First reviewer:

We would like to thank the reviewer for her/his careful reading of the ar-
ticle and for the useful comments which helped us to improve and clarify the
manuscript. We have addressed all the comments as explained below. Also,
we have proposed major changes in the article to put into light the comparison
DBFN-4Dvar and to improve its readability.

1) (...) In any case, specify the values of H, L (and M), and discuss
the question of the under/overdeterminacy of the estimation prob-
lem, especially for short assimilation windows.

Thank you for raising this point. In the proposed experiments we have H =
9720, L = 11 and accordingly M = 116640. Thinking the problem without a
background term and with daily SSH observations, i.e. daily H observations, it
would be necessary to have at least a Data Assimilation window (DAw) of 12
days to determine the problem. Using time interpolation, in a two days DAw
we have 192 time steps, which is by far enough to determine the problem from
a mathematical point of view.

However, writing the equation (1) in a discrete form we have:
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which shows that the nudging algorithm provides an estimate of the full system
state at time ¢ 4+ 1 independently of the size of the observation space, i.e ¢ is
indeed a background term.

We added to the article a paragraph highlighting the importance of the back-
ground for the DBFN and 4Dvar when the number of observations are smaller

than the size of the state space to be identified.

And also, look at what happens in the absence of linear interpola-
tion between observations.

The reviewer’s question is good, indeed we think we have partially adressed
this question in the article Sect. 5.2.2 where we discuss the effect of data spar-
sity on the solution. Our conclusion is that in the absence of time interpolation
and considering a scalar gain, the estimates are poorer than with interpolation
(this is true at least for the assimilation of SSH with a scalar gain). This is
due to nature of the SSH variable in our model. Looking to the momentum

equation:
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where py(x,y, z,t) = fC:ZO gp(T, S, ¢)d( is the hydrostatic pressure and ps, = gpn
is the free surface pressure, and to the equation governing the free surface (7)
evolution:
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we see that nudging the free surface implies a correction of the barotropic ve-
locity. Then, since the barotropic component of the velocity field propagates
much faster than the baroclinic component, the corrections rapidly readjust to
their initial value, as you have pointed out in your comments. When using time
interpolation we see that the baroclinic components are adjusted by the model
itself, probably through interactions between the barotropic and the baroclinic
modes.

When the matrix K is constructed to spread the observations to the non-
observed variables, e.g 3D-velocities and temperature, Fig.13 shows that we
do not need to time interpolate the observations.

In the new version of the article we took out the scalar gain experiments and
the experiments using daily observation of the full SSH field because it is an
extremely non realistic situation. Then, we added results about the comparison
DBFN vs 4Dvar using a more realistic observation network. For these experi-
ments, the observations are available every four days and no time interpolation
is done.

2) The performance of the method is generally assessed in the paper
through the relative error. There are however exceptions : errors are
evaluated in Fig. 7 through rms values (with unspecified units ...),
which does not make comparison with other results very easy. But
the relative error is not anyway a good measure,to the extent that
the value of is not specified. In the case of temperature in particular,
where (I think) x true is expressed in K, the value of the relative error
is very small, and it is not possible to have an obvious understanding
of the significance of that error. A much better measure would be the
error relative the intrinsic variability of the variable under consider-
ation. When you describe the model, give the intrinsic variability of
each variable (or a typical range of variation over say, one month),
and evaluate the estimation errors with respect to that variability.
Physical units might also be used for evaluating the errors, but will
not be very significant for non- oceanographer readers.

We have changed the figures to consider the RMS error, which answers the
first issue raised by the reviewer, and we have also specified the units for the
figures.

3) Figure 5, and all similar figures that follow, show that the esti-
mation error increases almost systematically over successive assimi-
lation windows. That is obviously due to some form of cycling from
one window to the next. The authors do not say how that cycling is
done, but there is simply no point in doing it if it leads to an increase
in the estimation error. It is preferable to restart the assimilation
from scratch at each new window.

