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  Abstract  9 

Geometric and topological methods are applied to significance testing in the wavelet domain. A 10 

geometric test was developed for assigning significance to pointwise significance patches in local 11 

wavelet spectra, contiguous regions of significant wavelet power coefficients with respect to some 12 

noise model. This geometric significance test was found to produce results similar to an existing 13 

areawise significance test while being more computationally flexible and efficient. The geometric 14 

significance test can be readily applied to pointwise significance patches at various pointwise 15 

significance levels in wavelet power and coherence spectra. The geometric test determined that 16 

features in wavelet power of the North Atlantic Oscillation (NAO) are indistinguishable from a 17 

red-noise background, suggesting that the NAO is a stochastic, unpredictable process, which could 18 

render difficult the future projections of the NAO under a changing global system. The geometric 19 

test did, however, identify features in the wavelet power spectrum of an El Niño index (Niño 3.4) 20 

as distinguishable from a red-noise background. A topological analysis of pointwise significance 21 

patches determined that holes, deficits in pointwise significance embedded in significance patches, 22 

are capable of identifying important structures, some of which are undetected by the geometric 23 

and areawise tests. The application of the topological methods to ideal time series and to the time 24 

series of the Niño 3.4 and NAO indices showed that the areawise and geometric tests perform 25 

similarly in ideal and geophysical settings, while the topological methods showed that the Niño 26 

3.4 time series contains numerous phase-coherent oscillations that could be interacting nonlinearly.  27 

1. Introduction 28 

Time series are often complex, composed of oscillations and trends. The goal of researchers is 29 

to decide whether the embedded structures in the time series are stochastic or deterministic. Such 30 

decisions can be made using Fourier analysis, with the assumption that the underlying time series 31 

is stationary (Jenkins and Watts, 1968). In many cases, however, the stationary assumption is not 32 

satisfied, making Fourier analysis an inappropriate tool for feature extraction. For non-stationary 33 

time series, wavelet analysis (Meyers, 1993; Torrence and Compo, 1998) can be used for 34 
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decomposing a time series into both frequency and time components, allowing the extraction of 1 

transient features and dominant modes of variability. Once embedded structures in time series have 2 

been identified, a natural question arises: what physical mechanisms are responsible for the 3 

detected modes of variability? Linkages between the modes of variability and possible physical 4 

mechanisms can be obtained using wavelet coherence (Grinsted et al., 2004), a bivariate tool for 5 

detecting common oscillations between two time series. Together, wavelet power and coherence 6 

analyses have proven useful in climate science (Velasco and Mendoza, 2007; Muller et al., 2008), 7 

hydrology (Zhang et al., 2006; Ozger et al., 2009; Labat, 2008; Labat, 2010), atmospheric science 8 

(Terradellas et al., 2005; Schimanke et al., 2011), and oceanography (Lee and Lwiza, 2008).  9 

The application of wavelet analysis alone is not sufficient for feature extraction of time series; 10 

indeed, random fluctuations can produce large values of spectral power or coherence related to the 11 

underlying process (e.g., red-noise) and not necessarily the time series. In Fourier analysis, one 12 

chooses a suitable noise model and assesses the significance of features relative to some 13 

analytically or empirically derived threshold. In climate science, for example, one often compares 14 

the sample power spectrum of a time series to that of a theoretical red-noise spectrum (Hasselman, 15 

1976; Torrence and Compo, 1998). Statistical significance testing is also necessary in the wavelet 16 

domain. Torrence and Compo (1998) were the first to assess the significance of features in wavelet 17 

power spectra using discrete red-noise background spectra. Grinsted et al. (2004), using Monte 18 

Carlo methods, extended significance testing to wavelet coherence using surrogate red-noise time 19 

series. The (pointwise) significance tests developed by Torrence and Compo (2010) and Grinsted 20 

et al. (2004), however, have multiple-testing problems, given the large number of wavelet 21 

coefficients being tested simultaneously (Maraun and Kurths, 2004). Suppose, for example, that a 22 

pointwise significance test was applied to M wavelet power coefficients at the 5% significance 23 

level. Then, on average, there will be 0.05M false positive results, which would make the pointwise 24 

test permissive for large M. Maraun et al. (2007) addressed these problems by developing an 25 

areawise test that sorts through contiguous regions of pointwise significance called significance 26 

patches based on their area and geometry, minimizing spurious results, and thus giving researchers 27 

more insight into the time series in question. According to the areawise test, the larger the 28 

pointwise significance patch, the less likely it was generated from a stochastic fluctuation.    29 

In this study, significance testing in the wavelet domain is improved through the following: (1) 30 

the development of a flexible and computationally efficient geometric test capable of minimizing 31 

spurious results from the pointwise test by associating p-values to individual patches in wavelet-32 

power and wavelet-coherence spectra; and (2) the application of topological methods that can 33 

further distinguish spurious patches from true structures that can reveal information about time 34 

series undetected by current methods. Given the deficiencies of pointwise significance testing, 35 

there is a need to improve current methods of evaluating significance of features in the wavelet 36 

domain. The areawise test, though a substantial improvement from the pointwise test has one 37 

drawback:  finding the significance level of the areawise test requires a complicated root-finding 38 
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algorithm, making p-values for the areawise test difficult to obtain, as it would require the repeated 1 

application of a root-finding algorithm (see Sect. 4.1 for details).  2 

The remainder of the paper is organized as follows. A brief overview of wavelet analysis is 3 

presented in Sect. 2. In Sect. 3, the pointwise and areawise tests are discussed briefly. The 4 

development of the geometric test is presented in Sect. 4. In Sect. 5, ideas inspired by persistence 5 

homology (Edelsbrunner, 2010) are used to show that holes, voids of pointwise significance 6 

surrounded by regions of pointwise significance, can distinguish important structures from trivial 7 

structures, linking the geometric and topological tests. Using ideas from Sect. 4 and Sect. 5, the 8 

application of a local geometric test is presented in Sect. 6. The new methods are applied to time 9 

series of two idealized cases, which provide important benchmarks for the methods, and to indices 10 

of two prominent climate modes, El Niño/Southern Oscillation and the North Atlantic Oscillation 11 

(NAO), to illustrate, in a geophysical setting, the insights afforded by the methods. 12 

2. Definitions 13 

In wavelet analysis, a time series is decomposed into frequency and time components by 14 

convolving the time series with a wavelet function satisfying certain conditions. There are many 15 

different kinds of wavelet functions but the most widely used is the Morlet wavelet, a sine wave 16 

damped by a Gaussian envelope expressed as   17 

𝜓0(𝜂) =  𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−
1

2
𝜂2

,                                               (1) 18 

where 𝜓0 is the Morlet wavelet, 𝜔0 is the dimensionless frequency, and 𝜂 = 𝑠 ⋅ 𝑡, where s is the 19 

wavelet scale, and t is time (Torrence and Compo, 1998; Grinsted et al., 2004). The wavelet 20 

transform of a discrete time series 𝑥𝑛 (n = 1, ..., N)  is given by 21 

 𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1 ,                                       (2)     22 

where 𝛿𝑡 is a uniform time step determined from the time series and |𝑊𝑛
𝑋(𝑠)|2 is the wavelet 23 

power of a time series at scale s and time index n (Torrence and Compo, 1998; Grinsted et al., 24 

2004). Note that for the Morlet wavelet with 𝜔0 = 6 the wavelet scale and the Fourier period 𝜆 are 25 

approximately equal (𝜆 ≈ 1.03𝑠).  26 

3. Existing significance testing methods 27 

3.1 Pointwise significance testing 28 

For climatic time series, the significance of wavelet power can be tested against a 29 

theoretical red-noise background (Torrence and Compo, 1998). For a first-order autoregressive 30 

(Markov) process  31 

𝑋𝑛 =  𝛼𝑋𝑛−1 + 𝑤𝑛                                                        (3) 32 
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with lag-1 autocorrelation coefficient 𝛼, Gaussian white noise 𝑤𝑛, and 𝑋0 = 0, the normalized 1 

theoretical red-noise power spectrum is given by  2 

𝑃𝑓 =  
1− 𝛼2

1+ 𝛼2−2𝛼 cos(2𝜋𝑓 𝑁⁄ )
,                                               (4) 3 

where f = 0,…, N/2 is the frequency index (Gilman et al., 1963). To obtain, for example, the 5% 4 

pointwise significance level one must multiple Eq. (4) by the 95% percentile of a chi-square 5 

distribution with two degrees of freedom and divide the result by 2 to remove the degree of 6 

freedom factor (Torrence and Compo, 1998).  The discrete Fourier red-noise spectrum has been 7 

shown by Torrence and Compo (1998) to be adequate in estimating the significance of local 8 

wavelet power and is thus used in this paper to estimate pointwise significance. The parameter 𝛼 9 

can be estimated using standards methods such as the Burg’s and the Yule-Walker methods (Kay, 10 

