815

rect image assimilation with observation operators based on
the advection of a passive tracer. We used images from ex-
perimental physics: the drift of a vortex is studied through
physical experiment in the Coriolis platform: it is a circu-
lar rotating tank with a diameter of 14 m, located at Labora-820

toire des Écoulements Géophysiques et Industriels (LEGI),
Grenoble, France. The rotation of the tank recreates the ef-
fect of the Coriolis force in a thin layer of fluid. The vortex
is generated by stirring the fluid and made visible for opti-
cal images thanks to the addition of the fluorescein that is825

a passive tracer. Pictures are taken from above the turntable
at regular time intervals to study the evolution of the vortex.
A full description of a similar experiment can be found in
Flór and Eames (2002). A sequence of two images from that
experiment is used for the motion estimation experiment in830

this paper. This sequence is named Coriolis sequence after
the name of the platform.
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6.1.4 Experimental framework

In the configuration of the Coriolis platform as described
above, the state variable is X = (u,v,h), which satisfy the835

shallow-water equations
∂tu− (f + ζ)v+ ∂xB =−ru+ ν∆u,
∂tv+ (f + ζ)u+ ∂yB =−rv+ ν∆v,
∂th+ ∂x(hu) + ∂y(hv) = 0.

(24)

Unknowns are the zonal component u(t,x,y) and meridional
component v(t,x,y) of the current velocity and the surface840

elevation h(t,x,y). They depend on time t and the two hori-
zontal directions x and y. We define the relative vorticity ζ =
∂xv−∂yu and the Bernoulli’s potentialB = gh+ 1

2 (u2+v2),
where g is the gravity. The Coriolis parameter on the β-
plane is given by f = f0 +βy, ν is the diffusion coefficient845

and r the bottom friction coefficient. In this paper, the fol-
lowing numerical values are used for the parameters: r =
0.9×10−7 s−1, ν = 0m2 s−1, f0 = 0.25s−1, g = 9.81ms−2

and β = 0.0406m−1 s−1. The simulation is performed on
a rectangular domain Ω =]0,L[×]0,H[ representing a sub-850

domain of the turntable with L=H = 2.525 m. The domain
is discretized on a N ×N = 128× 128 uniform Arakawa C-
type square grid. A finite difference scheme is used for space
discretization. Time integration is performed using a fourth
order Runge–Kutta scheme. The time step is set to 0.01 s in855

the turntable experiment, which corresponds to 14.4 s in the
atmosphere.

6.1.5 Assimilation procedure

We consider the problem of recovering the initial state
:::::
initial

::::
state

:
of the fluid U(x,y) = X0(x,y) = (u,v,h)(0,x,y)860

::::::::::::::::::::::::::::::::::
U(x,y) =X0(x,y) = (u,v,h)(0,x,y) which constitutes our
control variable. Only images are used as observations. We
use image to structure operators based on pixelsand the
thresholding of the curvelet decomposition. Three examples
of the thresholding operator are considered: let cj,l,k :

.
:::::
Edge865

::::::::
structures

:::
of

:::::::
images

::::
are

:::::::::
extracted

:::
by

::::::::
applying

::
a

:::::::::
threshold

:::::::
operator

:::
on

:::::
their

::::::::
curvelet

::::::::::::
coefficients.

:::::
More

::::::::::
precisely,

:::
let

::::
ci,j,k::

be the curvelet coefficients of the expression of a
given function f in the frame of curvelets, see Eq. (23). The
following thresholding functions are considered

:
: we consider870

the scale-dependent hard thresholding operator τ defined as:

τ(cj,l,k) =
{
cj,l,k if |cj,l,k| ≥ σj ,
0 if |cj,l,k|< σj ,

::::::::::::::::::::::::::::::

(25)

:::::
where

:::
σj::

is
::::

the
:::::::::
threshold

:::::
value

:::
for

::::
the

:::::
scale

::
j.

::::
The

:::
σj::::

are

:::::::::
predefined

::::
and

:::::::
depend

:::
on

:::
the

::::::::
problem

::::
and

:::
on

:::
the

:::::
data.

