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Abstract

In this work, we consider the Bayesian optimization (BO) approach for tuning
parameters of complex chaotic systems. Such problems arise, for instance, in tuning
the sub-grid scale parameterizations in weather and climate models. For such
problems, the tuning procedure is generally based on a performance metric which5

measures how well the tuned model fits the data. This tuning is often a computationally
expensive task. We show that BO, as a tool for finding the extrema of computationally
expensive objective functions, is suitable for such tuning tasks. In the experiments, we
consider tuning parameters of two systems: a simplified atmospheric model and a low-
dimensional chaotic system. We show that BO is able to tune parameters of both the10

systems with a low number of objective function evaluations and without the need of
any gradient information.

1 Introduction

In climate and numerical weather prediction models, accurate simulation and prediction
depends upon the selection of optimal tuning parameters. A typical case is the tuning15

of closure parameters in climate models which describe processes that are imprecisely
modeled due to the restrictive grid used for solving the differential equations (Järvinen
et al., 2010; Schirber et al., 2013). Similarly, the tuning of parameters which control
the stochastic physics components in ensemble prediction systems is a non-trivial
task (Leutbecher and Palmer, 2008). Designing efficient procedures for tuning such20

model parameters is a topic of active research (see, e.g., Annan and Hargreaves, 2007;
Solonen et al., 2012; Hauser et al., 2012; Hakkarainen et al., 2013).

The tuning procedure is generally based on a performance metric which measures
how well the tuned model fits the data. For example, in numerical weather prediction
(NWP), tuning is done by optimizing measures related to forecast skills, while in climate25

models, tuning is based on optimization criteria which often compare some summary
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statistics (spatial and temporal averages) of the model simulation to observed statistics.
Evaluating the performance metrics is computationally expensive, since it requires
complex model simulations over the observation period.

One of the major difficulties of the tuning process is the high computational cost of
the optimization procedure: for every candidate value of the tuning parameters, one has5

to perform computationally heavy simulations of a complex physical model. Another
difficulty is that in many cases the objective function is noisy: two evaluations with the
same parameter values lead to different objective function values. Such a situation
arises, for instance, when the goal is to tune stochastic systems, such as ensemble
prediction systems used to quantify uncertainties in numerical weather predictions10

(Solonen and Järvinen, 2013). Also, applying stochastic filtering methods for parameter
estimation in state space models yields noisy objective functions, as discussed in
Hakkarainen et al. (2012).

In this paper, we study the methodology called Bayesian optimization (BO) in the
problem of parametric tuning of chaotic systems such as climate models and NWP.15

In BO, the parameter values where the objective function is evaluated are carefully
chosen so that we learn as much as possible about the underlying function. As a result,
the optimum can often be found with a small number of function evaluations. We
discuss both deterministic and noisy tuning objectives.

We perform two studies: first, we consider tuning of a simplified atmospheric model20

with a noiseless objective function. The tuned model is a two-layer quasi-geostrophic
model with four tuned parameters which define the model error covariance of the
corresponding data assimilation system. Second, we consider the problem of tuning
a chaotic system with a noisy likelihood function. We use the parameterized Lorenz 95
model as a test model, similarly to previous studies. The goal is to explore the suitability25

of the BO methodology for tuning full scale climate and weather models.
There are other approaches besides BO to accelerate computations with objective

functions that are expensive to evaluate. Various surrogate modeling techniques
attempt to describe the parameter-to-output dependence with empirical approximative
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models that are cheap to evaluate. Techniques range from polynomial chaos
expansions (Marzouk and Xiu, 2009) to GP models (Rasmussen and Williams, 2006),
which are also applied in the BO method. In BO, instead of first building a surrogate
model and then fixing it for further calculations, the goal is to design the points where
the objective function is evaluated on the fly so that the potential of the new point in5

improving the current best value is maximized. That is, BO is directly built for solving
optimization problems efficiently, not to represent the objective function efficiently in
a selected region of the parameter space.

The BO method resembles classical response surface techniques for experimental
optimization (Box and Draper, 1987), where local quadratic models are used to guide10

a sequence of experiments to obtain an optimal response. BO uses GP, which is more
flexible in describing the behavior of the underlying objective. Also, BO uses a different
way for selecting the next point where the objective function is evaluated. We use
the Gaussian processes (GP) based BO which has been previously demonstrated
as a very efficient and flexible approach in optimization of computationally heavy to15

compute models in several papers (see, e.g., Brochu et al., 2010a; Lizotte et al., 2012).
The outline of the paper is as follows. In Sect. 2, we present the basic ideas behind

the Bayesian optimization. In Sect. 3, we formulate the likelihood for a complex system
represented as a state-space model. In Sect. 4, we consider the case of tuning
a simplified atmospheric model with a noiseless objective function. In Sect. 5, we20

demonstrate tuning of a chaotic system with a noisy likelihood. We conclude in Sect. 6.

