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Abstract. Wavevector anisotropy of ion-scale plasma turbulence is studied at various values of ion

beta. Two complementary methods are used. One is multi-point measurements of magnetic field in

the near-Earth solar wind as provided by the Cluster spacecraft mission, and the other is hybrid nu-

merical simulation of two-dimensional plasma turbulence. The both methods demonstrate that the

wavevector anisotropy is reduced with increasing values of ion beta. Furthermore, the numerical sim-5

ulation study shows the existence of a scaling law between ion beta and the wavevector anisotropy

of the fluctuating magnetic field that is controlled by the thermal or hybrid particle in cell simulation

noise. Likewise, there is a weak evidence that the power-law scaling can be extended to the turbulent

fluctuating cascade. This fact can be used to construct a diagnostic tool to determine or to constrain

ion beta using multi-point magnetic field measurements in space.10

1 Introduction

Wavevector anisotropy appears in collisionless plasma turbulence whenever a large-scale magnetic

field is present. Anisotropy is characterized by extension or elongation of the energy spectrum in the

direction parallel or perpendicular to the large-scale field. Examples of wavevector anisotropy can

be found in near-Earth solar wind (e.g., Matthaeus et al., 1990; Chen et al., 2012), astrophysical sys-15

tems such as diffusion of galactic cosmic ray (Bieber et al., 1994, 1996; Ahlers, 2014) and magnetic

field decay process in the neutron star crust (Cumming et al., 2004), as well as in laboratory plasmas

(Howes et al., 2012; Drake et al., 2013). All these studies conclude that plasma turbulence is primar-
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ily anisotropic such that the energy spectrum is extended preferentially in the perpendicular direction

to the mean magnetic field. That is, the wavevector anisotropy corresponds to k⊥� k‖ at a given20

spectral energy, where k⊥ and k‖ denote the wavevector components perpendicular and parallel to

the mean magnetic field, respectively. The perpendicular extension of the spectrum indicates that

the spectral energy transfer or cascade is anisotropic accordingly. There are spacecraft observations

of the parallel extension of the energy spectrum, but only under limited conditions, e.g., high-speed

solar wind streams (Dasso et al., 2005) or shock-upstream region (Narita and Glassmeier , 2010).25

Development in wavevector anisotropy leads to a structure formation while the plasma evolves into a

turbulent state, which is markedly different from fluid turbulence. Evidence of anisotropy in plasma

turbulence has also been presented in numerical simulations using different schemes for plasma dy-

namics on various spatial scales from the magnetohydrodynamic (MHD) regime to the ion kinetic

regime, and down to electron kinetic regime. Most of numerical simulation studies show the perpen-30

dicular extension of the spectrum on those scales: magnetohydrodynamic turbulence (Shebalin et al.,

1983; Matthaeus et al., 1996; Matthaeus and Gosh, 1999), ion-kinetic turbulence (Valentini et al.,

2010; Verscharen et al., 2012; Comişel et al., 2013), gyrokinetic treatment (Howes et al., 2011), and

whistler turbulence on electron scales (Saito et al., 2008). Furthermore, particle-in-cell simulations

show the wavevector anisotropy of whistler turbulence at electron-scale wavelengths decreases with35

increasing electron beta (Gary et al., 2010; Saito et al., 2010; Saito and Gary, 2012; Chang et al.,

2013), which motivates our study here.

Here we propose a scenario that ion beta is one of the control parameters such that wavevector

anisotropy in the ion kinetic regime is reduced with increasing values of ion beta.

Ion beta βi is defined here as40

βi =
2µ0nikBTi

B 2
0

(1)

where the symbols denote µ0 the permeability of free space, ni the ion number density, kB the Boltz-

mann constant, Ti the ion temperature, andB0 the mean magnetic field magnitude. By extending the

method and the result obtained in Narita et al. (2014) (hereafter NCM14), we find a transition in the

wavevector anisotropy as a function of ion beta. While the qualitative picture of ion beta dependence45

is demonstrated in NCM14, this manuscript presents a more systematic survey of ion beta depen-

dence both in spacecraft measurements and direct numerical simulations. Our goal is to search for

a scaling law of the wavevector anisotropy as a function of ion beta. Since waves and instabilities

in plasmas are known to be dependent on the value of ion beta, it is natural to assume the existence

of mapping or relation between ion beta and anisotropy. Interestingly, such an idea will lead us to50

determine or constrain ion beta using magnetic field measurements only.