::::
We

:::::::
mention

::::
two

:::::::::
particular

:::::
cases:875

1. hard thresholding τ1

τ1(cj,l,k) =

{
cj,l,k if |cj,l,k| ≥ σ,
0 if |cj,l,k|< σ,

::
τh:::::

with
:::
the

:::::
same

:::::::::
threshold

:::
for

:::
all

:::::::
scales:

:::::::
σj = σ

:::
for

:
a

:::::
given

::
σ,

:

τh(cj,l,k) =
{
cj,l,k if |cj,l,k| ≥ σ,
0 if |cj,l,k|< σ,

::::::::::::::::::::::::::::::

(26)880

2. scale by scale thresholding τ2

τ2(cj,l,k) =


cj,l,k if |cj,l,k| ≥ σj ,

0 if |cj,l,k|< σj ,

hard thresholding zeroing the coarsest scale coefficients
τ3::::::

coarse
::::
scale

:::::::::::
coefficients

:::
τz; this is similar to the hard

thresholding with the exception that the coefficient asso-885

ciated with each curvelet function of the coarsest scale
is set to zero.

With the thresholding operator τ , the function f is
approximated by:

f̃ =
∑
j,l,k

τ(cj,l,k)Ψl,j,k.890

σ and σj in Eqs. (26) and (25) are predefined threshold
that depend on the problem and on the data. For numerical
experiments presented in this section, σ and σj are defined
such that at much 10of the total number of coefficients are
used.

::::::::
Curvelet

:::::::::::
thresholding

::::
for

:::::
edge

:::::::::
extraction

::::
can

::::
also

:::
be895

:::::
found

::
in

:::::::::::::::
Ma et al. (2006)

6.1.6 Numerical results

Figure 8 shows the initial analyzed velocity field with dif-
ferent observation operators. With the identity observation
operator (pixels), the analyzed velocity field shows a non900

symmetric vortex and large motion where there must be no
dynamics. With the hard thresholding of the curvelet decom-
position, the problem of parasitic motion is solved. On the
other hand, the order of magnitude is underestimated. Using
hard thresholding with the coarsest scale coefficients set to905

zero, the problem of order of magnitude is solved, although
the problem of parasitic motion arises again with less sig-
nificance. Using scale by scale thresholding of the curvelet
decomposition, the main problems (parasitic motion, under-
estimation of order of magnitude) encountered with other op-910

erators are solved. The result of this set of experiments illus-
trates the importance of an adequate observation operator in
direct image assimilation.
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6.2 Observation operators based on finite-time Lya-
punov exponents and915

vectors computation

Ocean tracer images (Sea Surface Temperature and Ocean
Color for instance) show patterns, like fronts and filaments,
that characterize the flow dynamics. They are closely re-
lated to the underlying flow dynamics and are referred to as920

Lagrangian Coherent Structures (LCS). Their location and
shape are the signature of integrated dynamic information
that should be exploited in a data assimilation scheme. For
that, one needs to quantify the relation between the fluid flow
and these patterns. First, Haller and Yuan (2000) defines an925

LCS as a material curve (more precisely a material surface
in an extended phase space)

::::
They

:::
are

::::::::
material

::::::
curve which

exhibits locally the strongest attraction, repulsion or shear-
ing in the flow over a finite-time interval . A rigorous
mathematical theory that fits with this physical concept930

was recently developed in Haller (2011) where quantitative
and robust criteria are given to identify hyperbolic (i. e.
repelling and attracting) LCSs . However, and despite some
caveats, LCSs

::::::::::::::::::::::::::::::::::
(Haller and Yuan, 2000; Haller, 2011) .

::::::
Their

:::::::
location

::::
and

::::::
shape

:::
are

::::
the

::::::::
signature

:::
of

::::::::::
integrated

::::::::
dynamic935

::::::::::
information

::::
that

:::::::
should

:::
be

:::::::::
exploited

::
in

::
a

::::
data

::::::::::::
assimilation

:::::::
scheme.

::::::
LCSs

:
are usually identified in a practical manner

as maximizing ridges in Finite-Time Lyapunov Exponents
(FTLE) fields (Haller, 2001). FTLE is a scalar local notion
that represents the rate of separation of initially neighbor-940

ing particles over a finite-time window [t0, t0 +T ], T 6= 0.
It is defined as the largest eigenvalue of the Cauchy–Green
strain tensor of the flow map. The corresponding eigenvec-
tor is called the Finite-Time Lyapunov Vector (FTLV). Let
X(t) = X(t;X0, t0) be the position of a Lagrangian parti-945

cle at time t, which started at X0 at t= t0 and was advected
by the time-dependent fluid flow U(X, t), X ∈ Ω,

::::::::
U(X, t),

t ∈ [t0, t0 +T ]. An infinitesimal perturbation δX(t) started
at t= t0 from δ0 = δX(t0) around X0 then satisfies, for all
t ∈ [t0, t0 +T ],950 
DδX(t)
Dt

=∇U(X(t), t).δX(t),

δX(t0) = δ0,X(t0) = X0.