2 Bayesian optimization

The goal of Bayesian optimization is to find the extrema of black-box functions,
f : Rn →R that are expensive to evaluate (see, e.g., reviews by Brochu et al., 2010a;
Snoek et al., 2012). Here, f which is also called the objective function typically does25

not have a closed form solution. In BO, the objective function is modeled as a random
function whose distribution describes our knowledge of the function, given a set of
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function evaluations {θ i , f (θ i )}i=1,...,t. The posterior distribution over f is handled using
the standard Gaussian process methodology which allows for evaluating the mean and
variance of objective function values f (θ ) in any location θ at any optimization step t.
This information is used to propose a new input location θ t+1 which has the largest
potential to improve the current best value of the objective function. In the following, we5

assume that the objective function is being maximized.
The search of the new point where the objective function has to be evaluated is done

by optimizing a complementary function called acquisition function, that measures the
potential to improve the current best point. The two statistics often utilized in designing
acquisition functions are the predictive mean and the predictive variance of f at possible10

location θ . In designing new points where the function is evaluated, one typically has to
choose between two extremes: sampling from locations of high predicted mean value
(exploitation strategy) and locations of high uncertainty value (exploration strategy),
which is illustrated in Fig. 1. BO provides a tool that is able to automatically trade off
between exploration and exploitation, which often yields a reduced number of objective15

function evaluations needed (Lizotte et al., 2012). It can also prove useful for objective
functions with multiple local optima, and noise in the objective function can be handled
in a straight-forward manner.

Even though BO was introduced in the seventies (Mockus et al., 1978), the
methodology has been under active development in the recent years due to its20

successful application to a number of machine learning problems (Boyle, 2007; Frean
and Boyle, 2008; Lizotte, 2008; Osborne et al., 2009; Brochu et al., 2010a; Snoek et al.,
2012). To our knowledge, BO has not been studied in connection with parameter tuning
in complex dynamic models.

BO is a methodology that suits very well to the problem of complex system tuning.25

First, evaluation of the objective function in this task requires computationally expensive
model simulations, typically several days to complete. Second, the sampling region of
the parameters is often unknown and it is manually selected using expert knowledge.
Third, the gradient information is unavailable and direct optimization is infeasible.
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2.1 Gaussian processes

The Gaussian processes (GP) methodology is the key element of BO, as it is an elegant
tool for describing distributions over unknown functions (Rasmussen and Williams,
2006). In this methodology, the prior distribution over f is chosen such that the function
values f = [f (θ1), . . . , f (θ t)] are assumed to be normally distributed:5

f | η ∼ N (f |0,Kf ) (1)

where the mean is typically taken to be zero and the covariance matrix Kf

is constructed such that its i j th element is computed using covariance function
k(θ i ,θ j |η) for the corresponding inputs θ i , θ j and hyperparameters η. The covariance10

function k is the key element of the GP modeling: it encodes our assumptions about
the behavior of function f , such as its smoothness properties.

In our experiments, we use the squared exponential covariance function which is
one of the most common covariance functions:

k(θ i ,θ j |η) = σ2
∏
k

exp

(
−(θ i −θ j )

2

2l2k

)
, (2)15

where σ2 is the scaling parameter which specifies the magnitudes of the function
values and lk is the parameter defining the smoothness of the function. Both belong to
hyperparameters η.

At every iteration of the BO algorithm, the properties of the unknown function20

f are learned by adapting the hyperparameters η to fit well the observed data
{θ i , f (θ i )}i=1,...,t. This is typically done by maximizing the marginal likelihood of the
hyperparameters η. Then, GP is used to evaluate the predictive distribution over the
function values f (θnew) at any new location θnew. Assuming that the observed values
of the objective function are noisy and the noise is Gaussian, the predictive distribution25

is normal:

p(f (θnew)|f ,η) ∼N
(
µ(θnew),σ2(θnew)

)
(3)

1288

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1283/2014/npgd-1-1283-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1283/2014/npgd-1-1283-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 1283–1312, 2014

Bayesian
optimization for
tuning chaotic

systems

M. Abbas et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with the mean and variance given by

µ(θnew) = kTnew (Kf +Σ)−1 f (4)

σ2(θnew) = k(θnew,θnew)−kTnew (Kf +Σ)−1knew , (5)

where knew = [k(θnew,θ1), . . . ,k(θnew,θ t)]
T . Σ is the covariance matrix of the noise5

in the objective function, which is often parameterized as σ2I and estimated in the
optimization procedure. For more details on training GP, see, for example, the book by
Rasmussen and Williams (2006).