This is a good point raised by the reviewer. We have added one section (5.3)
explaining that one assimilation cycle is defined as the process of identification
of an initial condition through the iterative process followed by a forecast span-
ning the assimilation window, which provides a background or first guess to the
next assimilation cycle.



In theory, under strong observability conditions the BFN estimation is inde-
pendent of the background field (see for instance Auroux and Blum,2005). It
means that the system forgets the background information and the solution is a
function only of the observations, which means that there is no reason for tak-
ing the latest forecast as the new background. However in reality, only a small
portion of the state space is observed in a DAw, and thus the D/BFN may
take some assimilation cycles to forget the background. Indeed, the numerical
experiments we have been conducting have shown that starting the iterations
with a background closer to the true state speeds up the convergence, and that
is why we have considered cycling of the DBFN algorithm.

However, as the reviewer has mentioned, under large DAw the system diverges
after some cycles. Divergence may depend on the K matrix, DAw length and
the observation network. Thus, depending on the algorithm configuration, it
would be worth resetting the assimilation system after some cycles.

We made changes in the article in order to consider only a gain matrix K which
updates the full state vector, thus avoiding the divergence features presented in
the Sect. 5.1.

Inconclusive considerations as to the origin or the effect of the in-
crease, like the ones relative to Figures 9 and 10, are simply irrelevant
if they do not tell how to avoid the increase in the first place. Just
mention that cycling, as you have attempted to do it, has the effect
of increasing the estimation error.

We agree with the reviewer suggestion and took out figures 9 and 10 from
the manuscript as well as most assertions about the role of diffusion in the di-
vergence of the DBFN.

4) From what I understand, the most significant result of the paper
is that BFN is numerically more efficient than 4D-Var (subsection
5.2.3). The description of the 4D-Var experiment is however much
too succinct. Was there a background term xb as in Eq. (11) ? If
yes, how was it defined, and how was the associated matrix covariance
matrix B defined ?

Yes, the reviewer is right about the importance of the comparison DBFN vs
4Dvar. We have improved the description of the 4Dvar configuration as sug-
gested. The 4Dvar that we have used considers a background term of the form:
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where B is the background error covariance matrix. This matrix is supposed
to model the spatial covariances of the background errors of a given variable as
well as the cross-covariance between the errors of different variables. Since the
state space is too big, it is impossible to store the entire B matrix. Therefore,
Derber and Bouttier (1999) have proposed the decomposition of the multivariate
problem into a sequence of several univariate problems. This is accomplished
by decomposing the variables into a balanced component and an unbalanced
component. This is done for all variables except one which should be kept with-
out decomposition in order to define the balanced and unbalanced components
of the other variables. We used the decomposition proposed by Weaver (2005)



for which the temperature is the “seed“ variable and then thanks to some phys-
ical constraints such as the geostrophic balance, the hydrostatic balance and
the principle of water mass conservation all other state variables may be de-
composed into a balanced (B) component and an unbalanced (U) component.
Thus, each model variable may be written as:

T=T
S =S+ Sy = GST(T) + Sy
n=mns+nu = Gn(p) + U (1)

u=up+uy = Gup(p) +uv
v=uvp + vy = Gup(p) +vu

where

pP= GpT(T) + GPS(S)
p= G;Dp(p) + Gpy ()

Then we can define the linearized balance operator G such as:
B = GByG”

Since a covariance matrix may be written as the product of variances and cor-
relations, B may be expressed as:

B =GATCAGT

where A is a diagonal matrix of error standard deviation, for which the clima-
tological standard deviation are the entries, and C' is an univariate correlation
matrix modeled using the generalized diffusion equation discussed extensively
in Weaver and Courtier (2001), Weaver et al. (2005).

We have changed the article accordingly. Also, in many aspects we have brought
modifications to the paper in order to treat more deeply this point.

I mention that, if a background term is present, the comparison with
BFN is not clean, since the information contained in the background
is given to 4D-Var, but not to BFN. I also mention that, if a back-
ground is present, the corresponding estimation problem is automat-
ically overdetermined, since an estimate, however inaccurate, will be
available for each model state variable.

As we said before, we have made a lot of modifications on this point. Now
we believe the paper adresses this question.