1988; Hayes, 1996).   11 

 Monthly time series and normalized wavelet power spectra for the NAO index (Hurrell et 12 

al., 1995, https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-13 

index-station-based) and the Niño 3.4 index (Trenberth 1997, 14 

http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html) are shown in Figs. 1 and 15 

2. The Niño 3.4 index data were converted to anomalies by subtracting the mean monthly values 16 

for each month from the monthly values. Note that the normalized wavelet power is the wavelet 17 

power at every time and period divided by the variance of the time series, which allows different 18 

wavelet power spectra to be readily compared. Another important feature of the wavelet power 19 

spectrum is the cone of influence, the region in which edge effects become important, or more 20 

precisely, the e-folding time of the autocorrelation for wavelet power at each scale, where the e-21 

folding time is defined by Torrence and Compo (1998) as the point at which the wavelet power 22 

for a discontinuity at the edge drops by a factor of 𝑒−2. The wavelet power spectrum of the NAO 23 

index reveals numerous time periods of enhanced variance at an array of time scales, though no 24 

preferred timescale is evident. For the Niño 3.4 index, the wavelet power spectrum detects 25 

statistically significant variance in the 16-64 month period band for the period 1960-2010. Another 26 

interesting feature emerges (labeled H in Fig. 2b): regions of no pointwise significance surrounded 27 

by regions of pointwise significance. These “holes” will turn out to be important structures in 28 

wavelet power spectra and are discussed thoroughly in Sect. 5.  29 

3.2 Areawise significance testing 30 

The idea behind the Maraun et al. (2007) areawise test (hereafter simply the “areawise 31 

test”) is that correlations between adjacent wavelet coefficients arising from the reproducing kernel 32 

(see Appendix A) produce continuous regions of pointwise significance that resemble the 33 

reproducing kernel. The reproducing kernel for a given analyzing wavelet represents the time-34 

scale uncertainty, which is related to the scale and time localization properties of the analyzing 35 

wavelet. Let (t, s) denote the location of a wavelet coefficient at scale s and time t. The correlation, 36 

C(t, s, 𝑡′, 𝑠′), between any two wavelet coefficients located at (t, s) and (𝑡′, 𝑠′) obtained from the 37 

http://www.cgd.ucar.edu/cas/catalog/climind/Nino_3_3.4_indices.html
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wavelet transformation of a Gaussian white process is given by the reproducing kernel moved to  1 

t and stretched to s (Maraun et al., 2007), i.e.   2 

𝐶(𝑡, 𝑠, 𝑡′, 𝑠′) =  √
2𝑠′𝑠

(𝑠′)2 +  𝑠2
exp {𝑖𝜔0

𝑠′ + 𝑠

(𝑠′)2 + 𝑠2
(𝑡′ − 𝑡)}  3 

× exp {−
1

2

(𝑡′−𝑡)
2

+ 𝜔0
2(𝑠′−𝑠)

2

(𝑠′)2+ 𝑠2
}                                             (5) 4 

(Maraun and Kurths, 2004). Thus, for significance patches generated from random fluctuations, 5 

the typical patch area is the area of the reproducing kernel. The test can be described more formally 6 

as follows: Let 𝑃𝑝𝑤  be the set of all pointwise significance values and define a critical area 7 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠)  as the subset of the time-scale domain for which the reproducing kernel K 8 

(corresponding to the analyzing wavelet), dilated and translated to time t and scale s, exceeds the 9 

threshold of a critical level 𝐾𝑐𝑟𝑖𝑡. Mathematically, 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠) is given by 10 

𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠) =  {(𝑡′, 𝑠′): 𝐾(𝑡, 𝑠; 𝑡′, 𝑠′) > 𝐾𝑐𝑟𝑖𝑡}.                                       (6) 11 

It is noted that critical area of the areawise test is not area of significance patches but the 12 

area of the reproducing kernel at some critical level and at some scale. For a patch of pointwise 13 

significant values, a point inside the patch is said to be areawise significant if the reproducing 14 

kernel dilated according to the scale in question entirely fits into the patch, i.e.  15 

𝑃𝑎𝑤 =  ⋃ 𝑃𝑐𝑟𝑖𝑡(𝑡, 𝑠)𝑃𝑐𝑟𝑖𝑡(𝑡,𝑠)⊂𝑃𝑝𝑤
,                                                  (7) 16 

where 𝑃𝑎𝑤  is the subset of pointwise significant values consisting of additionally areawise 17 

significant wavelet power coefficients. According to the areawise test, entire significance patches 18 

need not be areawise significant, just portions or subsets of them. That is, it is only those points 19 

that fit inside the kernel that are deemed areawise significant.  The critical area is related to 20 

significance level of the areawise test by the following equation: 21 

1 − 𝛼𝑎𝑤 = 1 − 〈
𝐴𝑎𝑤

𝐴𝑝𝑤
〉,                                                            (8) 22 

where 1 − 𝛼𝑎𝑤  is the significance level of the areawise test, 𝐴𝑎𝑤  is the area of the areawise 23 

significance patch, 𝐴𝑝𝑤 is the area of the pointwise significance patch, and 〈
𝐴𝑎𝑤

𝐴𝑝𝑤
〉 is the average 24 

ratio between the areas of area wise-significant patches and pointwise significance patches. It turns 25 

out that the calculation of 𝛼𝑎𝑤 is non-trivial, involving a root-finding algorithm that solves the 26 

equation 𝑓(𝑃𝑐𝑟𝑖𝑡) −  𝛼𝑎𝑤 = 0 (see Sect. 4). 27 

To illustrate the importance of the areawise significance test, the test was applied to the wavelet 28 

power spectra of the NAO and Niño 3.4 index time series (Figs. 3 and 4). Numerous 5% pointwise 29 

significance patches in the Niño 3.4 wavelet power spectrum were found to contain areawise-30 
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significant subsets, suggesting that these patches were less likely to be an artifact of multiple 1 

testing. For example, as indicated by the thick red contours, there are three areawise-significant 2 

regions located at a period of approximately 48 months, one at 1890, one at 1905, and a third one 3 

at 1985. Many more areawise-significant regions were identified at periods less than 8 months, 4 

especially before 1955. The wavelet power spectrum of the NAO index also contained pointwise 5 

significance patches with areawise-significant subsets, all at periods less than 8 months. However, 6 

it will be shown in Sect. 4 that they all may be artifacts of multiple testing, resulting from the large 7 

number of patches to which the areawise test was applied.  8 

4. Geometric significance testing 9 

 10 

4.1 Development  11 

A disadvantage of the areawise test is the complexity of the 𝛼𝑎𝑤 calculation, which involves a 12 

root-finding algorithm. It is therefore desirable to construct an alternative test whose significance 13 

level is easy to calculate, readily allowing the following: (1) the application of the test to patches 14 

at various pointwise significance levels; (2) the adjustments of the significance level of the test; 15 

(3) the application of the test to wavelet power spectra obtained using other analyzing wavelets; 16 

and (4) the implementation of p–value adjustment procedures to control the family-wise error rates 17 

and false discovery rates. 18 

The development of a geometric significance test will require ideas from basic geometry and 19 

set theory. In wavelet analysis, the wavelet power is computed at a discrete set of time coordinates 20 

𝑇 with elements 𝑡𝑖 for 𝑖 =  1, … , 𝑁 and at a discrete set of scales 𝑆 whose elements 𝑠𝑗 (j =1,…,J) 21 

are given by 22 

𝑠𝑗 =  𝑠𝑚𝑖𝑛𝑠𝑗𝛿𝑗                                                             (9) 23 

and 24 

J = 𝛿𝑗−1𝑙𝑜𝑔2 (
𝑁𝛿𝑡

𝑠𝑚𝑖𝑛
),                                                     (10) 25 

with 𝛿𝑡 a time step and 𝑠𝑚𝑖𝑛 the smallest resolvable scale (Torrence and Compo, 1998). Note that 26 

the maximum value of 𝛿𝑗 for which adequate sampling can be achieved depends on the wavelet 27 

function, being approximately equal to 0.5 for the Morlet wavelet. For the geometric test, a patch 28 

will be considered to be a polygon with vertices 𝑣𝑘 =  (𝑥𝑘, 𝑦𝑘) for k = 0,…, m-1, where 𝑥𝑘 and 𝑦𝑘 29 

are, respectively, elements from T and S and m-1 is the number of vertices. It is worth noting that 30 

not all patches are closed in the sense that some are located near the edges of the wavelet domain. 31 