DδX(t)
Dt

=∇
::::::::::::

U
:

(X(t), t).δX(t),
:::::::::::::::

(27)

δX(t0) = δ0,X(t0) = X0.
::::::::::::::::::::::::

(28)

Let λmax be the largest eigenvalue of the Cauchy–Green955

strain tensor

∆ =
[
∇φt0+T

t0 (X0)
]∗ [
∇φt0+T

t0 (X0)
]
, (29)

where φt
t0 : X0 7→X(t;X0, t0) represents the flow map of

the system (it links the location X0 of a Lagrangian particle

at t= t0 to its position X(t;X0, t0) at time t 6= t0). The for-960

ward FTLE at the point X0 ∈ Ω and for an advection time T
starting at t= t0 is defined as

σt0+T
t0 (X0) =

1
|T | ln

√
λmax(∆). (30)

FTLV is the eigenvector associated with λmax. The FTLE
thus represents the growth factor of the norm of the perturba-965

tion δX0 started around X0 and advected by the flow after
the finite advection time T . Maximal stretching occurs when
δX0 is aligned with the FTLV. Backward FTLE and FTLV
(BFTLE and BFTLV) are similarly defined, with the time di-
rection being inverted, in Eq. (27).970

BFTLE (BFTLV) is a scalar (vector) that is computed at
a given location X0. Seeding a domain with particles ini-
tially located on a grid leads to the computation of discretized
scalar (BFTLE) and vector (BFTLV) fields. Ridges of the
BFTLE field approximate attracting LCSs (Haller, 2011). An975

example of a BFTLE and corresponding BFTLV orientation
maps, computed from a mesoscale (1/4◦) time-dependent
surface velocity field coming from a simulation of the North-
Atlantic ocean, is given in Fig. 9. The BFTLE field shows
contours that correspond reasonably well to the main struc-980

tures such as filaments, fronts and spirals that appear in the
Sea Surface Temperature (SST) field of the same simulation
(see Fig. 10 left panel). Note that this field can be distin-
guished by spatial observations. Also the BFTLVs align with
the gradients of this tracer field: Figs. 9 and 10 (right panels)985

show that BFTLVs and SST gradients have similar orien-
tations. These similarities illustrate the strong link between
the tracer field patterns and the underlying flow dynamics.
In order to exploit the properties of BFTLE and BFTLV in
a

:::::::::
properties

::::
may

:::::
thus

:::
be

:::::::::
exploited

::
to

::::::::
identify

:::::::::::
appropriate990

::::::::
structure

:::::
space

:::
to

:::
be

:::::
used

:::
in

::
a

:
direct image assimilation

framework , one needs to quantify this link by identifying
the appropriate structure space.

::::::::::::::::::
(Titaud et al., 2011) .

:

The
:::::
First,

:::::::
thanks

::::
to

:::
its

::
almost-lagrangian nature

of FTLE (Lekien et al., 2005) permits the interpretation995

of the BFTLE field as a tracer field which in turn

:::::::::::::::::::::::::
(Lekien et al., 2005) BFTLE

:::::
field

:
can be considered as an

image . In other words, the BFTLE can be used to define
a

:
of

::::::
tracer

::::::
field.

:::::
Then

:::::::::::::::::::::::::
HX→F : U 7→ BFTLE(U)

:::::::
defines

:
a

:
model-to-image operator . This thus makes possible the1000

comparison between BFTLE and the corresponding ocean
tracer field in the structure space once the

::::::
which

::
is

:::::::::
composed

::::
with

:::
an image-to-structure operator has been defined. Note

that this model-to-image operator
:::::::
HF→S :

HX→S(
:::::::

U
:

) =HF→S(BFTLE(
::::::::::::::::::

U
:

)).
::

(31)1005

::::
Note

::::
that

:::::::
BFTLE

:
produces images with stronger discontinu-

ities than operators based on passive tracer advection:
::
in

::::
this

::::
later

:::::
case, the numerical diffusion softens the discontinuities

which makes the comparison with high-resolution satellite
images less accurate.1010
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The
::::::::
Secondly,

::::
the

:
alignment of the BFTLV with the

tracer gradients allows the direct link of the structured
information contained in the image with the flow
dynamics: if

::::::::::::::::::::::::::::::::::::::::
(Lapeyre, 2002; d’Ovidio et al., 2009) allows

:::
the

::::::::::::
construction

:::
of

::
a
::::::

strict
:::::::::::::::::
model-to-structure

:::::::::
operator:1015

structures are identified as the orientation of the gra-
dient of the image , then

:::
and

:
the observation operator

is a strict model-to-structure operator: it is not defined
as a composition of a model-to-image operator with an
image-to-structure operator.