2.2 Acquisition functions

The acquisition functions are used to search for a new location θnew which has the10

highest potential to improve the best value of the objective function obtained so far,
denoted by

µ+ = max
t
µ(θ t) .

At each BO iteration, the new sample is chosen to maximize the value of the acquisition
function:15

θnew = argmax
θ
g(θ ) ,

where

g(θ ) = g(µ+,µ(θ ),σ(θ )) .

High values of the acquisition function correspond to regions where the expected
value µ(θ ) of the objective function value is high or where the prediction uncertainty20

σ(θ ) is high or both. Deciding which areas have the largest potential is known as the
exploration vs exploitation trade off (see, e.g., Jones, 2001).
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The choice of possible acquisition criteria is quite large with developments still taking
place (see, e.g., Lizotte et al., 2012; Brochu et al., 2010b). Here, we illustrate two of the
most popular acquisition functions called probability of improvement (Kushner, 1964)
and expected improvement (Mockus, 1989). The probability of improvement (PI) is
formulated as5

gPI(θ ) =Φ
(
d/σ(θ )

)
(6)

d = µ(θ )−µ+ − ξ (7)

where Φ(·) is the normal cumulative distribution function. When ξ = 0, gPI(θ ) is simply
the probability of improving the best value µ+ by taking a sample at location θ . The10

problem with using ξ = 0 is that PI favors locations that have even a slight improvement
over the current best µ+. This means that in this setting PI has a higher tendency
to exploit rather than explore and it practically always gets stuck at a local optimum
(Lizotte et al., 2012). The tuning parameter ξ > 0 allows for tuning PI in order to reduce
this problem. However, the choice of ξ is always subjective, although it has a great15

impact on the performance. For a detailed study of the effect of ξ, we recommend the
work of Lizotte et al. (2012).

The expected improvement (EI) is formulated as

gEI(θ ) = 〈f (θ )−µ+〉 (8)

= dΦ
(
d/σ(θ )

)
+σ(θ )φ

(
d/σ(θ )

)
(9)20

where 〈·〉 denotes expectation, d is defined in Eq. (7) and φ(·) is the normal probability
density function. The EI criterion is derived as the expected difference between the
function value in a new location f (θ ) and the current best µ+. Thus, EI aims at
maximizing f by the biggest margin and yields optimization which is less prone to25

getting stuck in a local optimum. Nevertheless, using a tuning parameter ξ > 0 allows
for control of the exploration vs exploitation trade-off (Lizotte et al., 2012).

Figure 4 illustrates a one-dimensional maximization procedure using BO. We start
with three function evaluations and show the sampled points, the GP fits (with the
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red line) and the posterior uncertainty (with the pink filled areas). The acquisition
functions are shown at the subplots below. The new location (marked with a magenta
vertical line) is chosen so that it maximizes the acquisition function. As the optimization
proceeds, we collect more samples and finally find the maximum of the objective
function. One can notice that, compared to PI, EI favors exploration as it samples from5

regions with higher uncertainty. The objective function approximation obtained with
EI improves much faster compared to PI. EI is also able to find the global maximum
earlier. In this case, one could argue that using a larger value of ξ in PI could result in
more exploration and faster optimization. However, choosing the right ξ value for PI is
generally difficult. We use the EI acquisition function with BO for tuning parameters in10

our experimental study.
As stated earlier, the acquisition function is maximized at every step of BO in order to

find a sample with the best potential. The acquisition function typically has multiple local
optima (see Fig. 4) and the ability to find the global optimum of the acquisition function
is extremely important for the efficiency of BO. Thus, global optimization procedures are15

typically used, which can be computationally demanding. Nevertheless, this procedure
is usually far cheaper computationally because the global optimization only evaluates
the GP and does not touch the objective function, which is computationally the most
expensive part. Any global optimization method can be used in this task. In this work
we have used the DIRECT method by Jones et al. (1993).20

3 Filtering methods for likelihood evaluation

In tuning chaotic systems, we use the approach where the likelihood is computed using
filtering techniques (Hakkarainen et al., 2012). The tuned system is represented as
a state-space model

sk =M(sk−1)+Ek (10)25

yk =K(sk)+ek , (11)
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where sk is the state of the model, M is the forward model which can be implemented
by a solver of partial differential equations and K is the observation operator. Ek and
ek are noise terms which account for model imperfection and observation noise. In
climate science applications, model parameters θ usually appear in the formulation of
M or/and they can govern the distribution of the model error term Ek .5