To remedy this problem, semi-enclosed patches are artificially closed by connecting the two 32 

vertices located on the boundary of the wavelet domain with a line segment.  33 
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Perhaps the most fundamental property of a pointwise significance patch is its area, which 1 

can be calculated using the following special case of Green’s Theorem:  2 

A = 
1

2
|∑ (𝑥𝑘

𝑚−1
𝑘=0 𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘)|,                                                        (11) 3 

where 𝑦0 = 𝑦𝑚 , 𝑥0 = 𝑥𝑚 (Worboys and Duckham, 2004).   For significance patches containing 4 

holes, the total area of the holes is subtracted from the area the significance patch would have if 5 

it did not contain the holes.  6 

What will be of particular interest is the normalized area of a significance patch, not its 7 

absolute area. To compute the normalized area, the centroid of a significance patch will need to be 8 

calculated using the following formulas (Worboys and Duckham, 2004):   9 

𝐶𝑡 =  
1

6𝐴
∑ (𝑥𝑘 +  𝑦𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 − 𝑥𝑘+1𝑦𝑘)                                        (12) 10 

and 11 

𝐶𝑠 =  
1

6𝐴
∑ (𝑦𝑘 +  𝑥𝑘+1)𝑚−1

𝑘=0 (𝑥𝑘𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘),                                       (13) 12 

where 𝐶𝑡 and 𝐶𝑠 are the time and scale coordinates, respectively, of the centroid. Recall that the 13 

centroid is the area-weighted location of a polygon. If 𝐴𝑅 is the area of the reproducing kernel 14 

dilated or contracted (at a certain critical level) to (𝐶𝑡,𝐶𝑠), then the normalized area of a significance 15 

patch is given by  16 

𝐴𝑛 = 
𝐴

𝐴𝑅
,                                                                   (14) 17 

and allows one to compare sizes of significance patches across all scales simultaneously. Two 18 

idealized pointwise significance patches with equal normalized area are shown in Figs. 5a and 5b.  19 

The idea of the geometric significance test is to generate a null distribution of 𝐴𝑛 and use 20 

the null distribution to compute the significance of patches in the wavelet domain. In climate 21 

science, a suitable null hypothesis is red-noise so that 𝐴𝑛 will be computed for a large ensemble 22 

of patches generated from red-noise processes. Using the null distribution of 𝐴𝑛, one can assign to 23 

each patch in the wavelet domain a probability p that the patch was not generated from a random 24 

stochastic fluctuation. It is noted that the null distribution of 𝐴𝑛 depends on the choice of null 25 

hypothesis (not shown), with, for red-noise processes, 𝐴𝑛  increasing with increasing

lag-1 autocorrelation coefficients.  27 

The calculation of the geometric significance level 1 − 𝛼𝑔 , unlike the calculation of  28 

1 − 𝛼𝑎𝑤, is straightforward: for the areawise test one needs to compute 𝛼𝑎𝑤 as a function of 𝑃𝑐𝑟𝑖𝑡, 29 

whereas for the geometric test 𝛼𝑔 is no longer a function 𝑃𝑐𝑟𝑖𝑡. Moreover, the estimation of 𝑃𝑐𝑟𝑖𝑡 30 

involves a root-finding algorithm that solves the equation 𝑓(𝑃𝑐𝑟𝑖𝑡) − 𝛼𝑎𝑤 = 0, where 𝑓(𝑃𝑐𝑟𝑖𝑡) is 31 
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estimated using Monte Carlo simulations. Thus, the application of the areawise test to pointwise 1 

significance patches for M different values of 𝛼𝑎𝑤  would require M Monte Carlo ensembles, 2 

making p-values for the test difficult to obtain. For the geometric test, only a single Monte Carlo 3 

ensemble is needed, as a single choice of 𝑃𝑐𝑟𝑖𝑡 is needed to generate a null distribution, from which 4 

any desired value of 𝛼𝑔 can be obtained. In fact, while the choice of 𝑃𝑐𝑟𝑖𝑡 impacts the mean value 5 

of the null distribution, the geometric significance of a significance patch is left unchanged, as the 6 

significance is relative to a distribution of 𝜒 under some noise model (Appendix B).  7 

The elimination of the 𝑃𝑐𝑟𝑖𝑡 dependence from the calculation of the geometric significance 8 

level allows the geometric test to be readily performed on patches of various pointwise significance 9 

levels. For the areawise test, a new 𝑃𝑐𝑟𝑖𝑡 must be estimated for each pointwise significance level 10 

since 𝐴𝑝𝑤 , on average, will change depending on if the pointwise significance level 1 − 𝛼𝑝 is 11 

increased (patches shrink) or is decreased (patches grow). For the geometric test, there is no need 12 

to find a new 𝑃𝑐𝑟𝑖𝑡 —simply compute a new null distribution based solely on the information of 13 

the pointwise significance patches at some pointwise significance level 1 − 𝛼𝑝.  14 

Another advantage of eliminating the 𝑃𝑐𝑟𝑖𝑡 dependence is that the geometric test can be 15 

readily applied to wavelet coherence, partial wavelet coherence (Ng, 2012), multiple wavelet 16 

coherence, and cross-wavelet spectra. The application of the geometric test to significance patches 17 

in the aforementioned wavelet spectra only requires a single Monte Carlo ensemble to generate a 18 

null distribution, eliminating the calculation of a new 𝑃𝑐𝑟𝑖𝑡 for each wavelet spectra and for each 19 

value of 𝛼𝑔. For the areawise test, a new 𝑃𝑐𝑟𝑖𝑡 must be estimated for each value of 𝛼𝑎𝑤 and for 20 

each wavelet spectra, making the areawise test difficult to implement in practical applications.  21 

It may happen that a pointwise significance patch is so large that individual oscillations 22 

embedded in the patch cannot be detected by the geometric test. However, there are two solutions 23 

to this localization problem: the first solution is to increase the significance level of the pointwise 24 

test, allowing large patches to separate, and then perform the geometric test on the smaller patches. 25 

The second solution is to examine other properties of significance patches that may indicate the 26 

presence of multiple periodicities that form large significance patches from the merging of several 27 

smaller patches. The second solution will be addressed thoroughly in Sect. 5.  28 

Another situation that may arise in practice is the application of the geometric test to 29 

patches located both inside and outside the cone of influence (COI). In the case of the pointwise 30 

significance test, the edge effects only influence those wavelet power coefficients that lie inside 31 

the COI; however, for the geometric test, the significance of the entire patch will be impacted even 32 

if the patch only partially lies inside the COI. The reason is that the COI will act to decrease the 33 

size of significance patches through the reduction of wavelet power in the COI and subsequently 34 

the total area of the patch. One should thus be cautious when interpreting the results of the 35 

geometric test for patches near the COI. 36 

4.2 Multiple testing 37 
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If the geometric test was performed on K significance patches at the 𝛼𝑔𝑒𝑜 level, then, on 1 

average, one can expect 𝛼𝑔𝑒𝑜 K false positive results, which would make the geometric test 2 

permissive for large K. It is therefore necessary to reduce the number of false positive results. 3 

There are various ways to reduce the number of false positives, including the Walker test, 4 

Bonferroni correction, and other counting procedures (Wilks, 2006). Recently, methods for 5 

controlling the false discovery rate (FDR) have been developed, where the FDR is the expected 6 

proportion of rejected local null hypotheses that are actually true (Benjamini and Hochberg, 1995). 7 

In particular, Benjamini and Hochberg (1995) developed a method for controlling the FDR based 8 

on the number of local hypotheses being tested and the degree to which the local hypotheses were 9 

rejected, contrasting with other procedures that ignore the confidence with which the local tests 10 

reject the local hypotheses (Wilks, 2006). Moreover, the method has proven to have high statistical 11 

power, especially when only a small fraction of the K local tests correspond to false null hypotheses 12 

(Wilks, 2006). The procedure will therefore be used to control the false discovery rate of the 13 

geometric test, which will facilitate the interpretation of results. 14 

Suppose that K local hypotheses were tested, where, in the present case, the local 15 

hypotheses refer to the testing of each patch individually under the assumption that the results of 16 

the individual tests are independent. A global geometric test can be performed at the 𝛼𝑔𝑙𝑜𝑏𝑎𝑙 level 17 

as follows: Let 𝑝(𝑙) denote the lth smallest of K local p-values; then, under the assumption that the 18 

K local tests are independent, the FDR can be controlled at the q-level by rejecting those local tests 19 

for which 𝑝(𝑙) is no greater than 20 

𝑝𝐹𝐷𝑅= max
𝑟=1,…,𝐾

[𝑝(𝑟): 𝑝(𝑟) ≤ 𝑞(𝑟 𝐾⁄ )]                                       (15) 21 

max
𝑟=1,…,𝐾

[𝑝(𝑟): 𝑝(𝑟) ≤ 𝛼𝑔𝑙𝑜𝑏𝑎𝑙(𝑟 𝐾⁄ )]                                         (16) 22 

so that the FDR level is equivalent to the global test level. According to the procedure, any local 23 

test resulting in a p-value less than or equal to the largest p-value for which Eq. (16) is satisfied is 24 

deemed significant. If no such local p-values exist, then none are deemed significant and, therefore, 25 

the global test hypothesis cannot be rejected. The global geometric test will thus only deem those 26 

significant patches with p-values satisfying Eq. (16) as significant. Throughout the paper 27 