The wavevector anisotropy can be quantitatively measured by employing the anisotropy index

that compares two covariance quantities, one between the wavevector spectrum and the parallel

components of the wavevector and the other between the spectrum and the perpendicular components
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of the wavevector. The anisotropy index A is defined after Shebalin et al. (1983) as55

A=

∑
k k

2
⊥E(k⊥,k‖)∑

k k
2
‖E(k⊥k‖)

, (2)

where k‖ and k⊥ denote the wavevector components parallel and perpendicular to the large-scale

magnetic field, respectively, and E(k⊥,k‖) the wavevector spectrum. According to this relation,

a spectrum is regarded isotropic if the index is unity. Larger values of the index implies that the

fluctuation energy is extended to the axis of perpendicular wavevector, while smaller values of the60

index implies the spectral extension along the axis of parallel wavevector. This index is used as the

analysis tool in this work, and we take two independent and complementary approaches to determine

the wavevector anisotropy. One is solar wind observations using four-point magnetic field and the

other is numerical simulations.

2 Methods65

2.1 Multi-spacecraft measurements

Four-point magnetic field data sampled by Cluster fluxgate magnetometer in the near-Earth solar

wind (Balogh et al., 2001) are used to determine the wavevector spectra. Three time intervals are

added to that used in the previous analysis in NCM14: February 9, 2002, 0210–0240 UT; February

12, 2002, 1415–1445 UT; March 18, 2002, 2130–2200 UT. The intervals are taken from the solar70

wind intervals of Cluster measurements under the conditions of nearly regular tetrahedral formation

with the minimum inter-spacecraft distance. The magnetic field magnitude, the ion density, the ion

bulk speed, and the ion beta of the three time intervals are listed in Tab. 1. Ion data are obtained from

the ion spectrometry on board Cluster (Rème et al., 2001). With the three added intervals and that

used in NCM14, the wavevector spectra are determined at seven different values of ion beta in the75

range 0.58 to 3.66 in the solar wind.

The spectral estimator MSR (Multi-point Signal Resonator) (Narita et al., 2011) is used exten-

sively in the data analysis. The MSR technique is a high-resolution spectral estimator in the wavevec-

tor domain using four-point magnetic field data. The method assumes only a set of plane waves, and

no additional assumption is needed such as wave modes or Taylor’s frozen-in flow hypothesis. Time80

series of four-point magnetic field data are first transformed into frequencies using the Fast Fourier

Transform algorithm. Cross spectral density matrix is then constructed, which is a 12-by-12 matrix,

consisting of three components of magnetic field and four spatial points, in the frequency domain.

This matrix is reduced into a 3-by-3 matrix by projecting onto the wavevector domain. The matrix

projection is a combination of the minimum variance projection with the MUSIC (Multiple Sig-85

nal Classification) algorithm (Schmidt , 1986). To complete the projection method, the eigenvalue

decomposition of the cross spectral density matrix (Choi et al., 1993) is incorporated.
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The wavevector spectra are determined in the following steps. First, the energy spectra for the

magnetic field fluctuations are evaluated in the four-dimensional Fourier domain spanned by the

frequencies and the wavevectors. Second, the spectra are integrated over the frequencies extended to90

negative values of frequencies to guarantee the frame-invariance of the wavevector dependence after

the frequency integration. Third, the spectra are further reduced into the two-dimensional wavevector

domain spanned by the parallel components of wavevector and the perpendicular one by integrating

over the directions around the large-scale magnetic field and then summing over the positive and

negative components of the parallel wavevector. The reduction was made through the integration95

over the frequencies ω and then over the azimuthal angles φ around the mean magnetic field.