Filtering methods evaluate the likelihood by sequentially estimating the dynamically
changing model state sk for a given observation sequence y1:k = {y1, . . . ,yk}. Filters
work by iterating two steps: prediction and update. In the prediction step, the current
distribution of the state is evolved with the dynamical model to the next time step. The
predictive distribution is given by the integral10

p(sk |y1:k−1,θ ) =
∫
p(sk |sk−1,θ )p(sk−1|y1:k−1,θ )dsk−1 . (12)

As this integral generally does not have a closed form solution, it is usually
approximated in one way or another. This yields different filtering techniques such as
extended Kalman filter, ensemble Kalman filter, particle filter and so on.15

The state distribution is updated using a new observation yk using the Bayes rule:

p(sk |y1:k ,θ ) ∝ p(yk |sk ,θ )p(sk |y1:k−1,θ ). (13)

This posterior is used inside the integral Eq. (12) to obtain the prior for the next time
step.20

The likelihood p(y1:n|θ ) of the model parameters can be computed from the
quantities evaluated in the filtering procedure:

p(y1:K |θ ) = p(y1|θ )
K∏
k=2

p(yk |y1:k−1,θ ) , (14)

where p(yk |y1:k−1,θ ) is calculated based on the marginal posterior of the states:25

p(yk |y1:k−1,θ ) =
∫
p(yk |sk ,θ )p(sk |y1:k−1,θ )dsk .
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Our goal is to search for parameters that maximize this likelihood f (θ ) = p(y1:K |θ ) in
Eq. (14).

Extended Kalman filter (EKF) is a filtering technique in which the integrals are
approximated by linearization of the forward model M and the observation operator
K around the current state estimate. Assuming that the observation error is normally5

distributed with zero mean and covariance matrix Rk , the linearization yields:

p(y1:n|θ ) ∝ exp

(
−1

2

n∑
k=1

rTk

(
Cyk(θ )

)−1
rk + log |Cyk(θ )|

)
(15)

Cyk(θ ) = Kk
(

MkCest
k−1MT

k +Qk(θ )
)

KTk +Rk (16)

where rk = yk −K(spk) are the prediction residuals, Mk and Kk are the linearization of10

M and K operators, respectively, Cest
k−1 is the covariance matrix of the state distribution

Eq. (13) at time k −1 and | · | denotes the matrix determinant.
When the dimensionality of the tuned model is too large, the extended Kalman

filter suffers from memory issues. Another problem is that linearization is often
too cumbersome for highly complex models. In such scenarios, more sophisticated15

techniques like stochastic ensemble Kalman filters (EnKF) are often used for filtering.
The basic idea of EnKF is that the posterior distribution of the states is approximated

using sample statistics, which are computed using a relatively small number of
ensembles propagated by the model at every assimilation step. Stochastic filters
involve random perturbations of the model states and observations, which introduces20

randomness in the likelihood evaluation. More details on EnKF can be found, for
example, in (Evensen, 2007).

From the explanation above, we can see that such likelihood evaluation techniques
using filtering methods is the example of a target that is very heavy to evaluate, and
thus, efficient optimization techniques are needed.25
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4 Parameter tuning of an atmospheric model with “noiseless” likelihood
evaluations

In the following experiment, we tune a model of synoptic-scale chaotic dynamics. The
likelihood is evaluated using the extended Kalman filter, which results in noiseless
likelihood evaluations.5

4.1 A two-layer quasi-geostrophic model

The quasi-geostrophic (QG) model simulates fluid motion dynamics on a rotating
cylinder (see, e.g., Fisher et al., 2011). The chaotic nature of the dynamics generated
by the QG model is shown in Vannitsem and Nicolis (1997). In our case, the system
includes two atmospheric layers (see Fig. 5) indicated as the top layer and the bottom10

layer. The orography in our model is such that there is a “hill” formation which affects
the flow in the bottom layer. The system is simulated on a uniform grid for each layer
so that the values at the top and bottom of the cylinder are set to pre-defined values
(as boundary conditions).

The model dynamics are governed by the potential vorticity equations15

D1

Dt
(
∇2ψ1 − F1 (ψ1 −ψ2)+βy

)
= 0, (17)

D2

Dt
(
∇2ψ2 − F2 (ψ2 −ψ1)+βy +Rs

)
= 0, (18)

where ψi denotes the model state vector called stream function and index i specifies
the top atmospheric layer (i = 1) and the bottom layer (i = 2). Di denotes the substantial20

derivatives for latitudinal wind ui and longitudinal wind vi :

Di ·
Dt

=
∂·
∂t

+ui
∂·
∂x

+ vi
∂·
∂y

.