𝑞 =  𝛼𝑔𝑙𝑜𝑏𝑎𝑙 will be set to 0.05. 28 

4.3 Comparisons with the areawise test 29 

With a formal geometric significance test now developed, it is useful to compare the 30 

areawise and geometric significance tests, where comparisons will be made using an empirically 31 

derived quantity. Let 𝑁𝑠𝑖𝑔 be the number of pointwise significance patches in a given wavelet 32 

power spectrum, 𝑁𝑎  the number of patches containing an areawise-significant region, 𝑁𝑔  the 33 

number of geometrically significance patches, and 𝑁𝑎𝑔  the number patches that are both 34 

geometrically significant and that contain areawise-significant regions. The quantity  35 
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𝐼𝑠𝑖𝑚 =  
𝑁𝑠𝑖𝑔− 𝑁𝑎− 𝑁𝑔+2𝑁𝑎𝑔

𝑁𝑠𝑖𝑔
                                                     (17) 1 

then measures the similarity between the two tests. The interpretation of 𝐼𝑠𝑖𝑚 is as follows: if 𝐼𝑠𝑖𝑚 = 2 

1 then all patches containing areawise-significant regions are also geometrically significant and all 3 

patches which do not contain areawise-significant regions are also not geometrically significant. 4 

On the other hand, for values of 𝐼𝑠𝑖𝑚 less than 1 some patches containing areawise-significant 5 

regions may not be geometrically significant, with the converse also being true.  6 

To better compare the similarity between the two tests, distributions of 𝐼𝑠𝑖𝑚  were 7 

constructed by generating 1000 synthetic wavelet power spectra of red-noise processes with fixed 8 

autocorrelation coefficients and length N = 1000 (arbitrary units) and computing 𝐼𝑠𝑖𝑚 for each of 9 

the synthetic wavelet power spectra. The experiment was performed for red-noise processes with 10 

different lag-1 autocorrelation coefficients to determine if  𝐼𝑠𝑖𝑚 depends on the AR1 model.  The 11 

results are shown Fig. 6a. With a mean value of 0.90, a strong agreement was found between the 12 

areawise and geometric tests, differences arising from the fact that the areawise test is a local test, 13 

finding significant regions within patches, whereas the geometric test assigns a significance value 14 

to entire patches (see discussion below). Since 𝐼𝑠𝑖𝑚  was often less than 1.0, some patches 15 

containing areawise-significant regions were not found to be geometrically significant, and, 16 

conversely, some patches were geometrically significant without containing areawise-significant 17 

regions.  18 

 The quantity 𝑟𝑛𝑒𝑔 =  𝑁𝑔 𝑁𝑎⁄ , which measures the ratio of false positive results between 19 

both tests, was also computed for case when both the geometric and areawise test levels were set 20 

to 0.05 (Fig. 6b). In this case, the mean value of 𝑟𝑛𝑒𝑔 was found to range from 1.0 to 2 and the 21 

median value was found to be generally greater than 1.0, ranging from 1 to 1.8. No dependence on 22 

the lag-1 autocorrelation coefficients was identified. The results indicate that the geometric test is 23 

generally less conservative than the areawise test for a given wavelet power spectrum. The lack of 24 

conservativeness, however, can be remedied by controlling the FDR of the geometric test at the q 25 

= 0.05 level. Fig. 6b shows 𝑟𝑎𝑑𝑗, the ratio of false positive results between the areawise tests and 26 

the geometric test but with FDR controlled for the geometric test. As indicated in Fig. 6b, by 27 

controlling the FDR the geometric test is much more conservative than the areawise test, resulting 28 

in fewer false positive results, with a typical value of 𝑟𝑎𝑑𝑗 ranging from 0.02 to 0.05.  29 

To explain the differences between the areawise and geometric tests, it will be necessary 30 

to consider the convexity of a patch, the degree to which a polygon or point set lacks concavities. 31 

The reason for considering convexity is illustrated by considering the two significance patches 32 

shown Fig. 5, which have equal values of 𝐴𝑛 but different geometries: one is convex (i.e., has no 33 

concavities, Fig. 5a) and the other is not convex (Fig. 5b). Suppose that the areawise test was 34 

performed on the two patches at the 𝛼𝑎𝑤  level. For the convex patch shown Fig. 5a, the 35 

reproducing kernel is capable of fitting entirely inside the patch but is unable to fit inside the non-36 

convex patch as a result of the concavity. Thus, although having equal area, the two patches differ 37 
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in their areawise significance, where the difference in significance is related to their geometry. 1 

Thus, 𝑝𝑎𝑤 = 𝑔(𝒞, 𝐴; 𝐻0) for some function g, where 𝑝𝑎𝑤 is the areawise test p-value associated 2 

with a patch calculated under the null hypothesis 𝐻0 and 𝒞 is the convexity of the patch, which is 3 

now formally defined.  4 

Rigorously, convexity is defined as follows:  Let x and y be any two points in a set Z; then 5 

the set Z is convex if for all t the line segment 6 

[x, y] = {𝑡𝑥 + (1 − 𝑡 )𝑦: 0 ≤ 𝑡 ≤ 1}                                           (18) 7 

is in Z (Ziegler, 1995). Equivalently, a set is convex if it contains any line segment joining any 8 

pair of points in Z. Under this definition, for example, patches with thin bridges as described by 9 

Maraun et al. (2007) are not convex.  10 

To quantify convexity, another idea from set theory, the convex hull, will be needed, which 11 

for a point set Z is defined as the intersection of all convex sets containing Z (Ziegler, 1995). In 12 

other words, it is the smallest convex set containing Z constructed from the intersection of all 13 

convex sets containing Z. Mathematically, the convex hull of a point set Z is expressed as 14 

conv(Z) = ⋂{𝑍′ ⊆ ℝ2: 𝑍 ⊆ 𝑍′, 𝑍′  convex}.                                      (19) 15 

In practical applications, the convex hull of a set can be easily computed using existing algorithms 16 

(Barber et al., 1996). It is noted that all holes are ignored in the computation of the convex hull 17 

because the computation of the convex hull assumes that there are no holes in the polygon.  A 18 

patch containing a hole can never have a smallest convex set containing the set because holes allow 19 

line segments to leave the patch regardless of the size of the convex hull.  20 

A metric for convexity will now be defined using the area of a significance patch together 21 

with the area of its convex hull as follows: If 𝐴𝑘 is the area of the convex hull of a significance 22 

patch whose area is A, then the convexity is  23 

𝒞 =  
A

𝐴𝑘
,                                                                   (20) 24 

where 0 ≤ 𝒞 ≤ 1 . High values of 𝒞  correspond to significance patches with relatively small 25 

concavities, whereas small values of 𝒞 correspond to patches with relatively large concavities, as 26 

in the case of significance patches with thin bridges.  27 

According to the areawise test, patches with smaller values of 𝒞  are less likely to be 28 

areawise significant so that it is expected that patches deemed significant by the areawise test will 29 

be primarily convex. To test this hypothesis, 10,000 patches arising from red-noise processes with 30 

different lag-1 autocorrelation coefficients were generated and the convexity of those patches 31 

deemed areawise significant at the 𝛼𝑎𝑤 = 0.05 level was calculated. The results in Fig. 6c show 32 

the mean convexity as a function of the lag-1 autocorrelation coefficients, together with the 95% 33 
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confidence bound. The mean convexity of the patches was found to be approximately 0.8, 1 

regardless of the lag-1 autocorrelation coefficient. An identical experiment was also performed for 2 

geometrically significant patches but with the convexity of patches that are geometrically 3 

significant at the 𝛼𝑔𝑒𝑜 = 0.05 being computed. In contrast to areawise-significant patches, patches 4 

that were found to be geometrically significant, on average, had lower convexity, the reason for 5 

which is that the calculation of  𝛼𝑔𝑒𝑜 makes no assumption about convexity. The p-value for the 6 

geometric test is thus 𝑝𝑔𝑒𝑜 =  𝑓(𝐴; 𝐻0 ) for some function  f, contrasting with 𝑝𝑎𝑤 that depends on 7 

convexity. The results of the experiments are consistent with Figs. 5a and 5b, where both the ideal 8 

patches have the same geometric significance but the ideal patch in Fig. 5b has a larger 𝑝𝑎𝑤 so that  9 

𝑝𝑎𝑤 > 𝑝𝑔𝑒𝑜 .  10 

Convexity cannot fully explain the differences between  𝑝𝑎𝑤 and 𝑝𝑔𝑒𝑜 for a given patch. 11 

More generally, 𝑝𝑎𝑤 = 𝑔(𝒞, 𝐴, 𝑆1, … , 𝑆𝑅; 𝐻0), where S1 to SR are shape parameters of the patch, 12 

such as aspect ratio and symmetry. Consider, for example, a convex patch whose length in the time 13 

direction is long with respect to the reproducing kernel (at some critical level) but thin in the scale 14 

direction with respect to the reproducing kernel. Such a patch would be deemed insignificant by 15 

the areawise test, though it may have an area much larger than the critical area of the areawise test. 16 