E(2D)(k⊥,k‖) =

∫
dφ

∫
dωE(4D)(k⊥,k‖,φ,ω). (3)

The perpendicular components of wavevectors therefore represent the magnitude, not in any specific

direction. The two-dimensional wavevector spectra for the three time intervals are displayed in Fig. 1

using the normalization to the proton inertial length by multiplying VA

Ωp
(here VA denotes the Alfvén100

speed and Ωp the proton cyclotron frequency). Except for the case at ion beta 3.66, the measured

wavevector spectra are determined at the wavevector components up to kVA

Ωp
= 2.5. At ion beta 3.66,

the spectrum was determined up to kVA

Ωp
= 1.7.

The wavevector anisotropy is then evaluated in the reduced spectra using the method of anisotropy

index (Eq. 2). Eq. 2 The lower limit and the higher limit of the wavenumbers are set to kVA

Ωp
= 0.3105

and kVA

Ωp
= 2.5, respectively, in the computation of anisotropy index. The lower limit is determined

such that the pump waves set in the simulation work (see below) are not counted as anisotropy (the

pump waves have the wavenumbers up to kVA

Ωp
= 0.2). The upper limit is determined such that all

intervals (except for ion beta 3.66) have the same range in the wavenumbers. At ion beta 3.66, we

use the upper limit kVA

Ωp
= 1.7. For error estimate of the anisotropy index, these wavenumbers are110

varied by 10 % and this effect is transmitted to computation of the index. The anisotropy profile as a

function of ion beta is displayed in Fig. 6 in the following section.

2.2 Direct numerical simulation

Direct numerical simulation serves as an independent and complementary approach of the anisotropy

study. The wavevector anisotropy is studied under six different conditions of ion beta (0.05, 0.1, 0.2,115

0.5, 1.0, and 2.0) covering nearly two orders of magnitude. Following the procedure in the obser-

vational approach, the wavevector spectra are determined from the numerical simulation of plasma

turbulence, and the anisotropy is evaluated using the spectra. However, due to the computational

load, we have to limit ourselves to the two-dimensional space spanned by the parallel and the per-

pendicular directions to the large-scale magnetic field. In this setup, eddies which are intrinsic to120

fluid-mechanical or gas-dynamic nature of plasmas are suppressed due the lack of the degree of

freedom around the large-scale magnetic field. In other words, though the spatial dimensions are
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two, this numerical setup is advantageous in studying the wave dynamics of plasmas in detail with-

out being influenced by eddies.

Turbulence is produced in the simulation box by solving dynamics of plasma and fields in a step-125

by-step fashion. We use the hybrid plasma code AIKEF (Adaptive Ion Kinetic Electron Fluid). This

code solves a set of Newtonian equation of motion for ions as super-particles under the Coulomb

and Lorenz forces together with the Maxwell equations. Electrons are treated as a massless charge-

neutralizing fluid (see details on the code in Müller et al. (2011). In contrast to the analytic approach

of solving plasma dynamics, the simulation approach does not require any a-priori knowledge on130

the statistical property such as a Gaussian distribution of the fluctuating fields nor assumption of the

wave modes. The hybrid plasma treatment is suitable particularly for resolving ion kinetic effects as

far as electron gyro-motion can be neglected, i.e., on the spatial scales between the electron and ion

gyroradii (cf. 10-100 km in the solar wind). A disadvantage is that the strong electrostatic effects

due to charge localization cannot develop due to the massless electron fluid, as the electrostatic field135

is immediately canceled out by electrons. However, the charge localization can safely be neglected

in our purpose of anisotropy study here.

Implementation of the AIKEF code to our simulation study follows that presented by Verscharen

et al. (2012); Comişel et al. (2013) and NCM14. The simulation box has the size 250×250 proton in-

ertial lengths, and is spanned by the parallel to the large-scale magnetic field B0 (the z-direction) and140

the perpendicular direction (the y-direction). The large-scale field is constant in space and time. The

spatial configuration is two-dimensional, but the vectorial quantities are treated as three-dimensional,

e.g., fluctuating magnetic field, electric field, particle velocities. The x-direction is pointing out of

the simulation plane. Plasma is modeled as the electron-proton plasma.