Parameters Rs and β denote dimensionless orography component and the northward
gradient of the Coriolis parameter f0.
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The relationship between the model physic attributes and parameters F1 and F2 in
Eqs. (17) and (18) is defined by

F1 =
f 2
0 L

2

ǵD1
, F2 =

f 2
0 L

2

ǵD2
, ǵ = g

∆θ

θ̄
,

Rs =
S (x,y)

ηD2
, β = β0

L
U

,
5

where D1 and D2 are the depths of the two layers, ∆θ defines the potential temperature
change on the layer interface, θ̄ is the mean potential temperature, g is acceleration of
gravity, η = U

f0L
is the Rossby number associated with the defined system, and S(x,y)

and β0 are dimensional representations of Rs(x,y) and β, respectively. We used the
implementation of the two-layer QG-model developed by Bibov (2011).10

4.2 Experimental setup

The described QG-model is used to formulate a synthetic problem of chaotic system
tuning. The data used in the tuning process are generated by a QG resolved on a dense
120×62 grid with the following parameters:

– layer depths are D1 = 6000 units and D2 = 4000 units15

– distance between the grid points is 100000 units.

This is our “true” system which is only used for generating the data.
The tuned system is a model which is governed by the same equations but it is

resolved on a sparser grid 40×20 with the distance between grid points to be 300000
units. This truncation of the grid size is a common practice in actual climate model20

testing. Thus, bias is being added to our tuning model because the fast processes
affecting the observations on the finer scale will remain unmodeled.

The tuned system is represented as a state-space model Eqs. (10) and (11) where
the forward model M is implemented by a solver of Eqs. (17) and (18). The state is
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the 1600-dimensional vector of the stream function values in every point on the grid
(2×40×20). In our scenario, the tuned quantity is the covariance matrix Qk of the
model error term Ek which is assumed to be normally distributed:

Ek(θ ) ∼ N(0,Q(θ )) . (19)
5

The model error covariance matrix Q(θ ) is parameterized such that its i j th element is
given by

τ2δi=j +σ
2ρexp

−
x2
i j

2α2

 , (20)

where δi=j equals 1 when i = j and 0 otherwise. Component exp
(
− x2

i j

2α2

)
represents10

the covariance function which models the dependency of the correlation on the
distance between points: xi j is the distance between points i and j projected on the
same layer and α is a tuning parameter. Parameter ρ defines correlations between
the two layers such that 0 ≤ ρ ≤ 1. To guarantee that the parameter stays within the
bounds, we use parameterization15

ρ = exp

−
h2
i j

2γ2

 ,

where hi j is the distance between the layers if i and j are in the same layer and

hi j = 0 otherwise. Thus, the actual tuning parameter is γ. Parameter σ2 is the scaling
parameter and τ is the nugget term often used to assure numerical stability.

Thus, there are four tuning parameters in total. The parameterization in Eq. (20)20

assures the positive-definiteness of Q for any combinations of the tuned parameters,
which is important for the stability of BO. This corresponds to describing the model error
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as a Gaussian process with a covariance function separable in x and h domains. The
surface direction can be imagined horizontal to the cylinder shown in Fig. 5 and height
is in the vertical direction. In order to use a valid covariance function, we computed the
distance xi j in the three-dimensional space, not on the cylinder surface.

In the experiments, we assume that noisy observations of the simulated stream5

function are available at 50 randomly selected grid points with the interval of six hours.
Thus, the observation operator K in Eq. (11) simply selects some of the elements
of the state vector as being observed. The standard deviation of the iid Gaussian
noise added to the simulated ψ values is σy = 0.1. The same value was used to form
the covariance matrix of the observation noise in the tuned system in Eq. (11). The10

observation sequence contained 400 time instances.
We evaluate the likelihood using the extended Kalman filter, as described in Sect. 3.

4.3 Experimental results

We used BO with the EI acquisition function for tuning the parameters of the model
error covariance matrix. Initially, we draw 40 samples using the Latin hypercube15

sampling (LHS, see, e.g., Lizotte et al., 2012) in the region α ∈ [10 500], σ2 ∈
[0.01 0.81], ρ ∈ [0.61 0.97] and τ2 ∈ [0.25 0.81]. In practice, we worked with the
logarithm of the tuned parameters.