Asymmetry with respect to the scale axis, as another example, may also result in a patch being 17 

deemed insignificant by the areawise test if, for example, the width of the patch in the scale 18 

direction decreases with time. If the normalized areas of such patches are larger than the critical 19 

level of the geometric test, the patches will be geometrically significant, though may not be 20 

areawise significant if the reproducing kernel is unable to fit inside the narrow portion of the patch. 21 

The above arguments suggest that  𝑓(𝐴; 𝐻0 ) ≠ 𝑔(𝒞, 𝐴, 𝑆1, … , 𝑆𝑅; 𝐻0) and thus the significance of 22 

patches as determined by the geometric and areawise tests need not be equal. 23 

 24 

4.4 Geometric significance testing of climatic data 25 

For climatic time series, significance is often tested against a red-noise background and 26 

therefore it is reasonable to expect that the areawise and geometric tests behave similarly when 27 

applied to climatic time series. As such, the areawise and geometric tests were applied to the NAO 28 

and Niño 3.4 time series. For the wavelet power spectrum of the NAO index time series (see Fig. 29 

3), not a single patch was found to be geometrically significant after controlling the FDR at the 30 

0.05 level, suggesting the NAO index time series is composed of stochastic fluctuations. In fact, 31 

the NAO has already been shown to be consistent with a first-order Markov process (Feldstein, 32 

2002). Recent work by Hanna et al. (2014) claimed that the NAO variability has increased over 33 

the past 30 years; however, the results from this analysis suggest that such changes cannot be 34 

distinguished from stochastic fluctuations, which could render difficult projections of future 35 

changes of the NAO. 36 

The wavelet power spectrum of the Niño 3.4 index (see Fig. 4) was found to contain numerous 37 

geometrically significant patches in the period band 16-64 months, especially after 1960. The 5% 38 

pointwise significance patch extending from 1980 to 2000, as an example,  was found to be 39 
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significant, as well as the patch centered at 2008.  The significance patch centered at 1985 and at 1 

a period of 32 months, however, is so large that individual oscillations could not be identified. To 2 

remedy the problem, the geometric significance was applied to 1% ( 𝛼𝑝  = 0.01) pointwise 3 

significance patches with q = 0.05, resulting in 1% pointwise significance patches at 1970, 1995, 4 

and 2007 being deemed significant, all of which also contained areawise-significant regions. 5 

Patches located at a period less than 8 months were also found to be geometrically significant, 6 

though only before 1955.   7 

5. Topological significance testing 8 

5.1 Topological significance testing of ideal time series 9 

Topology is a branch of mathematics concerned with properties of spaces that remain 10 

unchanged after continuous deformations. So far only geometric aspects of significance patches 11 

have been discussed. Area of a significance patch, as an example, is a geometric property in the 12 

sense that stretching the patch in both the scale and time direction would increase its area. There 13 

are properties, however, that would be unaffected by stretching the significance patch. As a 14 

motivating example, consider the significance patches shown in Fig. 4 corresponding to the 15 

wavelet power spectrum of the Niño 3.4 index (see Fig. 2), where there is a hole or void of 16 

pointwise significance located within a significance patch at 1985. This feature is topological, as 17 

the hole would remain under a continuous deformation such as stretching. A more formal 18 

definition of a hole will require some notions from topology. Let I = [0,1] be the closed unit 19 

interval. Then a path from a point a to a point b in a significance patch 𝑃 is a continuous function 20 

𝑓: 𝐼 → 𝑃 with f(0) = a and f(1) = b, where in the case that f(0) = f(1) = c the path is said to be closed 21 

(Hatcher, 2002). Note that a point is a special kind of closed path called the constant path. A patch 22 

will be said to contain a hole if there exists a path in the significance patch such that it cannot be 23 

continuously deformed into a point, where the feature obstructing the path from such a deformation 24 

is a hole. The definition is consistent with notions of simply-connectedness in topology (Hatcher, 25 

2002). Figure 4 shows an example of a closed path (blue curve) in a patch that cannot be contracted 26 

to a point because it surrounds a hole located in the patch. 27 

For a patch with a hole, there will be two boundaries, an external boundary and an internal 28 

boundary representing the boundary between the hole and the patch. Thus, if a patch contains an 29 

internal boundary or contour it will contain a hole, whereas a patch without a hole will contain no 30 

internal contours. In practical applications, the existence of a hole can be determined by orienting 31 

external contours in the clockwise direction and internal contours in the counter-clockwise 32 

direction, a procedure automatically implemented by the Matlab contour routine. The number of 33 

counter-clockwise oriented contours is thus the number of holes in the wavelet power spectrum at 34 

a given pointwise significance level.  35 

To begin the topological analysis, the topology of time series with known structures will be 36 

analyzed. Given the importance of red-noise processes in the spectral analysis of climatic time 37 
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series, the topology of patches generated from red-noise processes is first considered to determine 1 

if pointwise significance patches can be distinguished from those generated from red-noise 2 

processes solely based on their topology. To answer this question, 10,000 wavelet power spectra 3 

of red-noise processes were generated and the number of holes (denoted by 𝑁ℎ hereafter) at a finite 4 

set of pointwise significance levels was computed for each wavelet power spectra (Fig. 7). It was 5 

found that 𝑁ℎ is not a random function of the pointwise significance level, as indicated by the 95% 6 

confidence bounds. Most importantly, for pointwise significance levels less than 10%, few patches 7 

contained holes, suggesting that holes are an uncommon feature of significance patches generated 8 

from red-noise processes (Table 1) and therefore can be used to distinguish spurious patches from 9 

important structures. It also noted that neither the shape nor the amplitude of the curve in Fig. 7 10 

depends on the lag-1 autocorrelation coefficient of the red-noise process. Table 1 also suggests 11 

that patches containing more than a single hole are unlikely to be the result of red-noise, even for 12 

a modest pointwise significance level of 20%.  For pointwise significance levels of 1% and 5%, 13 

no more than a single hole was identified in a given patch.  14 

A simple algorithm for assessing the significance of holes is therefore developed. To find the 15 

significance of holes, plot the centroids of holes at a finite set of pointwise significance levels and 16 

project the centroids onto the wavelet domain, resulting in a topological wavelet diagram. The 17 

number of holes contained in a patch should also be computed, as patches with more holes are less 18 

likely to result from red-noise. In accordance with Fig. 7 and Table 1, regions in the wavelet 19 

domain where holes exist below the 20% pointwise significance level will be considered regions 20 

with significant topological features.  21 

With a method for assessing the significance of holes, it is reasonable to analyze different 22 

ideal time series, both linear and nonlinear, to determine what types of time series produce holes 23 

in significance patches. Perhaps the simplest case is a single sinusoid with additive white noise 24 

(not shown), where the time series power spectrum in tested against a white-noise background 25 

spectrum. In this case, no evidence was found that a single sine wave, regardless of amplitude and 26 

signal-to-noise ratio, is capable of generating holes in 5% pointwise significance patches. A similar 27 

experiment was repeated but the power spectra of the sine waves were tested against red-noise 28 

spectra. The results also indicated that a single sine wave is incapable of producing holes in 5% 29 

pointwise significance patches, implying holes arise from a richer structure embedded in time 30 

series. Thus, two more complex cases are considered.  31 

To derive the Case 1 time series, first consider the nonlinear system  32 

𝑋𝑜𝑢𝑡(𝑡) =   𝑏𝑋𝑖𝑛(𝑡) +  𝛾𝑋𝑖𝑛
2 (𝑡),                                               (21) 33 

where 𝑋𝑖𝑛(𝑡) is the input into the system,  𝑋𝑜𝑢𝑡(𝑡)  is the output of the system, b is a linear 34 

coefficient, and 𝛾 is a nonlinear coefficient. The output from this system will be quadratically 35 

phased coupled (King, 1996), where quadratic phase coupling indicates that for frequencies 𝑓1, 𝑓2, 36 
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and 𝑓3 and corresponding phases 𝜙1, 𝜙2, and 𝜙3 the sum rules 𝑓1 +  𝑓2 =  𝑓3 and 𝜙1 +  𝜙2 =  𝜙3  1 

are satisfied. In Case 1,  𝑋𝑖𝑛 = 𝑐𝑜𝑠 2𝜋𝑓𝑡 so that  2 

𝑋𝑜𝑢𝑡(𝑡) =
𝛾

2
+ 𝑏 cos 2𝜋𝑓𝑡 −

𝛾

2
 cos 4𝜋𝑓𝑡,                                        (22) 3 

indicating that the output contains an additional frequency component at the harmonic 2𝑓 4 