5) The authors write on several occasions (e.g., p. 1103,1l. 21-23)
that the nudging term in eqs(3) and (4) is small in comparison with
other terms. But no evidence is given to that effect.

Thank you for raising this point. This effect can be seen in the Fig.(15) of
the article, for example, by the absence of shocks after each combination of
data and observation. When great increments are added to the model, i.e.
when K (2°°* — H(x)) is greater than the dominant terms in the equations, it
generally leads to the generation of inertia-gravity waves that tends to dominate
the energy spectra and disrupt the forecasts.



We agree with the reviewer that, rather than making statements about it, it
would be more convenient to present the momentum balance budget includ-
ing the nudging term. However, since we believe that it is not necessary here
to enter in such details, we prefer just to remove these assertions from the article.

6) Figure 4 shows spectra of the model fields (in backward-forward
integrations without nudging if I understand correctly). Similar spec-
tra for the estimation error would be very useful, by showing which
spatial scales are, or are not, reconstructed by BFN.

The reviewer raised a good point. We added to the article a figure (Fig.(1)
in this text) similar to the Fig.(4) calculated for a two years data assimilation
experiments. The figure shows that the effective resolution of the model is not
affected by the diffusive character of the DBFN algorithm. It is clear that there
is a reduction of the energy for the scales close to the grid scale, but the energy
for scales greater than 7 x Az is not affected. It means that the diffusion-
induced errors presented in the section 4 are ”controlled “ by the assimilation of
sea surface height observations. Comparing with the 4Dvar, there is no great
differences in the surface spectrum for the 5 days and 10 days windows, which
once more proves the reliability of the DBFN for assimilation of oceanic obser-
vations. The deep ocean kinetic energy spectrum shows a relatively high energy
for scales larger than 100km. This is due to the high variance of the PLS esti-
mator at deep layers as shown in the Fig (2) of this letter. This means that this
behavior is not intrinsic to the D/BFN methodology but to our implementation
scheme.

Accordingly, we have added to the article a discussion about the Fig.1 of this
letter and about the gain K used in our DBFN experiments.
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Figure 1: Kinetic energy mean power spectra calculated using the first layer
(top) and a layer at 2660m (bottom) and using the 650 days of the assimilation
experiments using the DBFN (left) and the 4Dvar (right). Blue curves represent
the “true“ power spectra; Green curves represent the power spectra calculated
for the 5 days DAw; Red curves represent the power spectra calculated for the
10 days DAw and Black curves represent the power spectra calculated for the
30 days DAw. In the bottom abscissa the tick-labels stand for longitudinal
wave-number (rad/m) while in the top abscissa the tick-labels stand for the
corresponding wavelengths in km units.
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Figure 2: Mean Squared error of the residuals (left panel) and R? score (right
panel) for the PLS algorithm using different number of modes, indicated in the
legend, and for Ordinary Least Square regression. Results of prediction, i.e.
the statistics are calculated using objects not used in the construction of the
regression model.



Remarks

As stated before, we have made major changes in the article. Here we describe
how the structure of the article changes:

e Subsection 3.1 ”Ocean model configuration* is abbreviated and included
into Section 3;

e Subsection 3.2 “Data Assimilation experiments” is transformed into Sec-
tion 5;

e Section 5 contains four subsections:
1. ”Prescription of the DBFN gain“: explains how the matrix K is

calculated;

2. "The 4Dvar background term configuration“: details the background
term used in the 4Dvar;

3. 7 Assimilation cycle“: explains how and why the methods are cycled;

4. ”Observation network*: describes the assimilated observations and
discusses the undetermination of the assimilation problem;

e The Section 5 is shortened and becomes Section 6. Subsection 5.1 ”Exper-
iments with scalar nudging coefficients“, 5.2.1 ”Daily gridded SSH obser-
vations“ and 5.2.2 " Temporal data sparsity“ are removed from the article;

e Subsection 5.2.3 ”Intercomparisons® is transformed into subsection 6.1
”Reference experiment“;

e Subsection 6.2 ”Sensitivity experiments“ is created to describe sensitivity
tests with respect to the length of the Data Assimilation window. The
DBFN and 4Dvar are compared.