Figure 6 presents the results of BO using EI with ξ = 0. Here, we plot the
approximation of the objective function using the mean of GP fitted after 200 iterations20

over all the data (initial 40 samples and BO 200 samples). Since there are four
tuning parameters, each subplot presents the surface of the objective function when
parameters α and log(σ) are varied and the other two parameters ρ and τ are fixed (see
the corresponding fixed values above each subplot). The circles represent the samples
used at the stage of initial sampling (the magenta circles) and the ones gathered during25

the optimization procedure (the white circles). Note that the locations of the samples
are approximate: they are projected to the nearest plane corresponding to one of the
subplots.
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Note that the initial samples were gathered from an area with relatively low
likelihoods. Figure 2 shows the log-likelihood function values (log-scale) and the
maximum of the initial data and the ones obtained after every BO iteration t. We
observe that the number of likelihood function values required by the BO method to
find the best point was 141. Here, we fixed the total number of iterations to 200. While5

other optimization performance criteria can be used as well (see, e.g., Huang et al.,
2006, p. 457).

This experiment shows that BO with the EI acquisition function is able to find
the maximum of the posterior computed with GP while overcoming the local optima
corresponding to small values of α. These values can be seen more clearly in the top10

four subplots (first row) of the Fig. 6. Note that we initialize the experiment with samples
taken from an arbitrary region with quite bad log-likelihood values. This implies that
the possibility of finding bad samples compared to the initial samples is highly likely
due to the exploration property of the method. Therefore, we can see from Fig. 2 that
the maximum found with the method gradually keeps improving over long number of15

iterations.

5 Parameter tuning of a chaotic system with “noisy” likelihood evaluations

In the following example, we simulate a scenario of tuning a large-scale chaotic system
in which the evaluation of likelihood Eq. (14) using the extended Kalman filter is
infeasible and therefore a stochastic EnKF is used. This results in noisy evaluations20

of the likelihood. As a tuned system we use a parameterized Lorenz 95 model.
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5.1 Parameterized Lorenz 95 model

The model generating the data is the classical Lorenz 95 model (Lorenz, 1995; Wilks,
2005) whose dynamics is given by

dxk
dt

= −xk−1(xk−2 −xk+1)−xk + F − hc
b

Jk∑
j=J(k−1)+1

zj , (21)

dzj
dt

= −cbyj+1(zj+2 − zj−1)−czj +
c
b
Fz +

hc
b
x1+b j−1

J c (22)5

where k = 1, . . . ,K and j = 1, . . . ,JK . We use values K = 40, J = 8, F = Fz = 10, h = 1
and c = b = 10. In this model, the evolution of the slowly changing state variables xi is
affected by fast variables zj and vice versa.

The tuned model is designed such that only the evolution of the slow variables is10

modeled and the net effect of the fast variables is represented with a deterministic
component, such that

dxk
dt

= −xk−1(xk−2 −xk+1)−xk + F −g(xk ,θ ), (23)

and g(xk ,θ ) is selected to be a polynomial g(xk ,θ ) =
∑d
i=0θix

i
k , similarly to15

(Hakkarainen et al., 2012). In our experiments, we use the polynomial of order d = 1
which corresponds to slope θ1 and intercept θ0. The forcing term remains unchanged,
that is F = Fz = 10.

5.2 Experimental setup and likelihood formulation

The training data were generated using the Lorenz 95 model Eqs. (21) and (22)20

with the discretization interval ∆t = 0.0025. The state of the system is represented by
a 40-dimensional vector of the slow variables xk . We assume that noisy observations
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of the slow variables are available at 24 locations each day. The last three state
variables from every set of five states are picked and thus we observe the states
3, 5, 8, 9, 10, . . . ,38, 39, 40. The standard deviation of the iid Gaussian noise added to
the simulated xj values is (0.1σclim)2, where σclim = 3.5 corresponds to a climatological
standard.5

The tuned model is the parameterized Lorenz 95 model Eq. (23) simulated with the
discretization interval ∆t = 0.025 using 50 days of observations (one day corresponds
to 0.2 time units). The tuned system is formulated as a state-space model Eqs. (10)
and (11) with a diagonal covariance matrix Q = σ2I with σ2 fixed to 0.0065, the value
found to be optimal in our previous studies (Hakkarainen et al., 2012). Thus, the two10

tuned parameters are slope θ0 and intercept θ1 of the polynomial parameterization
Eq. (23).

The objective function is the likelihood Eq. (14) computed via stochastic EnKF
with 100 ensemble members. Since we use a version of EnKF that involves
random perturbations, the likelihood evaluations are noisy. Noisy likelihood introduces15

difficulties in standard methods that try to explore or optimize the likelihood surface.