(harmonic generation) and the mean value of the output has shifted (rectification) with respect to 5 

the input. Figures 8a and 8b show the time series of 𝑋𝑜𝑢𝑡 and the significance of the wavelet power 6 

for the case when 𝑓 = 1/64 = 1/𝜆1, b = 1, 𝜙1 = 𝜋 2⁄ , 𝜙2 = 𝜋 3⁄ , and 𝛾 = 0.25 (arbitrary units) 7 

and with Gaussian white noise added to the output. In this case, the significance of the wavelet 8 

power was tested against a red-noise background spectrum. Figure 8 shows numerous pointwise 9 

significance patches, all of which are spurious except for the one at 𝜆1 = 64. The areawise and 10 

geometric test correctly identified the pointwise significance patch at 𝜆1 = 64 to be significant but 11 

deemed a spurious patch as significant at time 140 and at 𝜆 = 3. It is noted that  the geometric test 12 

only deemed the 1% pointwise significance patch at  𝜆1 = 64 as significant. Also note that the 13 

pointwise significance test was unable to detect the harmonic with period 𝜆2 = 32 using a red-14 

noise background spectrum.  15 

It should be noted, however, that if the parameter 𝛾 were increased to a value greater than 16 

1, the oscillation with period 𝜆2 = 32 would become more prominent. In fact, it was found that 17 

for 𝛾 ≥ 1 the areawise and geometric tests perform better (not shown), correctly identifying the 18 

oscillation with period 𝜆2 = 32, with the result also depending on the noise level of the white 19 

noise. Case 1 thus only serves as an illustrative example of a situation that may arise when a 20 

wavelet analysis is applied to a geophysical (often noisy) time series.  21 

To extract more information from the wavelet power spectrum, the centroids of holes were 22 

plotted as a function of the pointwise significance level (Fig. 8c). Figure 8c shows that holes only 23 

existed at pointwise significance levels of at most 15% and 20% and therefore not all nonlinear 24 

time series can generate holes at the 5% pointwise significance level, suggesting that the relative 25 

difference between the primary frequency components or the resulting frequency combinations is 26 

important, as discussed below. The amplitudes of the coefficients b and 𝛾, as well as the signal-to-27 

noise ratio of the Gaussian white noise, turn out to be also important, which is discussed below.  28 

Case 2 is the quadratically phase-coupled time series 29 

𝑋(𝑡) = 𝑎cos(2𝜋𝑓1𝑡 + 𝜙1) +  𝑏cos(2𝜋𝑓2𝑡 + 𝜙2) +  30 

𝛾cos[2𝜋(𝑓1 + 𝑓2)𝑡 +  𝜙1 +  𝜙2],                                              (23) 31 

which consists of three frequency components:  𝑓1 = 1/20 = 1/𝜆1 ,  𝑓2 = 1/30 = 1/𝜆2 , and 32 

𝑓1 + 𝑓2 = 1/12 = 1/𝜆3, and 𝛾 is assumed to be 0.5. It is noted that Case 1 is a special case of 33 

Case 2. Like Case 1, wavelet power was also tested against a red-noise background. Unlike the 34 

significance patches in Fig. 8c corresponding to Case 1, holes have appeared in 5% pointwise 35 
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significance patches between periods 𝜆1 = 20 and 𝜆2 = 30 (Fig. 9b). Moreover, the 5% pointwise 1 

significance patch containing the hole (labeled 𝑃1) was found to be geometrically significant but 2 

was not found to contain an areawise-significant subset. It is also worth noting that the areawise 3 

and geometric tests failed to detect a significant periodicity at 𝜆1  = 20 despite the fact that it is 4 

known to exist by construction. Figure 9c shows that a few holes existed at low pointwise 5 

significant levels (≤ 20%), though only one was found at the 5% pointwise significance level (light 6 

red shading). However, if one applies the pointwise significance test to the wavelet power at the 7 

20% significance level a feature emerges that can hardly be produced from red-noise (see Table 8 

1), namely a large 20% significance patch (light blue shading) containing four holes located in the 9 

period band 20-30. One can thus have confidence that the feature is significant. Furthermore, by 10 

constructing a patch topologically unlike those generated from red-noise, significant wavelet 11 

power extending from time 20 to 300, undetected by the pointwise, areawise, and geometric tests, 12 

has been recovered, whereas only applying the 5% pointwise test would result in two patches that 13 

are seemingly indistinguishable from red-noise (labeled 𝑃2 and 𝑃3), with only one at  𝜆2 = 30 14 

being geometrically significant.  15 

The ability of the pointwise, areawise, and geometric tests to detect significant structures 16 

inevitably depends on the parameters a, b, 𝛾, 𝑓1, and 𝑓2. In fact, Maruan et al. (2007) has already 17 

determined that the pointwise test and areawise test are sensitive to the signal-to-noise level. It was 18 

hypothesized that the results of the topological method also depend on the parameters a, b, 𝛾, 𝑓1, 19 

and 𝑓2. To test the hypothesis, several experiments were performed, the first of which investigated 20 

the relationship between 𝑓1, 𝑓2, and the number of holes. The experiment is described below.  21 

Though both ideal time series contain a quadratic nonlinearity, the nonlinear interaction in 22 

Case 2 contained oscillations with nearby frequency components, allowing the formation of holes, 23 

whereas for Case 1 no significant holes appeared in significance patches. It appears that the 24 

presence of holes depends on the relative location of two oscillations in the frequency domain, and 25 

thus it is reasonable to suspect that there exists a critical frequency difference ∆𝑓𝑐𝑟𝑖𝑡,  measuring 26 

the maximum frequency difference for which holes will appear in a wavelet power spectrum. An 27 

empirically derived ∆𝑓𝑐𝑟𝑖𝑡 was determined by generating a large ensemble of time series of the 28 

form 29 

x(t) = cos2𝜋𝑓1𝑡 + cos2𝜋𝑓2𝑡 + w(t),                                          (24) 30 

where 𝑓2 > 𝑓1> 0 were generated at random, w(t) is additive white noise, and all the time series 31 

were of a fixed length. The signal-to-noise ratio was fixed to 20 and each wavelet power spectrum 32 

was tested against a red-noise background spectrum.  Figure 10 shows the mean value of 𝑁ℎ as a 33 

function of ∆𝑟 = (𝑓2 − 𝑓1)/𝑓2, the relative fractional change. For ∆𝑟 = 0.5, holes never appeared, 34 

whereas for ∆𝑟 = 0.3 holes appeared frequently. There is therefore a preferred frequency 35 

combination for which holes are more likely to appear. It was estimated that the upper critical 36 

value of ∆𝑟 is ∆𝑟𝑐𝑟𝑖𝑡 = 0.45. Using the definition of ∆𝑟, one can write ∆𝑓𝑐𝑟𝑖𝑡 = 0.45𝑓2 and therefore 37 

the critical frequency difference is a function of 𝑓2.  38 
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It turns out that even if the above experiment (not shown) was repeated using white-noise 1 

rather than red-noise background spectra ∆𝑟𝑐𝑟𝑖𝑡 would still be equal to 0.45, though more holes 2 

were found to appear at signal-to-noise ratios less than 2.  It was expected, however, that ∆𝑟𝑐𝑟𝑖𝑡 3 

also depends on the amplitudes of the cosines in Eq. 24. Thus, a third experiment was conducted 4 

in which the amplitudes of the cosines were allowed to vary from 1 to 50 and 𝑓1 and 𝑓2 were 5 

allowed to vary from 0 to 0.5. The experiment was repeated for signal-to-noise ratios from 1 to 20. 6 

The results from the experiments (not shown) indicate that for red-noise background spectra and 7 

for a signal-to-noise ratio of 20 that ∆𝑟𝑐𝑟𝑖𝑡  = 0.53, contrasting with the case for white-noise 8 

background spectra where ∆𝑟𝑐𝑟𝑖𝑡 was found to be 0.51.  9 

The empirical results shown in Fig. 10 have theoretical implications. Suppose that a time 10 

series contained two oscillations of equal amplitude such that frequency components of the two 11 

oscillations were such that 𝑓2  = 2 𝑓1 . Furthermore, suppose that the wavelet power of the 12 

oscillations were computed and the significance was tested against a red-noise or white-noise 13 

background spectrum. In this case, ∆𝑟  = 0.45 and therefore holes will almost never appear in 5% 14 

pointwise significance patches, making the detection of quadratic phase coupling using topological 15 

methods more difficult in the case of self-interactions. More generally, suppose that a single 16 

sinusoid 𝑋𝑖𝑛(𝑡) =  𝑐𝑜𝑠2𝜋𝑓𝑡  is passed through the nonlinear system  17 

𝑋𝑜𝑢𝑡(𝑡) =   𝑏𝑋𝑖𝑛(𝑡) +  𝛾𝑋𝑖𝑛
2𝑛(𝑡),                                               (25) 18 

where, after using the power-reduction for a cosine (Beyer, 1987), the output is given by 19 