As the initial condition, a superposition of one-thousand Alfvén waves with random initial phases145

are set to the system. These pump waves are limited to the wavevectors in the range kminVA

Ωp
=

0.05 and kmaxVA

Ωp
= 0.2, in which the fluid picture of plasma is valid. Wavevectors are randomly

and isotropically chosen. The amplitude of the pump waves follows Kolmogorov’s inertial-range

scaling for fluid turbulence, that is, the spectral energy density is set to proportional to |k|−5/3. In

addition, the total fluctuation amplitude is set to 1 % of the large-scale magnetic field, δBB0
= 0.01.150

To generate the magnetohydrodynamic Alfvén waves, the plasma velocity is set to correlated to the

pump wave magnetic field at the initial time. The periodic boundaries are set to the simulation. No

fluctuation energy is given externally into the system, neither the fluid-scale range (kVA

Ωp
< 1) nor

the kinetic range (kVA

Ωp
> 1) during the simulation. Thus, fluctuations (or waves) in the ion-kinetic

domain evolve as a consequence of large-scale Alfvén waves.155

The simulation box is divided into 1024×1024 computational cells. The number of super-particles

N per cell are spanning in the range from N = 400 to N = 1600 per cell while the ion beta values

are in the range between 0.05 and 2.0. We note that the higher value of ion beta one uses in the

simulation, the more particles need to be put into the simulation box. Otherwise many particles may
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leave the computation cell due to their thermal mobility in the high-beta plasma. This process will160

eventually lead to a failure in solving the equations of the electromagnetic field when the so-called

vacuum cell is formed in which no ion is stored instantaneously. To carry out a successful run at

the value of ion beta 2.0, a large number of super-particles is set, N = 1600, which is a highly-

demanding computation.

The wavevector spectra are determined at 2000 ion gyroperiods (tΩp = 2000) or even at later165

times, by extending the iterations in the simulation run (cf. anisotropy study in NCM14 uses the

evolution time at tΩp = 1000) or by introducing new runs. This represents a long simulation run for

plasma turbulence using AIKEF code, and the fluctuations reach a quasi-stationary stage at which

the fluctuation amplitude, the spectrum, and the anisotropy do not evolve substantially any more. The

spectra are obtained by applying the Fast Fourier Transform algorithm to the spatial distribution of170

magnetic field fluctuations (Fig. 2). New runs have been additionally carried out in order to evaluate

the range of variation of the anisotropy in respect with some simulation parameters e.g. grid grid

resolution or the number of super-particles. The perpendicular wavevector components in the two-

dimensional spectra for the simulation data are chosen in the direction perpendicular to the mean

magnetic field within the simulation plane. Again, the anisotropy index is computed at each value of175

ion beta using Eq. (2). In the next section, the anisotropy-time evolution is shown in Figs. 3, 4, and

5, while the anisotropy-beta relation is displayed in Fig. 6 and Fig. 7.

3 Results and discussion

3.1 Two-dimensional spectra

The added solar wind intervals of the Cluster measurements show a diversity (including both similar-180

ities and differences) in the contour shapes of the wavevector spectra. First of all, all the three cases

exhibit the anisotropy that the spectrum is extended primarily in the direction perpendicular to the

large-scale magnetic field. That is, the spectral decay in the wavevector domain is flatter along the

perpendicular wavevector axis, while it is steeper along the parallel wavevector axis. Closer look at

the spectra yields the following detailed structures. in the case of ion beta 1.05 (left panel in Fig. 1),185

the contours of the spectrum are nearly diagonal, connecting a larger value of the parallel component

of wavevector to a larger value of the perpendicular one. In the case of ion beta 1.18, the spectral

extension appears not only in the perpendicular direction but also in oblique direction (about 60◦

from the direction of the large-scale magnetic field). While these two cases show the monotonous

spectral decay toward larger values of the wavevector components, the spectrum in the case of ion190

beta 3.66 exhibits a formation of the secondary peak along the perpendicular wavevector axis at

about k⊥VA

Ωp
= 0.8 and the third peak in the oblique direction at about (k⊥VA

Ωp
,
k‖VA

Ωp
) = (1.6,1.2).