::::::
simply

:::::::
defined

::
as

:
1020

HX→S(
:::::::

U
:

) = BFTLV(
:::::::::::

U
:

).
:

(32)

Using observation
::::::
Several

:::::::::
studies

:::::::::
showed

::::::
that

::::::::::::::::
model-to-structure

:::
operators based on BFTLE-V

computation supposes that the corresponding image
cost functions Eq. (16) are sensitive to perturbations on1025

the control variable X0. We also expect that the cost
functions admit a minimum value at the reference (i. e.
non-perturbed) state. Such prerequisites have been verified
in Titaud et al. (2011) on simulated ocean tracer fields (SST
and Mixed Layer Phytoplankton). Figure 11 shows the1030

behaviour of the image cost functions, for each BFTLE
and BFTLVbased observation operator,

:::
of

::::
the

::::::::
velocity

::::
field

::
in

::
a

::::::
direct

::::::
image

:::::::::::
assimilation

:::::::::::
framework:

::::
Fig.

:::
11

::::
left

:::::
panel

:::::
(resp.

:::::
right

::::::
panel)

::::::
shows

::
a

:::
set

:::
of

::::::
misfits

::
in

::::
the

::::::
image

:::::
ridges

::::::
space

::::::
(resp.

::
in

:::
the

::::::
image

::::::::
gradient

:::::::::::
orientation

::::::
space)1035

:::::::
bewteen

::::::::
BFTLE

:::::
(resp.

::::::::
BFTLV)

::::
and

::::
SST

::::::
fields with respect

to the amplitude of nine random perturbationsapplied to
a reference velocity field. The left panel corresponds to
a BFTLE-based observation operator that maps the control
variable (time-dependent surface velocity field) to the space1040

of binary images where the image ridges are modelled (see
Fig. 12). The right panel corresponds to a BFTLV-based
observation operator: the misfit is defined as an angular
error. These results clearly indicates that tracer images can
be exploited to reverse a velocity field using a

:::::::
random1045

::::::::::::
perturbations:

:::::
each

::::::
misfit

::::::
admits

::
a
:::::::

unique
:::::::::
minimum

::::::
close

::
to

::::
the

::::::::::::::
non-perturbed

::::::
state.

:::::::::
Moreover

:::::::::
BFTLV

::::::
shows

:::
a

::::
more

:::::::
robust

:::::::::
behavior

:::::
than

::::::::
BFTLE:

:::::::
misfts

::::
are

:::::::::
smoother

:::
and

::::::::
minima

::::
are

:::::::::
identical.

::::::
These

:::::::
studies

:::::::
clearly

:::::::::
illustrate

:::
the

::::::::::
feasability

:::
of

:::
the

::::
use

:::
of

:::::
such

:::::::::
operators

:::
in

:
direct im-1050

age assimilation scheme and
::
to

:::::::
control

::::::::
surface

::::::::
velocity

:::::
fields.

::::
For

::::::
more

:::::::
details

::::::
about

::::::::::
theoretical

:::::::::::
framework

::::
and

:::::::::::
experimental

:::::
setup

::::::
about

:::
the

:::
use

:::
of BFTLE-V computations.

See Titaud et al. (2011) for more details on the experimental
setup and the analysis of the results.

::
as

:::::::::::::::::
model-to-structure1055

:::::::
operator

::::
see

:::::::::::::::::::::::::::::::::::::
Gaultier et al. (2013); Titaud et al. (2011) .

:

7 Conclusions

Data assimilation is the science of coupling heterogeneous
information coming from different sources: model, statistics,
observations. During the last two decades, data assimilation1060

has shown a dramatic development, mainly in meteorology
and oceanography. It is beginning to be used in many other
fields like agronomy, economy or medicine. Data assimila-
tion is a universal problem if we want to understand and
predict the evolution of a system governed by a corpus of1065

deterministic or random equations. This is especially true if,
in reality, any realization of the system is unique. More and
more, information is available as images or image sequences
of the observed system. Their dynamics often permit a better
understanding of the system. However the information con-1070

tained in images is still mainly used in a qualitative way by
experts of the application domain.