𝑋𝑜𝑢𝑡(𝑡) = b cos2𝜋𝑡  + 
𝛾

22𝑛 (
2𝑛
𝑛

) +  
𝛾

22𝑛−1
∑ (

2𝑛
𝑘

) cos 4𝜋𝑓(𝑛 − 𝑘)𝑡𝑛−1
𝑘=0  ,              (26) 20 

where n is a positive integer and (
𝑛
𝑞) is a binomial coefficient. For the cosines in the summation, 21 

the frequency difference between any two cosines is  22 

∆𝑓 = 4𝜋𝑓(𝑛 − 𝑝) - 4𝜋𝑓(𝑛 − 𝑚) = 4𝜋𝑓(m-p),                                    (27) 23 

where 0 ≤ 𝑝 <m≤n-1. Thus,  24 

∆𝑟 = (𝑓2 − 𝑓1)/𝑓2 =  
4𝜋𝑓(𝑚−𝑝)

4𝜋𝑓(𝑛−𝑝)
=  

𝑚−𝑝

𝑛−𝑝
.                                          (28) 25 

Using the fact that holes can only appear between oscillation pairs with ∆𝑟 ≤ 0.53 for a red-noise 26 

background spectrum, one can show that for large n more holes are able to appear in wavelet power 27 

spectra, with the likelihood of holes appearing depending on b and 𝛾, with larger values of b and  28 

𝛾 producing more holes. In this case, holes can form in the wavelet spectrum since, for example, 29 

if m = 6 and p = 5 with n = 10 the condition ∆𝑟 ≤  0.53 will be satisfied. The result also holds if 30 

the order of the nonlinear interaction was odd and if the cosine function 𝑋𝑖𝑛(𝑡) was replaced by a 31 

sine function. For an odd order nonlinear interaction, however, ∆𝑟 = (2𝑚 − 2𝑝)/(2𝑛 + 1 − 2𝑝), 32 

where 0 ≤ 𝑝 <m≤n.  33 
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5.2 Topological significance testing of climatic time series 1 

With a better understanding of the origins of holes contained in significance patches, the 2 

wavelet power spectra shown in Figs. 1 and 2 are now analyzed more closely. Shown in Fig. 11a 3 

is the topological wavelet diagram corresponding to the wavelet power spectrum of the Niño 3.4 4 

index, which shows the existence of numerous holes at low (≤ 20%) pointwise significance 5 

levels, indicating that these patches are significant features (see Table 1). For example, the rather 6 

large patch extending from 1960 to 2013 in the period band 16 to 64 months contains a hole located 7 

at 1985 and at a period of 32 months that existed at the 5% pointwise significance level. In the 8 

same patch, three more holes existed at the 10% pointwise significance level, one located at 1975 9 

and at a period of 48 months, a second one located at 1995 and at a period of 64 months, and a 10 

third one located at 2008 and at a period of 24 months. According to Table 1, three holes in a single 11 

10% pointwise significance patch under the null hypothesis of red-noise is extremely unlikely, if 12 

not impossible. On can thus conclude with high confidence that the patch was not generated from 13 

a random stochastic fluctuation.  Moreover, the discussion in Sect. 5.1 suggests that at the very 14 

least phase-coherent oscillations were likely present in the Niño 3.4 time series, where phase 15 

coherency implies that two oscillations have a stable relative phase relationship but are not 16 

necessarily interacting nonlinearly.    17 

The wavelet topological diagram (Fig. 11b) corresponding to the wavelet power spectrum of 18 

the NAO is less interesting, containing few holes at high pointwise significance levels. At 1875, 19 

however, a patch contained holes at the 10% pointwise significance level, suggesting that the patch 20 

is a significant feature.  21 

7. Summary and Discussion 22 

A geometric significance test was developed for more rigorously assessing the significance of 23 

features in the wavelet domain. The geometric test, although related to the existing areawise test, 24 

was found to be more flexible in the sense that p-values could be readily calculated, involving a 25 

single Monte Carlo ensemble. Another strength of the geometric test is that the false discovery rate 26 

can be controlled at a desire level, minimizing the number of false rejections of the null hypothesis. 27 

On the other hand, the geometric test had the disadvantage of being less local than the areawise 28 

test.  29 

It is noted that the geometric test was only applied to patches arising from the convolution of 30 

the Morlet wavelet with a time series. The results presented in this paper are not valid for wavelet 31 

power spectra obtained using other analyzing wavelets, the reason for which is that each wavelet 32 

function has different time- and scale-localization properties that inevitably impact the geometry 33 

of patches. For example, patches found in the wavelet power spectrum obtained using a Paul 34 

wavelet are elongated in the scale direction relative to those obtained using a Morlet wavelet with 35 

𝜔0 = 6, resulting in nearby patches at different scales merging together. The merging of patches 36 
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at different scales will alter their geometry with respect to the relatively thin (in scale) patches 1 

obtained using the Morlet wavelet.  2 

One disadvantage of the geometric and areawise tests is that they require a binary decision in 3 

which pointwise and geometric significance levels must be chosen. The binary decision can be 4 

circumvented by applying a p-value adjustment procedure to the wavelet power coefficients 5 

directly. For example, one could apply the Benjamini and Hochberg (1995) procedure to the 6 

wavelet power coefficients or a modified version of the procedure developed by Benjamini and 7 

Yekutieli (2002), which is valid for any dependency structure among the local test statistics. The 8 

latter procedure would seem most appropriate given the autocorrelation structure of wavelet power 9 

coefficients; however, it is noted that the procedure has less statistical power than the original 10 

procedure valid for independent local test statistics, though Wilks (2006) found the Benjamini and 11 

Hochberg (1995) procedure to remain powerful even when the assumption of independence is 12 

violated. 13 

 14 

The topology of significant patches was also analyzed. Holes in significant patches, a 15 

topological notion, were capable of distinguishing spurious patches from true structures. The holes 16 

were identified as arising from phase-coherent oscillations with nearby frequency components and 17 

may indicate the existence of a nonlinear interaction. Patches arising from different analyzing 18 

wavelets can differ topologically. For the Paul wavelet, the shrinking of patches in time, for 19 

example, was found, after a preliminary investigation, to reduce the number of holes in wavelet 20 

power spectra. The reduction in the number of holes can be attributed to the tearing of a patch in 21 

the time direction. The results, however, require further investigation and are a subject of future 22 

work. 23 

The new methods introduced in this paper were applied to the NAO and Niño 3.4 indices, two 24 

well-known but contrasting time series. For the Nino 3.4 index, the methods detected 25 

geometrically significant structures as well as topological structures unlike that of red-noise, which 26 

provide evidence of some predictability of El Niño/Southern Oscillation, which has become of 27 

increasing importance in climate science given that its future state is uncertain under a changing 28 

global climate system (Latif and Keenlyside, 2008). For the NAO index, the new methods were 29 

unable to detect features that are distinguishable from background noise, suggesting that the NAO 30 

is a stochastic process with little predictability. The methods developed in this paper will give 31 

researchers the tools needed for a better understanding of features found in wavelet power spectra.   32 

 33 

  34 

 35 

 36 

 37 
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Appendix A 1 

Let F(s, t) be the continuous wavelet transform of a function  f(t) such that 2 

F(s, t) = ∬ 𝐾(𝑠, 𝑡;  𝑠′ , 𝑡′′)F(𝑠′, 𝑡′′)𝑑𝑠′𝑑𝑡′′.                                   (A1) 3 

Then the reproducing kernel is given by 4 

K = 
1

𝐶𝜓√𝑠𝑠′5/2
∫ [𝜓 (

𝑡′− 𝑡′′

𝑠′ ) 𝜓∗ (
𝑡− 𝑡′

𝑠
)] 𝑑𝑡′,                                       (A2) 5 

where 6 

𝐶𝜓 =  ∫
|Ψ(𝜔)|2

𝜔

∞

0
𝑑𝜔 <  ∞,                                                    (A3) 7 

and 𝛹(𝜔) is the Fourier transform of 𝜓, and the asterisk denotes the complex conjugate. The 8 

reproducing kernel captures the structure of wavelet coefficients whereby the wavelet coefficient 9 

at any point contains information about a nearby wavelet coefficient weighted by K (Tropea, 10 

2007).  11 

  12 
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Appendix B 1 

Let 𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠)  be the test statistic associated with a significance patch whose centroid is 2 

(𝐶𝑡,𝐶𝑠) and let 𝐴𝛼𝑔
𝑁 be the value of the test statistic corresponding to the 1 − 𝛼𝑔 significance level 3 

of the geometric test. Writing  4 

𝐴𝛼𝑔
𝑁 =  

𝐴𝛼𝑔

𝐴𝑅
                                                         (B1) 5 

and  6 

𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠) =

𝐴𝑝𝑎𝑡𝑐ℎ

𝐴𝑅
,                                                     (B2) 7 

it follows that  8 

𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡,𝐶𝑠)