Second reviewer:
We would like to thank the reviewer for her/his careful reading of the article and
for the useful comments which helped us to improve and clarify the manuscript.
We have addressed all the comments as explained below. Also, we have proposed
major changes in the article to put into light the comparison DBFN-4Dvar and
to improve its readability.

a) the main point regards Eq.(6) and (7). The authors only cite
a personal communication that should explain why after an infinite
number of iterations their algorithm should converge to a trajectory
calculated without the diffusive and the nudging term. We think that
this point is important in driving the reader in the comprehension of
the results presented. So the authors should give some theoretical
justifications and verify it in their results.

Thanks for raising this question. The personal communication concerns the
statements that under convergence conditions and under the hypothesis that at
convergence both forward and backward trajectories are equal, then Egs. (6)
and (7) hold. To see this we write the DBFN system as:

0y,

ﬁ = f(fk) —+ VAfk; + I?(fobs - H(fk)) (3)
F(0) = Z%_1(0), 0<t<T,

85} A > (7 7

oy = F(@) — vATy — K (Tops — H(i)) (4)
Tu(T) = an(T), T>t>0.

where k£ € N>, stands for iterations.

We see that if K’ = K and the forward and backward limit trajectory are
equal, i.e Too = Zoo, then taking the sum between Egs.(3) and (4) shows that
Zso satisfies the model equations without the Nudging and diffusion:

0%
ot

while taking the difference between Eqs.(3) and (4) shows that ¥, satisfies the
Poisson equation:

= F(Too) ()

—

Afoo = *g(fobs - H(foo)) (6)
Concerning the BFN and DBFN convergence, we prefer to make references to
past works in the introduction to avoid increasing the length of the article:
Auroux and Blum (2005) for a ODE linear system ; Ramdani et al. (2010)
for reversible linear PDE equations (Wave and Schrédinger equations); Auroux
and Nodet (2012) for linear and non-linear transport equation under viscous
and non viscous conditions.
Then, we added a paragraph to the article explaining how we obtain Eqgs. (6)
and (7) and the issues related to convergence.

b) it is not clear the behavior of the diffusive term in the backward



integration. We understood that this term eliminates the small scale
structures both in forward and in backward integration. The sign
indicated in (4) suggests this interpretation but some sentences at
pag. 1080, line 15 and following let the reader quite confused.

We agree with the reviewer, the diffusion term as it is written in Eqs.(3) and (4)
eliminates the small scale structure both in forward and backward mode. How-
ever, the point discussed in pag. 1080 is to clarify that ideally the true inverse
model should not dissipate energy both in forward and backward integration. If
analytically this makes the backward integration ill-posed, numerically and for
finite Data Assimilation window it is the very small scales (high wavenumber)
that pose the problem. That is why we suggest the use of the BFN (not the
DBFN) followed by a digital filter which eliminates the necessary energy to keep
the numerical solution stable.

Since this comment may be a source of confusion, we decided to take it out of
the article and just say that for sake of stability we used the DBFN.

c¢) It is completely unclear what are the different kinds of K’s used. At
Pag. 1080 it seems (we use latex notation) that K =k H"T R"-1, then
the authors speak about a ”K based on the PLS regression model”,
somewhere else (e.g. Pag. 1083) it seems that after the DBFN the
PLS regression is used. We strongly suggest the authors to make the
technical details of the different experiments of their method clear.

We thank the reviewer for this useful remark. We have used two versions of
K. One is a scalar, and in this case we can interpret K = kHT R~ with
HT = Id and R the observation error covariance, which in our case is diagonal
with equal entries. The other one relies in the covariance (correlations) calcu-
lated thanks to the PLS regression. In this case, the updating scheme can be
seen as a rough approximation of the two steps update for EnKF. As we have
already said, we made several changes in the article, thus in the new version
only the Kalman-like gain is used. Accordingly, we have added the subsection
5.1 ”Prescription of the DBFN gain* to clarify our choice of the gain matrix K.

d) We agree with the other referee that the relative error is not a
good measure of the difference between two states. We suggest the
use of the RMS or of the RMS normalized by the standard deviation.