The spectral decay in the wavevector domain is rather flat in the third case.
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The wavevector spectra obtained from the numerical simulations provide another kind of diversity

in the contour shapes. Again, the primary extension of the spectrum appears along the perpendicular195

wavevector direction (the spectral decay is flatter in the perpendicular direction, and steeper in the

parallel direction). Still, the secondary peak is formed along the parallel wavevector axis (e.g., 1<
k‖VA

Ωp
< 2 at ion beta 0.2, 2<

k‖VA

Ωp
< 3.5 at ion beta 1.0). It is also interesting to note that the

contour shape at smaller values of the perpendicular wavevector component exhibits a similarity in

that there is a hump or a spectral extension, e.g., the transitions from (k⊥VA

Ωp
,
k‖VA

Ωp
) = (0.5,2.8) at200

ion beta 0.05 to (k⊥VA

Ωp
,
k‖VA

Ωp
) = (0.5,4.0) at ion beta 0.2, and further to (k⊥VA

Ωp
,
k‖VA

Ωp
) = (0.5,5.0)

at ion beta 0.5. In contrast, at larger values of the perpendicular wavevector component, the spectral

contours do not vary across the parallel wavevector component.

3.2 Anisotropy evolution

The anisotropy index was initially determined from simulation in the wavenumber range 0.3<205
kVA

Ωp
< 6 . The obtained anisotropy is plotted as a function of time in Fig. 3. After the sudden increase

at the earliest time, the anisotropy index reaches a saturation level in less than 15 ion gyroperiods

without crossing the evolution curves at the other values of ion beta throughout the simulation runs

until 2000 ion gyroperiods. The exception is the case at the smallest value of ion beta (βi = 0.05)

that the anisotropy index increases and peaks at about 500 ion gyroperiods, and then decreases. The210

beta dependence that the anisotropy is reduced with increasing ion beta can been seen even in the

early evolution phase around a few ion gyroperiods. Furthermore, the anisotropy index at ion beta

0.05 turns back at later times (tΩp > 1500). Could be this peculiar evolution due to the thermal

fluctuations, see e.g. Yoon et al. (2014), or due to the numerical noise of the hybrid PIC simulation,

see e.g. Jenkins and Lee (2007), is a question we cannot answer in this paper. Nevertheless, there is215

no connection with the initial Alfvénic excitation imposed at the start of the simulation.

We found that the fast saturation of the anisotropy at the initial time is a consequence of the

contribution of high wavenumber terms of the power spectrum. By using a low-pass filter in the

fluctuating magnetic field, the quick saturation of the anisotropy at the initial time is removed. The

higher the ion beta value is, the lower the cutoff wavenumber (kcut) has to be employed. The effect220

of filtering the fluctuating magnetic field spectrum is demonstrated in Fig. 4 for ion beta 0.05, 0.1,

0.2, and in Fig. 5 for ion beta 0.5, 1, and 2. The cutoff wavenumber was kcut
VA

Ωp
=3 and kcut

VA

Ωp
=1,

respectively.

The anisotropy index starts to increase abruptly and attends a peak value around tΩp ≈ 500 at

ion beta 0.05 while for ion beta 0.1 and 0.2 the growing is slow and the crests are at tΩp ≈ 1000225

and tΩp ≈ 1700, respectively. At larger ion beta values, the anisotropy index evolves smoothly and

extends to a saturation level after time 500 ion gyroperiods. The anisotropy index is decreasing with

the increasing of ion beta as in the previous evaluation excepting ion beta 0.5.
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The reduced anisotropy with increasing beta was already pointed out from the particle-in-cell sim-

ulations (Chang et al., 2013) for whistler turbulence on electron kinetic scales. Our result confirms230

this tendency even on the ion kinetic scales. We note however that the peaks of the anisotropy at the

low ion beta values evolve different than those from Chang et al. (2013). In our plots (Fig. 4), the

peak is achieved quicker at lower ion beta values, while in the PIC simulation, a reversed dependence

with electron beta is observed.

3.3 Search for anisotropy scaling235

The experimental anisotropy index is plotted as a function of ion beta at once with the latter values

obtained from simulation (filtered data) in Fig. 6. The evaluated anisotropy index from Cluster mea-

surements is about 1.8 (at ion beta 1.05), 2.3 (at ion beta 1.18), and 2.1 (at ion beta 3.66). These

values are plotted in Fig. 6 together with that already obtained in NCM14 (5.7 at ion beta 0.58, 3.3

at ion beta 0.76, 2.3 at ion beta 1.66, and 2.3 at ion beta 2.53). The results from simulation were240

obtained by averaging the time dependent anisotropies shown in Fig. 4 and Fig. 5 as 6.9 (at ion beta

0.05), 3.2 (at ion beta 0.1), 1.9 (at ion beta 0.2), 1.5 (at ion beta 0.5), 1.9 (at ion beta 1.0), and 1.7

(at ion beta 2.0).