𝐴𝛼𝑔
𝑁 =  

𝐴𝑝𝑎𝑡𝑐ℎ

𝐴𝛼𝑔

,                                                        (B3) 9 

where is 𝐴𝑝𝑎𝑡𝑐ℎ the area of the significance patch and is the 𝐴𝛼𝑔
 the area of a typical patch under 10 

the null hypothesis corresponding to the 1 − 𝛼𝑔  significance level. Since Eq. (B3) no longer 11 

contains 𝐴𝑅, the relationship between 𝐴𝑝𝑎𝑡𝑐ℎ
𝑁 (𝐶𝑡, 𝐶𝑠) and 𝐴𝛼𝑔

𝑁  no longer depends on 𝑃𝑐𝑟𝑖𝑡.  12 

 13 

  14 
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Appendix C 1 

Recall that Green’s Theorem in the plane states that  2 

∫ (𝑃𝑑𝑥 + 𝑄𝑑𝑦) =  ∬ (
𝜕𝑄

𝜕𝑥
−  

𝜕𝑃

𝜕𝑦
) 𝑑𝐴

𝑑

𝐷
 

𝑓

𝐶
,                                           (C1)                                             3 

where C is a positively oriented, piecewise smooth curve, bounding a region D, 𝑭 =  〈𝑃, 𝑄〉 is a 4 

vector field on D, and x and y are the usual Cartesian coordinates (Baxandall and Liebeck, 2008). 5 

Note that if one sets  6 

𝜕𝑄

𝜕𝑥
−  

𝜕𝑃

𝜕𝑦
= 1,                                                               (C2) 7 

then the right-hand side of Eq. (C1) can be used to calculate the area of a region D. Thus, let 𝑄 =8 

 𝑥 2⁄  and 𝑃 = − 𝑦 2⁄  so that 9 

1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) = 𝐴(𝐷)

𝑓

𝐶
,                                                     (C3) 10 

where 𝐴(𝐷) denotes the area of D. Let (𝑥0, 𝑦0),…, (𝑥𝑚−1, 𝑦𝑚−1) be m-1 vertices of a polygon. If 11 

𝐶0 is a line segment from (𝑥0, 𝑦0) to (𝑥1, 𝑦1), then 12 

∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) =  𝑥0
𝑓

𝐶0
𝑦1 −  𝑥1𝑦0.                                               (C4) 13 

More generally, denote by 𝐶𝑘 the segment from (𝑥𝑘, 𝑦𝑘) to (𝑥𝑘+1, 𝑦𝑘+1), recalling that 𝑥𝑚 =  𝑥0 14 

and 𝑦𝑚 =  𝑦0. Since C = 𝐶0⋃𝐶1, … ,∪ 𝐶𝑚−1, we can write 15 

𝐴(𝐷) =
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)

𝑓

𝐶

 16 

=
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) +

1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥) + ⋯ +

𝑓

𝐶1
 
1

2
∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)

𝑓

𝐶𝑚−1

𝑓

𝐶0
                      (C5)  17 

and thus 18 

𝐴(𝐷) =
1

2
(𝑥0𝑦1 −  𝑥1𝑦0) +   

1

2
(𝑥1𝑦2 −  𝑥2𝑦1) + ⋯ +  

1

2
(𝑥𝑚−1𝑦0 −  𝑥0𝑦𝑚−1) 19 

 =
1

2
∑ (𝑥𝑘

𝑚−1
𝑘=0 𝑦𝑘+1 −  𝑥𝑘+1𝑦𝑘).                                                 (C6)   20 
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 1 

Figure 1. (a) The NAO index from 1870 to 2013. (b) The normalized wavelet power spectrum of 2 

the NAO index. Thick contours enclose regions of 5% pointwise significance. Light shading 3 

corresponds to the cone of influence, the region in which edge effects become important.  4 

  5 
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 1 

Figure 2. (a) The Niño 3.4 index time series from 1870 to 2013. Points labeled M indicate where 2 

the merging process occurred and points labeled H indicate where a hole was formed (see Sect. 3 

5.2 for details). (b) Same as Fig. 1b except for the Niño 3.4 index for the period 1870-2013. H 4 

together with the arrow marks the location of a hole.   5 
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 1 

Figure 3. Significance of wavelet power for the NAO index mean monthly values for the period 2 

1870-2013. Black contours enclose regions of 5% pointwise significance (see Sect. 3.1) and thick 3 

red contours are the 5% areawise-significant subsets (see Sect. 3.2). Light gray shading indicates 4 

those 5% pointwise significance patches that are geometrically significant at the q = 0.05 level and 5 

dark gray shading indicates those 1% pointwise significance patches that are geometrically 6 

significant at the q = 0.05 level.   7 
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 1 

Figure 4. Same as Fig. 3 but for the Niño 3.4 for the period 1870-2013. The blue curve represents 2 

a closed path 𝑓 that is not contractible to a point because it surrounds a hole (see Sect. 5.1 and Fig. 3 

2).   4 
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1 
Figure 5. (a) An idealized convex pointwise significance patch whose boundary is indicated by the 2 

black contour and whose centroid is indicated by the black dot. For reference, the reproducing 3 

kernel associated with the areawise test is shown, which is indicated by gray shading. In this case, 4 

the reproducing kernel lies entirely inside the patch. The convexity, normalized area, and 𝜒 are 5 

displayed on the bottom left corner. (b) Same as (a) except the area of the convex hull (red curve) 6 

is not equal to the area of the patch and the reproducing kernel is unable to fit entirely inside the 7 

patch.   8 
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 1 

Figure 6. (a) Similarity index between the geometric and areawise tests for different lag-1 2 

autocorrelation coefficients for red-noise processes (see text). (b) Same as (a) except for the ratio 3 

between the false positive results of the geometric and areawise tests. The dotted black line 4 

represents the ratio of false positive between the two tests when the false discovery rate of the 5 

geometric test is controlled at the 0.05 level. (c) Same as (a) but for the mean convexity of 5% 6 

pointwise significance patches that are geometrically significant at the 5% level and for the mean 7 

convexity of 5% pointwise significance patches that are areawise significant at the 5% level.  8 
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1 
Figure 7. Normalized mean number of holes as a function of pointwise significance level. The 2 

number of holes was calculated by generating 10,000 synthetic wavelet power spectra of red-noise 3 

processes with fixed autocorrelation coefficients of 0.5 and computing the number of holes Gray 4 

shading represents the 95% confidence interval.  5 
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1 
Figure 8. (a) Time series of Case 1, which results from passing a single sinusoidal input with period 2 

𝜆 = 64 through Eq. (16). Gaussian additive white noise with a signal-to-noise of 2 was added to 3 

the output response. (b) The significance of wavelet power for Case 1 (see Fig. 3 for details). (c) 4 

Topological wavelet diagram corresponding to (b). Points are the centroids of the holes at a given 5 

pointwise significance level, where both the color and size of the dots indicate the pointwise 6 

significance level at which the hole existed. The shading of the patches corresponds to the 7 

pointwise significance level at which the wavelet power coefficient existed, with the color of the 8 

shading lighter than the dots for clarity.  9 

  10 
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 1 

Figure 9. (a) Time series of Case 2. Gaussian additive white noise with a signal-to-noise ratio of 8 2 

was added to the time series. At the point labeled A, two oscillations resonate, merging two 3 

pointwise significance patches in the wavelet domain. At the point labeled B no such resonance 4 

occurs and the two significance patches separate. (b) The significance of wavelet power (see Fig. 5 

3 for details). The pointwise significance patch labeled 𝑃1  contains a hole and the pointwise 6 

significance patches labeled 𝑃2 and 𝑃3 were falsely deemed insignificant by the geometric and 7 

areawise tests. (c) Same as Fig. 8c except for Case 2.   8 
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Figure 10. Mean number of holes found in 5% pointwise significance patches as a function of 3 

Δ𝑟 =  (𝑓2 − 𝑓1)/ 𝑓2  for a sum of two sinusoids with amplitudes equal to unity and frequency 4 

components 𝑓1 and 𝑓2 such that 𝑓2 > 𝑓1> 0. Additive white noise with a signal-to-noise ratio of 30 5 

was added to the sum of sinusoids. Pointwise significance was tested against a red-noise 6 

background. Dashed line represents the critical value of Δ𝑟, the value beyond which holes will 7 

rarely occur between oscillations of equal amplitude (set to unity) with frequencies 𝑓1 and 𝑓2.  8 

 9 

  10 
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Figure 11. Same as Fig. 8c but for the mean monthly (a) Niño 3.4 and (b) NAO index anomalies 2 

for 1870-2013.   3 
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Table 1. Fraction of pointwise significance patches containing at least 𝑁ℎ holes as a function of 1 

the pointwise significance level calculated from an ensemble of 200,000 significance patches 2 

generated from red-noise processes with fixed autocorrelation coefficients equal to 0.5.  3 

Significance level (%) 𝑵𝒉 ≥ 𝟏 𝑵𝒉 ≥ 𝟐 𝑵𝒉 ≥ 𝟑 𝑵𝒉 ≥ 𝟒 

20  2.3 × 10−2  2.6 × 10−3  4.0 × 10−3 0 

15  1.0 × 10−2  5.0 × 10−3  1.0 × 10−3 0 

10  2.0 × 10−3  1.0 × 10−3 0 0 

5  3.4 × 10−4 0 0 0 

1 0 0 0 0 

 