In this paper, we described two frameworks where data
assimilation schemes can deal with image information. First,
images and sequence of images may be post-processed in1075

order to extract some indirect (pseudo) observations that
are related to the state variables of the model. The most
common example is the motion vector field which can be
inferred using motion estimation techniques. The result of
post-processing is then used as a conventional observation1080

in the data assimilation scheme. This approach has several
limitations which should be overcome by the Direct Image
Assimilation approach. In this framework, we consider the
image or the image sequence as regular observations which
must be linked to the control variable using an appropriate1085

observation operator. For dynamical systems, the pertinent
information that should be observed is brought by the struc-
tures of the image (e.g. the discontinuities). The observa-
tion operator must then map the control space into the image
structure space. We show some examples of direct assimila-1090

tion techniques. The corresponding results are very encour-
aging.

However, we are still far from an operational use of the
assimilation of images. We need to keep in mind that al-
most two decades were necessary to make variational data1095

assimilation operational in the primary meteorological cen-
ters worldwide. Many questions and difficulties remain both
from the theoretical and practical points of view:

1. What are the most adapted structure spaces defining im-
ages? From the computational point of view, images1100

have to live in a reduced space with respect to the trivial
definition as an ensemble of pixels.

2. What topology should be used in the space of images?
In this paper we have used L2 type metrics which tend
to regularize the estimated control variable. We have to1105

keep in mind that the information in images is borne
by their singularities, so that other metrics, such as L1,
have to be considered.

3. How to use images to guide nesting of models?

Outside of geophysics, there are many fields of application:1110

aeronautics, especially for non-stationary flows, medicine
and other fields for which images are an important source
of information.
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Fig. 1a. Satellite observations: evolution from 1996 to 2010 (Courtesy of ECMWF).

Fig. 1b. Atmospheric Motion Vector (AMV) coverage by geostationary satellites.

Fig. 1c. Data coverage by polar orbiting satellites equipped with AMSU-A radiometer.
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Fig. 2. Image of Sea Surface Temperature and chlorophyl (courtesy of NASA for research and educational use, http://oceancolor.gsfc.nasa.
gov).

Fig. 3.
:::::::
Evolution

::
of

::
a

:::::
storm

::
on

:::::::
western

:::::::
Europe:

::
28

:::::
April

::::
2008

:::::
(left)

:::
and

::
29

:::::
April

::::
2008

::::::
(right).

Fig. 4. Performance of the forecast: anomaly correlation at 500 hPa height forecast (courtesy of ECMWF).
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Fig. 5.
::::::::
Schematic

::::::::::::
representation

::
of

:::
the

:::
use

::
of

::::::
images

::
in

::::
data

:::::::::::
assimilation:

::::::::::
assimilation

::
of

:::::::::::::::::
pseudo-observations

:::::
(left);

:::::
direct

::::::::::
assimilation

::
of

::::::
images

::::::
(right).

Fig. 6. Support of atoms of multiscale decomposition: wavelet (left) and curvelet (right).

Fig. 7. Schematic view of a single scale approximation of a circle with multiscale decomposition wavelet (left) and curvelet (right).
Evolution of a storm on western Europe: 28 April 2008 (left) and 29 April 2008 (right).

Schematic representation of the use of images in data assimilation: assimilation of pseudo-observations (left); direct assimilation of images
(right).
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Fig. 8. Analysed initial velocity field computed by direct image sequence assimilation with different image observation operators: identity
operator (top left); curvelet decomposition and hard thresholding (top right); curvelet decomposition and scale by scale thresholding (bottom
left); curvelet decomposition and hard thresholding zeroing coarsest scale (bottom right).

Fig. 9. Backward FTLE (day−1) (left) and corresponding backward FTLV orientations (angular degree) (right) computed from the surface
velocity of a simulation of the North Atlantic Ocean.
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Fig. 10. Sea Surface Temperature field (left) and the corresponding orientations (angular degree) of the gradients (right). SST field comes
from the same ocean simulation from which the BFTLE-Vs were computed to produce fields in Fig. 9.

Fig. 11. Sensitivity of the misfit between BFTLEV and SST fields with respect to the amplitude of nine random perturbations applied to
a reference velocity field. Left: misfit between BFTLE and SST fields computed in the space of binary images (after the application of the
image-to-structure operator). Right: angular misfit between BFTLV and SST gradients.

Fig. 12. Structures extraction: binarization of the FTLE (left) and SST (right) gradient fields of Figs. 9 (left) and 10 (right) using a basic
threshold technique.