Both the spacecraft measurements and the numerical simulations show that the anisotropy is

stronger (i.e., the spectral decay is steeper along the parallel wavevector axis) when ion beta is be-245

low unity, and is moderate and asymptotes slowly to isotropy (A→ 1) when ion beta is above unity.

However, the quantitative picture of the beta-dependence is different between the observations and

the simulations. In the spacecraft measurements in the solar wind, the anisotropy index falls down

rather abruptly in the range of ion beta from 0.5 to 1, and then forms a plateau with only moderate

decrease in the anisotropy index. Furthermore, the anisotropy index measured in the solar wind tends250

to be higher than that from the simulations. In the simulation, the anisotropy falls down steeper at

low ion beta (at 0.05, 0.1 and 0.2) and then decreases smoothly at higher βi (1, 2). This is similarly

with the tendency observed in the solar wind if the shift in ion beta is disregarded.

The beta dependence of the anisotropy determined from the unfiltered data is given separately in

Fig. 7. It clearly shows a monotonic descending trend that exhibits a power-law scaling in the form255

A∝ β−αi . The slope in the scaling can be determined by the fitting procedure, and we obtain the

empirical scaling

A= 2.035×β−0.295
i (4)

Eq. (4) represents with small deviations the anisotropy index controlled by the thermal or by the

hybrid particle in cell (PIC) simulation noise. Dieckmann et al. (2004) studied the noise spectra260

of electrostatic waves in an unmagnetized electron plasma by particle in cell (PIC) simulations.

The purpose of their work was to find out the interplay between three categories of noise: thermal,

numerical and PIC simulation noise. Their results show that at smaller wavenumbers the estimated
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numerical noise dominates the simulation noise, while at large values near the Nyquest wavenumber,

the thermal noise becomes more effective. We repeated the simulations for short times (tΩp<200)265

by varying the number of super-particles, and therefore, by changing the numerical noise amplitude,

another set of anisotropy indices was determined. An additional anisotropy index extends our study

at higher values of ion beta (βi = 4). This numerical experiment brings evidence that the anisotropy

power-law scaling from Eq. (4) is linked to thermal rather than to numerical noise. The power-law

dependence is added in Fig. 6. The anisotropy index of the simulated turbulent cascade follows the270

power-law in the limit of the error bars.

For the spacecraft measurements, two additional tests for possible relation with the wavevector

anisotropy have been conducted: (1) effect of the electron-to-ion temperature ratio and (2) effect of

the magnetic field magnitude. Fig. 8 shows the plot of the anisotropy as a function of the temperature

ratio derived from the Cluster spacecraft measurements (for the test 1). Data set includes that used275

in our previous paper (NCM14). Due to large variation of anisotropy around the temperature ratio

about 0.35, no clear trend or organization can be confirmed about the possible relationship between

the anisotropy and the temperature ratio. However, the data point at the smallest anisotropy value at

(Te/Ti,A)' (0.7,1.8) could be a sign of the temperature-ratio dependence as indicated by Valentini

et al. (2010).280

Fig. 9 shows the plot of the anisotropy index as a function of the mean magnetic field magnitude

derived from the Cluster data analysis (for the test 2). There is a weak tendency that the anisotropy is

stronger with increasing magnetic field magnitude. In electron magnetohydrodynamics it is known

that anisotropy depends on the strength of large-scale magnetic field (Dastgeer and Zank, 2003) as

A∝B 2
0 . (5)285

In their paper, the anisotropy quantity (the symbol R was used) is related to our definition of the

anisotropy index by R=A−2. This scaling is verified using our anisotropy measurements using

Cluster spacecraft data. Comparison with the numerical simulation data is not possible here, since

the magnetic field is normalized to unity and the thermal pressure is varied in the simulations. The

measured slope shows the same tendency as that derived by Dastgeer and Zank (2003), but it is290

flatter than the scaling B 2
0 . We interpret that the dependence of anisotropy on ion beta comes partly

from the magnetic field magnitude and partly from the plasma thermal pressure.