We have changed the figures to consider the RMS error.

e) This point regards the DFBN technique: the authors state the
in absence of observations the iterations converge to an homogeneous
state. This means that after several iterations the analysis is com-
pletely independent of the dynamics equation (F(x) in Eq.(2)).

We think that with our explaination given to the remark a) the reviewer will
certainly better understand this point. Indeed, we do not say that without
observation the solution is totally independent of the model, since it is stated
that the trajectory at convergence is a solution of the model F. Indeed, in the
complete absence of observations it is not worth considering the iterations.
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We included in the article a better explaination about this point, accordingly
with our answer to the topic a).

We think that with no diffusive term, after several iterations, the
model is in some sense ”forced” to become equal to the observations
in the observed points. Reading the manuscript we have understood
that the authors think that with a balance of the diffusive and nudg-
ing terms, the trajectory should converge to an actual trajectory-
of the model without diffusion. If this is correct the authors should
better clarify and also prove that this behavior holds, at least in the
model under examination.

What we mean by the paragraphs of lines 3-15 on page 1082 is that the tra-
jectory at the convergence satisfies both the model equations without diffusion
terms and the Poisson equation. It does not necessarily mean that it is the
solution of the Back and Forth Nudging when considering the model without
diffusion. Moreover, we agree with the reviewer when he says that ”with no
diffusive term, after several iterations, the model is in some sense ”forced” to
become equal to the observations in the observed points”. To see this, we just
need to write Egs.(3) and (4) without the diffusion term and take the difference
between them:

K(z° — H(zs)) =0

To show that at convergence the solution satisfies the model equation without
the nudging and diffusion terms, we have configured an experiment for which
the true state comes from a higher resolution model ( 3km). The projection of
the higher resolution model onto our mesh is viewed as the model trajectory
without diffusion. This trajectory is assimilated using the DBFN algorithm and
then we compare the kinetic energy spectrum for the high resolution model, a
typical spectrum for our configuration and the spectrum after the assimilation
of the high resolution observation. Figure 3 presents these spectrums. We read-
ily see that the reconstructed spectrum is much closer to the high resolution
model than to the typical spectrum for our configuration.
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Figure 3: Kinetic energy mean power spectra calculated using the first layer
(top) using the forecast of the assimilation experiments using the DBFN and
assimilating high resolution observations. Black curve represents the “true“
power spectra at high resolution; Red curve represents the power spectra calcu-
lated for the 10 days DAw and Magenta curve represents a typical spectrum for
our configuration. In the bottom abscissa the tick-labels stand for longitudinal
wave-number (rad/m) while in the top abscissa the tick-labels stand for the
corresponding wavelengths in km units.
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Remarks

As stated before, we have made major changes in the article. Here we describe
how the structure of the article changes:

e Subsection 3.1 ”Ocean model configuration* is abbreviated and included
into Section 3;

e Subsection 3.2 “Data Assimilation experiments” is transformed into Sec-
tion 5;

e Section 5 contains four subsections:
1. ”Prescription of the DBFN gain“: explains how the matrix K is

calculated;

2. "The 4Dvar background term configuration“: details the background
term used in the 4Dvar;

3. 7 Assimilation cycle“: explains how and why the methods are cycled;
4. ”Observation network*: describes the assimilated observations and

discusses the undetermination of the assimilation problem;

e The Section 5 is shortened and becomes Section 6. Subsection 5.1 ”Exper-
iments with scalar nudging coefficients“, 5.2.1 ”Daily gridded SSH obser-
vations“ and 5.2.2 " Temporal data sparsity“ are removed from the article;

e Subsection 5.2.3 ”Intercomparisons® is transformed into subsection 6.1
”Reference experiment“;

e Subsection 6.2 ”Sensitivity experiments“ is created to describe sensitivity
tests with respect to the length of the Data Assimilation window. The
DBFN and 4Dvar are compared.
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