5.3 Experimental results

We present the results of a single run of BO with the EI acquisition function. The initial
20 samples were drawn using the LHS method in the region 5.0 ≤ θ0 ≤ 7.0 and 0.67 ≤
θ1 ≤ 0.8. These samples are represented with the magenta circles in Fig. 7b. Figure 7b20

shows the GP mean approximation over all the data (initial 20 samples and BO 150
samples). The samples obtained using BO are shown with the white circles and black
cross indicates the found optimum. The found optimal values of the parameters are
θ0 = 1.97 and θ1 = 0.07. Note that the initial samples come from a rather bad region
with respect to the parameter likelihood. Figure 7a shows a scatter of uniformly random25

sampling of 1000 likelihood evaluations.
In Fig. 8b, we show the region closer to the optimum. The standard deviation value of

the estimated noise in the total collected data was 647, which is rather large compared
1300
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to the variability of the systematic component of the objective function. We also perform
uniformly random sampling in this smaller region and the scatter of 1000 samples is
shown in Fig. 8a. At the found optimum the standard deviation of the noise is around
200.

Figure 3 shows the log-likelihood function values (log-scale) and the maximum of5

the initial data and the ones obtained after every BO iteration t. We observe that the
number of likelihood function values required by the BO method to find the best point
was 132. Although, we initialize the method with quite bad likelihood function values,
we see that BO is able to find a good solution, even though there was significant noise
in the likelihood function.10

6 Conclusions

In this paper, we considered Bayesian optimization as a tool for tuning chaotic
systems. We used two benchmark systems for testing the BO procedure: a simplified
atmospheric model and a low-dimensional chaotic system. In the two-layer QG-model,
the tuning parameters were four variables that constructed a model error covariance15

matrix used in the filtering with EKF. In the Lorenz 95 model, the tuning parameters
were two variables that were used in the construction of a polynomial parameterization.
For both experiments, the learning was based on the filtering likelihood.

The experiments showed that by using BO we were able to find the optimal solutions.
The expensive models were tuned without the need of any gradient information. BO20

required only a small number of likelihood function evaluations as compared to random
sampling.

The tested technique can be a practical tool in many tuning problems in climate
sciences. Possible applications include tuning of large-scale climate models (Schirber
et al., 2013) and ensemble prediction systems (Solonen and Järvinen, 2013). However,25

there are some known issues when using the BO method for large systems: first, with
the increase in the number of tuning parameters of the model the required number
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of samples to explore the domain would automatically increase. Second, with limited
availability of training data due to expensive computational cost of the model, little
is known about the objective function which means the design of the prior becomes
more critical. Third, with the exploration vs exploitation property of acquisition functions,
one has to decide on how to handle such parameters. We see the above mentioned5

problems as a very interesting direction for researchers, especially, in weather and
climate applications. Applying the BO technique to large-scale models like ECHAM5
will be the future direction of our research.

The Supplement related to this article is available online at
doi:10.5194/npgd-1-1283-2014-supplement.10
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Figure 1. One-dimensional example of a Gaussian process (GP)

approximation over an objective function. The GP is based on the

points shown with red circles. The pink fill shows uncertainty of ±2

standard deviation from the prediction mean. The typical dilemma

is between sampling in locations of high prediction mean (exploita-

tion) and locations of high prediction uncertainty (exploration).
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Figure 2. Log-likelihood function values and the maximum values

for the initial data (40 points), and the ones obtained after every BO

iteration t (200 points). Note the log-scale on the y-axis. For plot-

ting, we select the final best value between the maxima obtained

from the likelihood evaluations and the GP mean predictions, and

subtract this best value from the likelihood evaluations. In this case,

the best value is the maximum of the GP mean predictions, there-

fore, the best value can be directly used for the subtraction.
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Figure 3. Log-likelihood function value and the maximum of the

initial data (20 points), and the ones obtained after every BO iter-

ation t (150 points). Note the log-scale on the y-axis. For plotting,

we select the final best value between the maxima obtained from

the likelihood evaluations and the GP mean predictions, and sub-

tract this best value from the likelihood evaluations. In this case,

the best value is the maximum of the likelihood evaluations, there-

fore, a small nugget term (0.15) is added to the best value before

the subtraction.

Figure 1. One-dimensional example of a Gaussian process (GP) approximation over an
objective function. The GP is based on the points shown with red circles. The pink fill shows
uncertainty of ±2 standard deviation from the prediction mean. The typical dilemma is between
sampling in locations of high prediction mean (exploitation) and locations of high prediction
uncertainty (exploration).
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tract this best value from the likelihood evaluations. In this case,

the best value is the maximum of the likelihood evaluations, there-

fore, a small nugget term (0.15) is added to the best value before

the subtraction.