4 Conclusions

Our observational and computational studies extend the results of NCM14, providing additional

evidence that the wavevector anisotropy of plasma turbulence at ion-scale wavelengths becomes295

weaker with increasing βi. This fact, however, should not be taken as surprising when considering

that the role of magnetic field is weaker in high-beta plasmas. We observe the primary extension
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of the wavevector spectrum in the perpendicular direction to the large-scale magnetic field, which

supports the notion of filamentation process in structure formation.

Furthermore, our two-dimensional hybrid simulations show that a power-law scaling relation be-300

tween the wavevector anisotropy and βi could exist. The power-law function was found to describe

accurately the anisotropy index driven by the thermal or hybrid PIC - simulation noise. What deter-

mines the scaling slope α' 0.3 will be a subject of theoretical and computational studies. It may

be worth while to compare with the other observational fact that the variance anisotropy (which is

a measure of compressibility in magnetic field fluctuations) also exhibits a power-law scaling to ion305

beta with the slope −0.56 (Smith et al., 2006).

We point out that the logic in our work can be reversed, that is, the scaling law can be applied to

measurements of magnetic field as a diagnostic tool of ion beta. At the current stage, such a method

is applicable in two-dimensional plasmas. Still, the method can be used to constrain the value of

ion beta in three-dimensional plasmas as well. An interesting extension would be an application to310

astrophysical systems. If such a scaling exists in the magnetohydrodynamic picture of plasmas, one

may obtain or constrain the value of ion beta by analyzing photometry data of filament structures in

interstellar media or astrophysical jets.
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Figure 1. Magnetic energy spectra in the plane spanned by the perpendicular and parallel components of the

wavevectors with respect to the large-scale magnetic field measured by Cluster spacecraft in the solar wind.

Figure 2. Magnetic energy spectra obtained by numerical simulation of two-dimensional ion-scale plasma

turbulence at a late-stage time evolution (2000 ion gyroperiods). The panel styles are the same as that in Fig. 1

Table 1. Magnetic field magnitude B0, ion number density ni, flow speed V , ion beta, and electron-to-ion

temperature ratio for ions of the solar wind data added to that in Narita et al. (2014). Items are sorted in

ascending order of ion beta.

Date Interval B0 ni V βi
Te
Ti

nT cm−3 km/s 1 1

Feb. 9, 2002 0210–0240 UT 4.7 3.7 493.1 1.05 0.71

Feb. 12, 2002 1415–1445 UT 6.4 3.3 512.8 1.18 0.38

Mar. 18, 2002 2130–2200 UT 10.9 15.5 446.3 3.66 0.35
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Figure 3. Anisotropy evolution for the data obtained by numerical simulation in a broad range of wavenumbers

(0.3< kVA
Ωp

< 6) at the values of ion beta (from top to bottom) βi = {0.05,0.1,0.2,0.5,1,2}.

Figure 4. Anisotropy evolution for the data obtained by numerical simulation at the values of ion beta βi =

{0.05,0.1,0.2} in the wavenumber range 0< kVA
Ωp

< 3.

Figure 5. Anisotropy evolution for the data obtained by numerical simulation at the values of ion beta βi =

{0.5,1,2} in the wavenumber range 0< kVA
Ωp

< 1.
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Figure 6. Ion beta dependence of anisotropy index obtained by the Cluster spacecraft measurements in the solar

wind (in gray) and that by direct numerical simulation (DNS, in black) with the power-law fitting.

Figure 7. Ion beta dependence of anisotropy index from Fig. 3 and the power-law fitting.

Figure 8. Anisotropy index plotted as a function of electron-to-ion temperature ratio as measured by the Cluster

spacecraft in the solar wind.
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Figure 9. Anisotropy index plotted as a function of the mean magnetic field magnitude as measured by the

Cluster spacecraft in the solar wind. The dotted line is a scaling law (Eq.,5) predicted by Dastgeer and Zank

(2003) for electron magnetohydrodynamic turbulence.
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