Figure 2. Log-likelihood function values and the maximum values for the initial data (40 points),
and the ones obtained after every BO iteration t (200 points). Note the log-scale on the y axis.
For plotting, we select the final best value between the maxima obtained from the likelihood
evaluations and the GP mean predictions, and subtract this best value from the likelihood
evaluations. In this case, the best value is the maximum of the GP mean predictions, therefore,
the best value can be directly used for the subtraction.
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Figure 3. Log-likelihood function value and the maximum of the initial data (20 points), and
the ones obtained after every BO iteration t (150 points). Note the log-scale on the y axis.
For plotting, we select the final best value between the maxima obtained from the likelihood
evaluations and the GP mean predictions, and subtract this best value from the likelihood
evaluations. In this case, the best value is the maximum of the likelihood evaluations, therefore,
a small nugget term (0.15) is added to the best value before the subtraction.
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Figure 4. One-dimensional demonstration of Bayesian optimization. The objective function is shown with the black line. The circles represent

sampled values of the objective function. The red line is the prediction mean and pink fill color is the uncertainty (±2 standard deviation).

The vertical magenta lines show the new sample locations proposed by BO so as to maximize the acquisition function. The two columns

correspond to two acquisition functions: PI (left) and EI (right).

Figure 4. One-dimensional demonstration of Bayesian optimization. The objective function is
shown with the black line. The circles represent sampled values of the objective function. The
red line is the prediction mean and pink fill color is the uncertainty (±2 standard deviation). The
vertical magenta lines show the new sample locations proposed by BO so as to maximize the
acquisition function. The two columns correspond to two acquisition functions: PI (left) and EI
(right).
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Figure 5. Geometrical layout of the two-layer quasi-geostrophic model. Left: Schematic representation of the two model layers on a rotating

cylinder. Right: The model layout at one of the longitudes.
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Figure 6. The illustration of the surface of the objective function estimated during BO for tuning the QG model. Each subplot corresponds to

a surface obtained by varying two parameters and keeping the other two parameters fixed. The circles represent the sampled locations: initial

(magenta) and obtained during optimization (white). The black cross indicates the maximum of the likelihood function. Note the logarithmic

scale for parameter σ. See text for a more thorough explanation.

Figure 5. Geometrical layout of the two-layer quasi-geostrophic model. Left: schematic
representation of the two model layers on a rotating cylinder. Right: the model layout at one
of the longitudes.
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a surface obtained by varying two parameters and keeping the other two parameters fixed. The circles represent the sampled locations: initial

(magenta) and obtained during optimization (white). The black cross indicates the maximum of the likelihood function. Note the logarithmic

scale for parameter σ. See text for a more thorough explanation.

Figure 6. The illustration of the surface of the objective function estimated during BO for tuning
the QG model. Each subplot corresponds to a surface obtained by varying two parameters
and keeping the other two parameters fixed. The circles represent the sampled locations: initial
(magenta) and obtained during optimization (white). The black cross indicates the maximum of
the likelihood function. Note the logarithmic scale for parameter σ. See text for a more thorough
explanation.
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Figure 7. (a): The scatter plot of the objective function values calculated on uniform random samples. (b): Single result of BOEI for tuning

the Lorenz 95 model parameters using the EnKF likelihood. The magenta circles indicate the initial set of samples. The white circles indicate

the BO samples and the maximum found is shown with the black cross. The contours represent the objective function approximation at the

last iteration of BO.
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Figure 8. The same result as in Fig. 7 but in a smaller region near the optimum. The BO samples in (b) are shown with circles whose colors

represent the evaluated objective function values. The black cross indicates the maximum.

Figure 7. (a) The scatter plot of the objective function values calculated on uniform random
samples. (b) Single result of BOEI for tuning the Lorenz 95 model parameters using the EnKF
likelihood. The magenta circles indicate the initial set of samples. The white circles indicate the
BO samples and the maximum found is shown with the black cross. The contours represent
the objective function approximation at the last iteration of BO.
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Figure 8. The same result as in Fig. 7 but in a smaller region near the optimum. The BO samples in (b) are shown with circles whose colors

represent the evaluated objective function values. The black cross indicates the maximum.
Figure 8. The same result as in Fig. 7 but in a smaller region near the optimum. The BO
samples in (b) are shown with circles whose colors represent the evaluated objective function
values. The black cross indicates the maximum.

1312

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/1283/2014/npgd-1-1283-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/1283/2014/npgd-1-1283-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

